![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ocel | Structured version Visualization version GIF version |
Description: Membership in orthogonal complement of H subset. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ocel | ⊢ (𝐻 ⊆ ℋ → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ 𝐻 (𝐴 ·ih 𝑥) = 0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ocval 31110 | . . 3 ⊢ (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑦 ∈ ℋ ∣ ∀𝑥 ∈ 𝐻 (𝑦 ·ih 𝑥) = 0}) | |
2 | 1 | eleq2d 2815 | . 2 ⊢ (𝐻 ⊆ ℋ → (𝐴 ∈ (⊥‘𝐻) ↔ 𝐴 ∈ {𝑦 ∈ ℋ ∣ ∀𝑥 ∈ 𝐻 (𝑦 ·ih 𝑥) = 0})) |
3 | oveq1 7433 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ·ih 𝑥) = (𝐴 ·ih 𝑥)) | |
4 | 3 | eqeq1d 2730 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑦 ·ih 𝑥) = 0 ↔ (𝐴 ·ih 𝑥) = 0)) |
5 | 4 | ralbidv 3175 | . . 3 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝐻 (𝑦 ·ih 𝑥) = 0 ↔ ∀𝑥 ∈ 𝐻 (𝐴 ·ih 𝑥) = 0)) |
6 | 5 | elrab 3684 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ℋ ∣ ∀𝑥 ∈ 𝐻 (𝑦 ·ih 𝑥) = 0} ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ 𝐻 (𝐴 ·ih 𝑥) = 0)) |
7 | 2, 6 | bitrdi 286 | 1 ⊢ (𝐻 ⊆ ℋ → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ 𝐻 (𝐴 ·ih 𝑥) = 0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3058 {crab 3430 ⊆ wss 3949 ‘cfv 6553 (class class class)co 7426 0cc0 11146 ℋchba 30749 ·ih csp 30752 ⊥cort 30760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-hilex 30829 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6505 df-fun 6555 df-fv 6561 df-ov 7429 df-oc 31082 |
This theorem is referenced by: shocel 31112 ocsh 31113 ocorth 31121 ococss 31123 occllem 31133 occl 31134 chocnul 31158 h1deoi 31379 h1dei 31380 hmopidmpji 31982 |
Copyright terms: Public domain | W3C validator |