![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hococli | Structured version Visualization version GIF version |
Description: Closure of composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hoeq.1 | ⊢ 𝑆: ℋ⟶ ℋ |
hoeq.2 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
hococli | ⊢ (𝐴 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝐴) ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoeq.1 | . . 3 ⊢ 𝑆: ℋ⟶ ℋ | |
2 | hoeq.2 | . . 3 ⊢ 𝑇: ℋ⟶ ℋ | |
3 | 1, 2 | hocoi 31774 | . 2 ⊢ (𝐴 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝐴) = (𝑆‘(𝑇‘𝐴))) |
4 | 2 | ffvelcdmi 7097 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℋ) |
5 | 1 | ffvelcdmi 7097 | . . 3 ⊢ ((𝑇‘𝐴) ∈ ℋ → (𝑆‘(𝑇‘𝐴)) ∈ ℋ) |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ ℋ → (𝑆‘(𝑇‘𝐴)) ∈ ℋ) |
7 | 3, 6 | eqeltrd 2837 | 1 ⊢ (𝐴 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝐴) ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 ∘ ccom 5687 ⟶wf 6554 ‘cfv 6558 ℋchba 30929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5430 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3433 df-v 3479 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-br 5150 df-opab 5212 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-fv 6566 |
This theorem is referenced by: nmopcoadji 32111 pjcohcli 32170 pj3si 32217 pj3cor1i 32219 |
Copyright terms: Public domain | W3C validator |