MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homa1 Structured version   Visualization version   GIF version

Theorem homa1 17993
Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
homahom.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
homa1 (𝑍(𝑋𝐻𝑌)𝐹𝑍 = ⟨𝑋, 𝑌⟩)

Proof of Theorem homa1
StepHypRef Expression
1 df-br 5150 . . . 4 (𝑍(𝑋𝐻𝑌)𝐹 ↔ ⟨𝑍, 𝐹⟩ ∈ (𝑋𝐻𝑌))
2 homahom.h . . . . 5 𝐻 = (Homa𝐶)
3 eqid 2730 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
42homarcl 17984 . . . . 5 (⟨𝑍, 𝐹⟩ ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
5 eqid 2730 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
62, 3homarcl2 17991 . . . . . 6 (⟨𝑍, 𝐹⟩ ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
76simpld 493 . . . . 5 (⟨𝑍, 𝐹⟩ ∈ (𝑋𝐻𝑌) → 𝑋 ∈ (Base‘𝐶))
86simprd 494 . . . . 5 (⟨𝑍, 𝐹⟩ ∈ (𝑋𝐻𝑌) → 𝑌 ∈ (Base‘𝐶))
92, 3, 4, 5, 7, 8elhoma 17988 . . . 4 (⟨𝑍, 𝐹⟩ ∈ (𝑋𝐻𝑌) → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))))
101, 9sylbi 216 . . 3 (𝑍(𝑋𝐻𝑌)𝐹 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))))
1110ibi 266 . 2 (𝑍(𝑋𝐻𝑌)𝐹 → (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)))
1211simpld 493 1 (𝑍(𝑋𝐻𝑌)𝐹𝑍 = ⟨𝑋, 𝑌⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  cop 4635   class class class wbr 5149  cfv 6544  (class class class)co 7413  Basecbs 17150  Hom chom 17214  Homachoma 17979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7416  df-homa 17982
This theorem is referenced by:  homadm  17996  homacd  17997  homadmcd  17998
  Copyright terms: Public domain W3C validator