![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hococli | Structured version Visualization version GIF version |
Description: Closure of composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hoeq.1 | ⊢ 𝑆: ℋ⟶ ℋ |
hoeq.2 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
hococli | ⊢ (𝐴 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝐴) ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoeq.1 | . . 3 ⊢ 𝑆: ℋ⟶ ℋ | |
2 | hoeq.2 | . . 3 ⊢ 𝑇: ℋ⟶ ℋ | |
3 | 1, 2 | hocoi 31788 | . 2 ⊢ (𝐴 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝐴) = (𝑆‘(𝑇‘𝐴))) |
4 | 2 | ffvelcdmi 7112 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℋ) |
5 | 1 | ffvelcdmi 7112 | . . 3 ⊢ ((𝑇‘𝐴) ∈ ℋ → (𝑆‘(𝑇‘𝐴)) ∈ ℋ) |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ ℋ → (𝑆‘(𝑇‘𝐴)) ∈ ℋ) |
7 | 3, 6 | eqeltrd 2844 | 1 ⊢ (𝐴 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝐴) ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∘ ccom 5699 ⟶wf 6564 ‘cfv 6568 ℋchba 30943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-fv 6576 |
This theorem is referenced by: nmopcoadji 32125 pjcohcli 32184 pj3si 32231 pj3cor1i 32233 |
Copyright terms: Public domain | W3C validator |