HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hococli Structured version   Visualization version   GIF version

Theorem hococli 30028
Description: Closure of composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoeq.1 𝑆: ℋ⟶ ℋ
hoeq.2 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hococli (𝐴 ∈ ℋ → ((𝑆𝑇)‘𝐴) ∈ ℋ)

Proof of Theorem hococli
StepHypRef Expression
1 hoeq.1 . . 3 𝑆: ℋ⟶ ℋ
2 hoeq.2 . . 3 𝑇: ℋ⟶ ℋ
31, 2hocoi 30027 . 2 (𝐴 ∈ ℋ → ((𝑆𝑇)‘𝐴) = (𝑆‘(𝑇𝐴)))
42ffvelrni 6942 . . 3 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
51ffvelrni 6942 . . 3 ((𝑇𝐴) ∈ ℋ → (𝑆‘(𝑇𝐴)) ∈ ℋ)
64, 5syl 17 . 2 (𝐴 ∈ ℋ → (𝑆‘(𝑇𝐴)) ∈ ℋ)
73, 6eqeltrd 2839 1 (𝐴 ∈ ℋ → ((𝑆𝑇)‘𝐴) ∈ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  ccom 5584  wf 6414  cfv 6418  chba 29182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426
This theorem is referenced by:  nmopcoadji  30364  pjcohcli  30423  pj3si  30470  pj3cor1i  30472
  Copyright terms: Public domain W3C validator