MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homa1 Structured version   Visualization version   GIF version

Theorem homa1 17944
Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
homahom.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
homa1 (𝑍(𝑋𝐻𝑌)𝐹𝑍 = ⟨𝑋, 𝑌⟩)

Proof of Theorem homa1
StepHypRef Expression
1 df-br 5093 . . . 4 (𝑍(𝑋𝐻𝑌)𝐹 ↔ ⟨𝑍, 𝐹⟩ ∈ (𝑋𝐻𝑌))
2 homahom.h . . . . 5 𝐻 = (Homa𝐶)
3 eqid 2729 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
42homarcl 17935 . . . . 5 (⟨𝑍, 𝐹⟩ ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
5 eqid 2729 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
62, 3homarcl2 17942 . . . . . 6 (⟨𝑍, 𝐹⟩ ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
76simpld 494 . . . . 5 (⟨𝑍, 𝐹⟩ ∈ (𝑋𝐻𝑌) → 𝑋 ∈ (Base‘𝐶))
86simprd 495 . . . . 5 (⟨𝑍, 𝐹⟩ ∈ (𝑋𝐻𝑌) → 𝑌 ∈ (Base‘𝐶))
92, 3, 4, 5, 7, 8elhoma 17939 . . . 4 (⟨𝑍, 𝐹⟩ ∈ (𝑋𝐻𝑌) → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))))
101, 9sylbi 217 . . 3 (𝑍(𝑋𝐻𝑌)𝐹 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))))
1110ibi 267 . 2 (𝑍(𝑋𝐻𝑌)𝐹 → (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)))
1211simpld 494 1 (𝑍(𝑋𝐻𝑌)𝐹𝑍 = ⟨𝑋, 𝑌⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cop 4583   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  Hom chom 17172  Homachoma 17930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-homa 17933
This theorem is referenced by:  homadm  17947  homacd  17948  homadmcd  17949
  Copyright terms: Public domain W3C validator