| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ocel | Structured version Visualization version GIF version | ||
| Description: Membership in orthogonal complement of H subset. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ocel | ⊢ (𝐻 ⊆ ℋ → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ 𝐻 (𝐴 ·ih 𝑥) = 0))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocval 31255 | . . 3 ⊢ (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑦 ∈ ℋ ∣ ∀𝑥 ∈ 𝐻 (𝑦 ·ih 𝑥) = 0}) | |
| 2 | 1 | eleq2d 2817 | . 2 ⊢ (𝐻 ⊆ ℋ → (𝐴 ∈ (⊥‘𝐻) ↔ 𝐴 ∈ {𝑦 ∈ ℋ ∣ ∀𝑥 ∈ 𝐻 (𝑦 ·ih 𝑥) = 0})) |
| 3 | oveq1 7353 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ·ih 𝑥) = (𝐴 ·ih 𝑥)) | |
| 4 | 3 | eqeq1d 2733 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑦 ·ih 𝑥) = 0 ↔ (𝐴 ·ih 𝑥) = 0)) |
| 5 | 4 | ralbidv 3155 | . . 3 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝐻 (𝑦 ·ih 𝑥) = 0 ↔ ∀𝑥 ∈ 𝐻 (𝐴 ·ih 𝑥) = 0)) |
| 6 | 5 | elrab 3647 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ℋ ∣ ∀𝑥 ∈ 𝐻 (𝑦 ·ih 𝑥) = 0} ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ 𝐻 (𝐴 ·ih 𝑥) = 0)) |
| 7 | 2, 6 | bitrdi 287 | 1 ⊢ (𝐻 ⊆ ℋ → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ 𝐻 (𝐴 ·ih 𝑥) = 0))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ⊆ wss 3902 ‘cfv 6481 (class class class)co 7346 0cc0 11003 ℋchba 30894 ·ih csp 30897 ⊥cort 30905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-hilex 30974 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oc 31227 |
| This theorem is referenced by: shocel 31257 ocsh 31258 ocorth 31266 ococss 31268 occllem 31278 occl 31279 chocnul 31303 h1deoi 31524 h1dei 31525 hmopidmpji 32127 |
| Copyright terms: Public domain | W3C validator |