MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coahom Structured version   Visualization version   GIF version

Theorem coahom 18081
Description: The composition of two composable arrows is an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homdmcoa.o · = (compa𝐶)
homdmcoa.h 𝐻 = (Homa𝐶)
homdmcoa.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
homdmcoa.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
Assertion
Ref Expression
coahom (𝜑 → (𝐺 · 𝐹) ∈ (𝑋𝐻𝑍))

Proof of Theorem coahom
StepHypRef Expression
1 homdmcoa.o . . 3 · = (compa𝐶)
2 homdmcoa.h . . 3 𝐻 = (Homa𝐶)
3 homdmcoa.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
4 homdmcoa.g . . 3 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
5 eqid 2735 . . 3 (comp‘𝐶) = (comp‘𝐶)
61, 2, 3, 4, 5coaval 18079 . 2 (𝜑 → (𝐺 · 𝐹) = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)(2nd𝐹))⟩)
7 eqid 2735 . . 3 (Base‘𝐶) = (Base‘𝐶)
82homarcl 18039 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
93, 8syl 17 . . 3 (𝜑𝐶 ∈ Cat)
10 eqid 2735 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
112, 7homarcl2 18046 . . . . 5 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
123, 11syl 17 . . . 4 (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
1312simpld 494 . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
142, 7homarcl2 18046 . . . . 5 (𝐺 ∈ (𝑌𝐻𝑍) → (𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶)))
154, 14syl 17 . . . 4 (𝜑 → (𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶)))
1615simprd 495 . . 3 (𝜑𝑍 ∈ (Base‘𝐶))
1712simprd 495 . . . 4 (𝜑𝑌 ∈ (Base‘𝐶))
182, 10homahom 18050 . . . . 5 (𝐹 ∈ (𝑋𝐻𝑌) → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
193, 18syl 17 . . . 4 (𝜑 → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
202, 10homahom 18050 . . . . 5 (𝐺 ∈ (𝑌𝐻𝑍) → (2nd𝐺) ∈ (𝑌(Hom ‘𝐶)𝑍))
214, 20syl 17 . . . 4 (𝜑 → (2nd𝐺) ∈ (𝑌(Hom ‘𝐶)𝑍))
227, 10, 5, 9, 13, 17, 16, 19, 21catcocl 17695 . . 3 (𝜑 → ((2nd𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)(2nd𝐹)) ∈ (𝑋(Hom ‘𝐶)𝑍))
232, 7, 9, 10, 13, 16, 22elhomai2 18045 . 2 (𝜑 → ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)(2nd𝐹))⟩ ∈ (𝑋𝐻𝑍))
246, 23eqeltrd 2834 1 (𝜑 → (𝐺 · 𝐹) ∈ (𝑋𝐻𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cop 4607  cotp 4609  cfv 6530  (class class class)co 7403  2nd c2nd 7985  Basecbs 17226  Hom chom 17280  compcco 17281  Catccat 17674  Homachoma 18034  compaccoa 18065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-ot 4610  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-cat 17678  df-doma 18035  df-coda 18036  df-homa 18037  df-arw 18038  df-coa 18067
This theorem is referenced by:  coapm  18082  arwass  18085
  Copyright terms: Public domain W3C validator