| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ocel | Structured version Visualization version GIF version | ||
| Description: Membership in orthogonal complement of H subset. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ocel | ⊢ (𝐻 ⊆ ℋ → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ 𝐻 (𝐴 ·ih 𝑥) = 0))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocval 31209 | . . 3 ⊢ (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑦 ∈ ℋ ∣ ∀𝑥 ∈ 𝐻 (𝑦 ·ih 𝑥) = 0}) | |
| 2 | 1 | eleq2d 2814 | . 2 ⊢ (𝐻 ⊆ ℋ → (𝐴 ∈ (⊥‘𝐻) ↔ 𝐴 ∈ {𝑦 ∈ ℋ ∣ ∀𝑥 ∈ 𝐻 (𝑦 ·ih 𝑥) = 0})) |
| 3 | oveq1 7394 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ·ih 𝑥) = (𝐴 ·ih 𝑥)) | |
| 4 | 3 | eqeq1d 2731 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑦 ·ih 𝑥) = 0 ↔ (𝐴 ·ih 𝑥) = 0)) |
| 5 | 4 | ralbidv 3156 | . . 3 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝐻 (𝑦 ·ih 𝑥) = 0 ↔ ∀𝑥 ∈ 𝐻 (𝐴 ·ih 𝑥) = 0)) |
| 6 | 5 | elrab 3659 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ℋ ∣ ∀𝑥 ∈ 𝐻 (𝑦 ·ih 𝑥) = 0} ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ 𝐻 (𝐴 ·ih 𝑥) = 0)) |
| 7 | 2, 6 | bitrdi 287 | 1 ⊢ (𝐻 ⊆ ℋ → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ 𝐻 (𝐴 ·ih 𝑥) = 0))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 ⊆ wss 3914 ‘cfv 6511 (class class class)co 7387 0cc0 11068 ℋchba 30848 ·ih csp 30851 ⊥cort 30859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-hilex 30928 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oc 31181 |
| This theorem is referenced by: shocel 31211 ocsh 31212 ocorth 31220 ococss 31222 occllem 31232 occl 31233 chocnul 31257 h1deoi 31478 h1dei 31479 hmopidmpji 32081 |
| Copyright terms: Public domain | W3C validator |