MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homarcl2 Structured version   Visualization version   GIF version

Theorem homarcl2 18004
Description: Reverse closure for the domain and codomain of an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homahom.h 𝐻 = (Homa𝐶)
homarcl2.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
homarcl2 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋𝐵𝑌𝐵))

Proof of Theorem homarcl2
StepHypRef Expression
1 elfvdm 6898 . . . 4 (𝐹 ∈ (𝐻‘⟨𝑋, 𝑌⟩) → ⟨𝑋, 𝑌⟩ ∈ dom 𝐻)
2 df-ov 7393 . . . 4 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
31, 2eleq2s 2847 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → ⟨𝑋, 𝑌⟩ ∈ dom 𝐻)
4 homahom.h . . . . 5 𝐻 = (Homa𝐶)
5 homarcl2.b . . . . 5 𝐵 = (Base‘𝐶)
64homarcl 17997 . . . . 5 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
74, 5, 6homaf 17999 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V))
87fdmd 6701 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → dom 𝐻 = (𝐵 × 𝐵))
93, 8eleqtrd 2831 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
10 opelxp 5677 . 2 (⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵) ↔ (𝑋𝐵𝑌𝐵))
119, 10sylib 218 1 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋𝐵𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  𝒫 cpw 4566  cop 4598   × cxp 5639  dom cdm 5641  cfv 6514  (class class class)co 7390  Basecbs 17186  Homachoma 17992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-homa 17995
This theorem is referenced by:  homarel  18005  homa1  18006  homahom2  18007  homadm  18009  homacd  18010  arwdm  18016  arwcd  18017  coahom  18039  arwlid  18041  arwrid  18042  arwass  18043
  Copyright terms: Public domain W3C validator