| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homarcl2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the domain and codomain of an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
| homarcl2.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| homarcl2 | ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6912 | . . . 4 ⊢ (𝐹 ∈ (𝐻‘〈𝑋, 𝑌〉) → 〈𝑋, 𝑌〉 ∈ dom 𝐻) | |
| 2 | df-ov 7406 | . . . 4 ⊢ (𝑋𝐻𝑌) = (𝐻‘〈𝑋, 𝑌〉) | |
| 3 | 1, 2 | eleq2s 2852 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 〈𝑋, 𝑌〉 ∈ dom 𝐻) |
| 4 | homahom.h | . . . . 5 ⊢ 𝐻 = (Homa‘𝐶) | |
| 5 | homarcl2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 6 | 4 | homarcl 18039 | . . . . 5 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
| 7 | 4, 5, 6 | homaf 18041 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V)) |
| 8 | 7 | fdmd 6715 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → dom 𝐻 = (𝐵 × 𝐵)) |
| 9 | 3, 8 | eleqtrd 2836 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 10 | opelxp 5690 | . 2 ⊢ (〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵) ↔ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) | |
| 11 | 9, 10 | sylib 218 | 1 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 𝒫 cpw 4575 〈cop 4607 × cxp 5652 dom cdm 5654 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 Homachoma 18034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-homa 18037 |
| This theorem is referenced by: homarel 18047 homa1 18048 homahom2 18049 homadm 18051 homacd 18052 arwdm 18058 arwcd 18059 coahom 18081 arwlid 18083 arwrid 18084 arwass 18085 |
| Copyright terms: Public domain | W3C validator |