MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homarcl2 Structured version   Visualization version   GIF version

Theorem homarcl2 18102
Description: Reverse closure for the domain and codomain of an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homahom.h 𝐻 = (Homa𝐶)
homarcl2.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
homarcl2 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋𝐵𝑌𝐵))

Proof of Theorem homarcl2
StepHypRef Expression
1 elfvdm 6957 . . . 4 (𝐹 ∈ (𝐻‘⟨𝑋, 𝑌⟩) → ⟨𝑋, 𝑌⟩ ∈ dom 𝐻)
2 df-ov 7451 . . . 4 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
31, 2eleq2s 2862 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → ⟨𝑋, 𝑌⟩ ∈ dom 𝐻)
4 homahom.h . . . . 5 𝐻 = (Homa𝐶)
5 homarcl2.b . . . . 5 𝐵 = (Base‘𝐶)
64homarcl 18095 . . . . 5 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
74, 5, 6homaf 18097 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V))
87fdmd 6757 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → dom 𝐻 = (𝐵 × 𝐵))
93, 8eleqtrd 2846 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
10 opelxp 5736 . 2 (⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵) ↔ (𝑋𝐵𝑌𝐵))
119, 10sylib 218 1 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋𝐵𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  𝒫 cpw 4622  cop 4654   × cxp 5698  dom cdm 5700  cfv 6573  (class class class)co 7448  Basecbs 17258  Homachoma 18090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-homa 18093
This theorem is referenced by:  homarel  18103  homa1  18104  homahom2  18105  homadm  18107  homacd  18108  arwdm  18114  arwcd  18115  coahom  18137  arwlid  18139  arwrid  18140  arwass  18141
  Copyright terms: Public domain W3C validator