![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homarcl2 | Structured version Visualization version GIF version |
Description: Reverse closure for the domain and codomain of an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homahom.h | β’ π» = (HomaβπΆ) |
homarcl2.b | β’ π΅ = (BaseβπΆ) |
Ref | Expression |
---|---|
homarcl2 | β’ (πΉ β (ππ»π) β (π β π΅ β§ π β π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6929 | . . . 4 β’ (πΉ β (π»ββ¨π, πβ©) β β¨π, πβ© β dom π») | |
2 | df-ov 7412 | . . . 4 β’ (ππ»π) = (π»ββ¨π, πβ©) | |
3 | 1, 2 | eleq2s 2852 | . . 3 β’ (πΉ β (ππ»π) β β¨π, πβ© β dom π») |
4 | homahom.h | . . . . 5 β’ π» = (HomaβπΆ) | |
5 | homarcl2.b | . . . . 5 β’ π΅ = (BaseβπΆ) | |
6 | 4 | homarcl 17978 | . . . . 5 β’ (πΉ β (ππ»π) β πΆ β Cat) |
7 | 4, 5, 6 | homaf 17980 | . . . 4 β’ (πΉ β (ππ»π) β π»:(π΅ Γ π΅)βΆπ« ((π΅ Γ π΅) Γ V)) |
8 | 7 | fdmd 6729 | . . 3 β’ (πΉ β (ππ»π) β dom π» = (π΅ Γ π΅)) |
9 | 3, 8 | eleqtrd 2836 | . 2 β’ (πΉ β (ππ»π) β β¨π, πβ© β (π΅ Γ π΅)) |
10 | opelxp 5713 | . 2 β’ (β¨π, πβ© β (π΅ Γ π΅) β (π β π΅ β§ π β π΅)) | |
11 | 9, 10 | sylib 217 | 1 β’ (πΉ β (ππ»π) β (π β π΅ β§ π β π΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 Vcvv 3475 π« cpw 4603 β¨cop 4635 Γ cxp 5675 dom cdm 5677 βcfv 6544 (class class class)co 7409 Basecbs 17144 Homachoma 17973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-homa 17976 |
This theorem is referenced by: homarel 17986 homa1 17987 homahom2 17988 homadm 17990 homacd 17991 arwdm 17997 arwcd 17998 coahom 18020 arwlid 18022 arwrid 18023 arwass 18024 |
Copyright terms: Public domain | W3C validator |