HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hococli Structured version   Visualization version   GIF version

Theorem hococli 31713
Description: Closure of composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoeq.1 𝑆: ℋ⟶ ℋ
hoeq.2 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hococli (𝐴 ∈ ℋ → ((𝑆𝑇)‘𝐴) ∈ ℋ)

Proof of Theorem hococli
StepHypRef Expression
1 hoeq.1 . . 3 𝑆: ℋ⟶ ℋ
2 hoeq.2 . . 3 𝑇: ℋ⟶ ℋ
31, 2hocoi 31712 . 2 (𝐴 ∈ ℋ → ((𝑆𝑇)‘𝐴) = (𝑆‘(𝑇𝐴)))
42ffvelcdmi 7083 . . 3 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
51ffvelcdmi 7083 . . 3 ((𝑇𝐴) ∈ ℋ → (𝑆‘(𝑇𝐴)) ∈ ℋ)
64, 5syl 17 . 2 (𝐴 ∈ ℋ → (𝑆‘(𝑇𝐴)) ∈ ℋ)
73, 6eqeltrd 2833 1 (𝐴 ∈ ℋ → ((𝑆𝑇)‘𝐴) ∈ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  ccom 5669  wf 6537  cfv 6541  chba 30867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549
This theorem is referenced by:  nmopcoadji  32049  pjcohcli  32108  pj3si  32155  pj3cor1i  32157
  Copyright terms: Public domain W3C validator