MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homarcl2 Structured version   Visualization version   GIF version

Theorem homarcl2 17997
Description: Reverse closure for the domain and codomain of an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homahom.h 𝐻 = (Homa𝐶)
homarcl2.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
homarcl2 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋𝐵𝑌𝐵))

Proof of Theorem homarcl2
StepHypRef Expression
1 elfvdm 6895 . . . 4 (𝐹 ∈ (𝐻‘⟨𝑋, 𝑌⟩) → ⟨𝑋, 𝑌⟩ ∈ dom 𝐻)
2 df-ov 7390 . . . 4 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
31, 2eleq2s 2846 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → ⟨𝑋, 𝑌⟩ ∈ dom 𝐻)
4 homahom.h . . . . 5 𝐻 = (Homa𝐶)
5 homarcl2.b . . . . 5 𝐵 = (Base‘𝐶)
64homarcl 17990 . . . . 5 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
74, 5, 6homaf 17992 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V))
87fdmd 6698 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → dom 𝐻 = (𝐵 × 𝐵))
93, 8eleqtrd 2830 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
10 opelxp 5674 . 2 (⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵) ↔ (𝑋𝐵𝑌𝐵))
119, 10sylib 218 1 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋𝐵𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  𝒫 cpw 4563  cop 4595   × cxp 5636  dom cdm 5638  cfv 6511  (class class class)co 7387  Basecbs 17179  Homachoma 17985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-homa 17988
This theorem is referenced by:  homarel  17998  homa1  17999  homahom2  18000  homadm  18002  homacd  18003  arwdm  18009  arwcd  18010  coahom  18032  arwlid  18034  arwrid  18035  arwass  18036
  Copyright terms: Public domain W3C validator