| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homa1 | Structured version Visualization version GIF version | ||
| Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
| Ref | Expression |
|---|---|
| homa1 | ⊢ (𝑍(𝑋𝐻𝑌)𝐹 → 𝑍 = 〈𝑋, 𝑌〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5090 | . . . 4 ⊢ (𝑍(𝑋𝐻𝑌)𝐹 ↔ 〈𝑍, 𝐹〉 ∈ (𝑋𝐻𝑌)) | |
| 2 | homahom.h | . . . . 5 ⊢ 𝐻 = (Homa‘𝐶) | |
| 3 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 4 | 2 | homarcl 17935 | . . . . 5 ⊢ (〈𝑍, 𝐹〉 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
| 5 | eqid 2731 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 6 | 2, 3 | homarcl2 17942 | . . . . . 6 ⊢ (〈𝑍, 𝐹〉 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 7 | 6 | simpld 494 | . . . . 5 ⊢ (〈𝑍, 𝐹〉 ∈ (𝑋𝐻𝑌) → 𝑋 ∈ (Base‘𝐶)) |
| 8 | 6 | simprd 495 | . . . . 5 ⊢ (〈𝑍, 𝐹〉 ∈ (𝑋𝐻𝑌) → 𝑌 ∈ (Base‘𝐶)) |
| 9 | 2, 3, 4, 5, 7, 8 | elhoma 17939 | . . . 4 ⊢ (〈𝑍, 𝐹〉 ∈ (𝑋𝐻𝑌) → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)))) |
| 10 | 1, 9 | sylbi 217 | . . 3 ⊢ (𝑍(𝑋𝐻𝑌)𝐹 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)))) |
| 11 | 10 | ibi 267 | . 2 ⊢ (𝑍(𝑋𝐻𝑌)𝐹 → (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))) |
| 12 | 11 | simpld 494 | 1 ⊢ (𝑍(𝑋𝐻𝑌)𝐹 → 𝑍 = 〈𝑋, 𝑌〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4579 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Hom chom 17172 Homachoma 17930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-homa 17933 |
| This theorem is referenced by: homadm 17947 homacd 17948 homadmcd 17949 |
| Copyright terms: Public domain | W3C validator |