Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > homa1 | Structured version Visualization version GIF version |
Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
Ref | Expression |
---|---|
homa1 | ⊢ (𝑍(𝑋𝐻𝑌)𝐹 → 𝑍 = 〈𝑋, 𝑌〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5088 | . . . 4 ⊢ (𝑍(𝑋𝐻𝑌)𝐹 ↔ 〈𝑍, 𝐹〉 ∈ (𝑋𝐻𝑌)) | |
2 | homahom.h | . . . . 5 ⊢ 𝐻 = (Homa‘𝐶) | |
3 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
4 | 2 | homarcl 17813 | . . . . 5 ⊢ (〈𝑍, 𝐹〉 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
5 | eqid 2737 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
6 | 2, 3 | homarcl2 17820 | . . . . . 6 ⊢ (〈𝑍, 𝐹〉 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
7 | 6 | simpld 495 | . . . . 5 ⊢ (〈𝑍, 𝐹〉 ∈ (𝑋𝐻𝑌) → 𝑋 ∈ (Base‘𝐶)) |
8 | 6 | simprd 496 | . . . . 5 ⊢ (〈𝑍, 𝐹〉 ∈ (𝑋𝐻𝑌) → 𝑌 ∈ (Base‘𝐶)) |
9 | 2, 3, 4, 5, 7, 8 | elhoma 17817 | . . . 4 ⊢ (〈𝑍, 𝐹〉 ∈ (𝑋𝐻𝑌) → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)))) |
10 | 1, 9 | sylbi 216 | . . 3 ⊢ (𝑍(𝑋𝐻𝑌)𝐹 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)))) |
11 | 10 | ibi 266 | . 2 ⊢ (𝑍(𝑋𝐻𝑌)𝐹 → (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))) |
12 | 11 | simpld 495 | 1 ⊢ (𝑍(𝑋𝐻𝑌)𝐹 → 𝑍 = 〈𝑋, 𝑌〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 〈cop 4577 class class class wbr 5087 ‘cfv 6465 (class class class)co 7315 Basecbs 16982 Hom chom 17043 Homachoma 17808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7318 df-homa 17811 |
This theorem is referenced by: homadm 17825 homacd 17826 homadmcd 17827 |
Copyright terms: Public domain | W3C validator |