![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ocel | Structured version Visualization version GIF version |
Description: Membership in orthogonal complement of H subset. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ocel | ⊢ (𝐻 ⊆ ℋ → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ 𝐻 (𝐴 ·ih 𝑥) = 0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ocval 28711 | . . 3 ⊢ (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑦 ∈ ℋ ∣ ∀𝑥 ∈ 𝐻 (𝑦 ·ih 𝑥) = 0}) | |
2 | 1 | eleq2d 2844 | . 2 ⊢ (𝐻 ⊆ ℋ → (𝐴 ∈ (⊥‘𝐻) ↔ 𝐴 ∈ {𝑦 ∈ ℋ ∣ ∀𝑥 ∈ 𝐻 (𝑦 ·ih 𝑥) = 0})) |
3 | oveq1 6929 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ·ih 𝑥) = (𝐴 ·ih 𝑥)) | |
4 | 3 | eqeq1d 2779 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑦 ·ih 𝑥) = 0 ↔ (𝐴 ·ih 𝑥) = 0)) |
5 | 4 | ralbidv 3167 | . . 3 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝐻 (𝑦 ·ih 𝑥) = 0 ↔ ∀𝑥 ∈ 𝐻 (𝐴 ·ih 𝑥) = 0)) |
6 | 5 | elrab 3571 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ℋ ∣ ∀𝑥 ∈ 𝐻 (𝑦 ·ih 𝑥) = 0} ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ 𝐻 (𝐴 ·ih 𝑥) = 0)) |
7 | 2, 6 | syl6bb 279 | 1 ⊢ (𝐻 ⊆ ℋ → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ 𝐻 (𝐴 ·ih 𝑥) = 0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ∀wral 3089 {crab 3093 ⊆ wss 3791 ‘cfv 6135 (class class class)co 6922 0cc0 10272 ℋchba 28348 ·ih csp 28351 ⊥cort 28359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 ax-hilex 28428 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-iota 6099 df-fun 6137 df-fv 6143 df-ov 6925 df-oc 28681 |
This theorem is referenced by: shocel 28713 ocsh 28714 ocorth 28722 ococss 28724 occllem 28734 occl 28735 chocnul 28759 h1deoi 28980 h1dei 28981 hmopidmpji 29583 |
Copyright terms: Public domain | W3C validator |