HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ocel Structured version   Visualization version   GIF version

Theorem ocel 29043
Description: Membership in orthogonal complement of H subset. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
ocel (𝐻 ⊆ ℋ → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥𝐻 (𝐴 ·ih 𝑥) = 0)))
Distinct variable groups:   𝑥,𝐻   𝑥,𝐴

Proof of Theorem ocel
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ocval 29042 . . 3 (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑦 ∈ ℋ ∣ ∀𝑥𝐻 (𝑦 ·ih 𝑥) = 0})
21eleq2d 2897 . 2 (𝐻 ⊆ ℋ → (𝐴 ∈ (⊥‘𝐻) ↔ 𝐴 ∈ {𝑦 ∈ ℋ ∣ ∀𝑥𝐻 (𝑦 ·ih 𝑥) = 0}))
3 oveq1 7137 . . . . 5 (𝑦 = 𝐴 → (𝑦 ·ih 𝑥) = (𝐴 ·ih 𝑥))
43eqeq1d 2823 . . . 4 (𝑦 = 𝐴 → ((𝑦 ·ih 𝑥) = 0 ↔ (𝐴 ·ih 𝑥) = 0))
54ralbidv 3185 . . 3 (𝑦 = 𝐴 → (∀𝑥𝐻 (𝑦 ·ih 𝑥) = 0 ↔ ∀𝑥𝐻 (𝐴 ·ih 𝑥) = 0))
65elrab 3657 . 2 (𝐴 ∈ {𝑦 ∈ ℋ ∣ ∀𝑥𝐻 (𝑦 ·ih 𝑥) = 0} ↔ (𝐴 ∈ ℋ ∧ ∀𝑥𝐻 (𝐴 ·ih 𝑥) = 0))
72, 6syl6bb 290 1 (𝐻 ⊆ ℋ → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥𝐻 (𝐴 ·ih 𝑥) = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wral 3126  {crab 3130  wss 3910  cfv 6328  (class class class)co 7130  0cc0 10514  chba 28681   ·ih csp 28684  cort 28692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pr 5303  ax-hilex 28761
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-sbc 3750  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-iota 6287  df-fun 6330  df-fv 6336  df-ov 7133  df-oc 29014
This theorem is referenced by:  shocel  29044  ocsh  29045  ocorth  29053  ococss  29055  occllem  29065  occl  29066  chocnul  29090  h1deoi  29311  h1dei  29312  hmopidmpji  29914
  Copyright terms: Public domain W3C validator