Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > homarcl2 | Structured version Visualization version GIF version |
Description: Reverse closure for the domain and codomain of an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
homarcl2.b | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
homarcl2 | ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6788 | . . . 4 ⊢ (𝐹 ∈ (𝐻‘〈𝑋, 𝑌〉) → 〈𝑋, 𝑌〉 ∈ dom 𝐻) | |
2 | df-ov 7258 | . . . 4 ⊢ (𝑋𝐻𝑌) = (𝐻‘〈𝑋, 𝑌〉) | |
3 | 1, 2 | eleq2s 2857 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 〈𝑋, 𝑌〉 ∈ dom 𝐻) |
4 | homahom.h | . . . . 5 ⊢ 𝐻 = (Homa‘𝐶) | |
5 | homarcl2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
6 | 4 | homarcl 17659 | . . . . 5 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
7 | 4, 5, 6 | homaf 17661 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V)) |
8 | 7 | fdmd 6595 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → dom 𝐻 = (𝐵 × 𝐵)) |
9 | 3, 8 | eleqtrd 2841 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
10 | opelxp 5616 | . 2 ⊢ (〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵) ↔ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) | |
11 | 9, 10 | sylib 217 | 1 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 𝒫 cpw 4530 〈cop 4564 × cxp 5578 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Homachoma 17654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-homa 17657 |
This theorem is referenced by: homarel 17667 homa1 17668 homahom2 17669 homadm 17671 homacd 17672 arwdm 17678 arwcd 17679 coahom 17701 arwlid 17703 arwrid 17704 arwass 17705 |
Copyright terms: Public domain | W3C validator |