| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homarcl2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the domain and codomain of an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
| homarcl2.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| homarcl2 | ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6865 | . . . 4 ⊢ (𝐹 ∈ (𝐻‘〈𝑋, 𝑌〉) → 〈𝑋, 𝑌〉 ∈ dom 𝐻) | |
| 2 | df-ov 7358 | . . . 4 ⊢ (𝑋𝐻𝑌) = (𝐻‘〈𝑋, 𝑌〉) | |
| 3 | 1, 2 | eleq2s 2851 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 〈𝑋, 𝑌〉 ∈ dom 𝐻) |
| 4 | homahom.h | . . . . 5 ⊢ 𝐻 = (Homa‘𝐶) | |
| 5 | homarcl2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 6 | 4 | homarcl 17945 | . . . . 5 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
| 7 | 4, 5, 6 | homaf 17947 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V)) |
| 8 | 7 | fdmd 6669 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → dom 𝐻 = (𝐵 × 𝐵)) |
| 9 | 3, 8 | eleqtrd 2835 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 10 | opelxp 5657 | . 2 ⊢ (〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵) ↔ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) | |
| 11 | 9, 10 | sylib 218 | 1 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3438 𝒫 cpw 4551 〈cop 4583 × cxp 5619 dom cdm 5621 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 Homachoma 17940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-homa 17943 |
| This theorem is referenced by: homarel 17953 homa1 17954 homahom2 17955 homadm 17957 homacd 17958 arwdm 17964 arwcd 17965 coahom 17987 arwlid 17989 arwrid 17990 arwass 17991 |
| Copyright terms: Public domain | W3C validator |