![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hococli | Structured version Visualization version GIF version |
Description: Closure of composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hoeq.1 | ⊢ 𝑆: ℋ⟶ ℋ |
hoeq.2 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
hococli | ⊢ (𝐴 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝐴) ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoeq.1 | . . 3 ⊢ 𝑆: ℋ⟶ ℋ | |
2 | hoeq.2 | . . 3 ⊢ 𝑇: ℋ⟶ ℋ | |
3 | 1, 2 | hocoi 31773 | . 2 ⊢ (𝐴 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝐴) = (𝑆‘(𝑇‘𝐴))) |
4 | 2 | ffvelcdmi 7101 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℋ) |
5 | 1 | ffvelcdmi 7101 | . . 3 ⊢ ((𝑇‘𝐴) ∈ ℋ → (𝑆‘(𝑇‘𝐴)) ∈ ℋ) |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ ℋ → (𝑆‘(𝑇‘𝐴)) ∈ ℋ) |
7 | 3, 6 | eqeltrd 2840 | 1 ⊢ (𝐴 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝐴) ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∘ ccom 5687 ⟶wf 6555 ‘cfv 6559 ℋchba 30928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pr 5430 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-br 5142 df-opab 5204 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-fv 6567 |
This theorem is referenced by: nmopcoadji 32110 pjcohcli 32169 pj3si 32216 pj3cor1i 32218 |
Copyright terms: Public domain | W3C validator |