MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homarcl2 Structured version   Visualization version   GIF version

Theorem homarcl2 17666
Description: Reverse closure for the domain and codomain of an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homahom.h 𝐻 = (Homa𝐶)
homarcl2.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
homarcl2 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋𝐵𝑌𝐵))

Proof of Theorem homarcl2
StepHypRef Expression
1 elfvdm 6788 . . . 4 (𝐹 ∈ (𝐻‘⟨𝑋, 𝑌⟩) → ⟨𝑋, 𝑌⟩ ∈ dom 𝐻)
2 df-ov 7258 . . . 4 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
31, 2eleq2s 2857 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → ⟨𝑋, 𝑌⟩ ∈ dom 𝐻)
4 homahom.h . . . . 5 𝐻 = (Homa𝐶)
5 homarcl2.b . . . . 5 𝐵 = (Base‘𝐶)
64homarcl 17659 . . . . 5 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
74, 5, 6homaf 17661 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V))
87fdmd 6595 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → dom 𝐻 = (𝐵 × 𝐵))
93, 8eleqtrd 2841 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
10 opelxp 5616 . 2 (⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵) ↔ (𝑋𝐵𝑌𝐵))
119, 10sylib 217 1 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋𝐵𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  𝒫 cpw 4530  cop 4564   × cxp 5578  dom cdm 5580  cfv 6418  (class class class)co 7255  Basecbs 16840  Homachoma 17654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-homa 17657
This theorem is referenced by:  homarel  17667  homa1  17668  homahom2  17669  homadm  17671  homacd  17672  arwdm  17678  arwcd  17679  coahom  17701  arwlid  17703  arwrid  17704  arwass  17705
  Copyright terms: Public domain W3C validator