HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hococli Structured version   Visualization version   GIF version

Theorem hococli 31775
Description: Closure of composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoeq.1 𝑆: ℋ⟶ ℋ
hoeq.2 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hococli (𝐴 ∈ ℋ → ((𝑆𝑇)‘𝐴) ∈ ℋ)

Proof of Theorem hococli
StepHypRef Expression
1 hoeq.1 . . 3 𝑆: ℋ⟶ ℋ
2 hoeq.2 . . 3 𝑇: ℋ⟶ ℋ
31, 2hocoi 31774 . 2 (𝐴 ∈ ℋ → ((𝑆𝑇)‘𝐴) = (𝑆‘(𝑇𝐴)))
42ffvelcdmi 7097 . . 3 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
51ffvelcdmi 7097 . . 3 ((𝑇𝐴) ∈ ℋ → (𝑆‘(𝑇𝐴)) ∈ ℋ)
64, 5syl 17 . 2 (𝐴 ∈ ℋ → (𝑆‘(𝑇𝐴)) ∈ ℋ)
73, 6eqeltrd 2837 1 (𝐴 ∈ ℋ → ((𝑆𝑇)‘𝐴) ∈ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104  ccom 5687  wf 6554  cfv 6558  chba 30929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5430
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2536  df-eu 2565  df-clab 2711  df-cleq 2725  df-clel 2812  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3433  df-v 3479  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4915  df-br 5150  df-opab 5212  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6510  df-fun 6560  df-fn 6561  df-f 6562  df-fv 6566
This theorem is referenced by:  nmopcoadji  32111  pjcohcli  32170  pj3si  32217  pj3cor1i  32219
  Copyright terms: Public domain W3C validator