MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homa1 Structured version   Visualization version   GIF version

Theorem homa1 18104
Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
homahom.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
homa1 (𝑍(𝑋𝐻𝑌)𝐹𝑍 = ⟨𝑋, 𝑌⟩)

Proof of Theorem homa1
StepHypRef Expression
1 df-br 5167 . . . 4 (𝑍(𝑋𝐻𝑌)𝐹 ↔ ⟨𝑍, 𝐹⟩ ∈ (𝑋𝐻𝑌))
2 homahom.h . . . . 5 𝐻 = (Homa𝐶)
3 eqid 2740 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
42homarcl 18095 . . . . 5 (⟨𝑍, 𝐹⟩ ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
5 eqid 2740 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
62, 3homarcl2 18102 . . . . . 6 (⟨𝑍, 𝐹⟩ ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
76simpld 494 . . . . 5 (⟨𝑍, 𝐹⟩ ∈ (𝑋𝐻𝑌) → 𝑋 ∈ (Base‘𝐶))
86simprd 495 . . . . 5 (⟨𝑍, 𝐹⟩ ∈ (𝑋𝐻𝑌) → 𝑌 ∈ (Base‘𝐶))
92, 3, 4, 5, 7, 8elhoma 18099 . . . 4 (⟨𝑍, 𝐹⟩ ∈ (𝑋𝐻𝑌) → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))))
101, 9sylbi 217 . . 3 (𝑍(𝑋𝐻𝑌)𝐹 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))))
1110ibi 267 . 2 (𝑍(𝑋𝐻𝑌)𝐹 → (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)))
1211simpld 494 1 (𝑍(𝑋𝐻𝑌)𝐹𝑍 = ⟨𝑋, 𝑌⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cop 4654   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  Hom chom 17322  Homachoma 18090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-homa 18093
This theorem is referenced by:  homadm  18107  homacd  18108  homadmcd  18109
  Copyright terms: Public domain W3C validator