MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homa1 Structured version   Visualization version   GIF version

Theorem homa1 17289
Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
homahom.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
homa1 (𝑍(𝑋𝐻𝑌)𝐹𝑍 = ⟨𝑋, 𝑌⟩)

Proof of Theorem homa1
StepHypRef Expression
1 df-br 5058 . . . 4 (𝑍(𝑋𝐻𝑌)𝐹 ↔ ⟨𝑍, 𝐹⟩ ∈ (𝑋𝐻𝑌))
2 homahom.h . . . . 5 𝐻 = (Homa𝐶)
3 eqid 2819 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
42homarcl 17280 . . . . 5 (⟨𝑍, 𝐹⟩ ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
5 eqid 2819 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
62, 3homarcl2 17287 . . . . . 6 (⟨𝑍, 𝐹⟩ ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
76simpld 497 . . . . 5 (⟨𝑍, 𝐹⟩ ∈ (𝑋𝐻𝑌) → 𝑋 ∈ (Base‘𝐶))
86simprd 498 . . . . 5 (⟨𝑍, 𝐹⟩ ∈ (𝑋𝐻𝑌) → 𝑌 ∈ (Base‘𝐶))
92, 3, 4, 5, 7, 8elhoma 17284 . . . 4 (⟨𝑍, 𝐹⟩ ∈ (𝑋𝐻𝑌) → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))))
101, 9sylbi 219 . . 3 (𝑍(𝑋𝐻𝑌)𝐹 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))))
1110ibi 269 . 2 (𝑍(𝑋𝐻𝑌)𝐹 → (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)))
1211simpld 497 1 (𝑍(𝑋𝐻𝑌)𝐹𝑍 = ⟨𝑋, 𝑌⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1530  wcel 2107  cop 4565   class class class wbr 5057  cfv 6348  (class class class)co 7148  Basecbs 16475  Hom chom 16568  Homachoma 17275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-homa 17278
This theorem is referenced by:  homadm  17292  homacd  17293  homadmcd  17294
  Copyright terms: Public domain W3C validator