MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coahom Structured version   Visualization version   GIF version

Theorem coahom 18115
Description: The composition of two composable arrows is an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homdmcoa.o · = (compa𝐶)
homdmcoa.h 𝐻 = (Homa𝐶)
homdmcoa.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
homdmcoa.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
Assertion
Ref Expression
coahom (𝜑 → (𝐺 · 𝐹) ∈ (𝑋𝐻𝑍))

Proof of Theorem coahom
StepHypRef Expression
1 homdmcoa.o . . 3 · = (compa𝐶)
2 homdmcoa.h . . 3 𝐻 = (Homa𝐶)
3 homdmcoa.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
4 homdmcoa.g . . 3 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
5 eqid 2737 . . 3 (comp‘𝐶) = (comp‘𝐶)
61, 2, 3, 4, 5coaval 18113 . 2 (𝜑 → (𝐺 · 𝐹) = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)(2nd𝐹))⟩)
7 eqid 2737 . . 3 (Base‘𝐶) = (Base‘𝐶)
82homarcl 18073 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
93, 8syl 17 . . 3 (𝜑𝐶 ∈ Cat)
10 eqid 2737 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
112, 7homarcl2 18080 . . . . 5 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
123, 11syl 17 . . . 4 (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
1312simpld 494 . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
142, 7homarcl2 18080 . . . . 5 (𝐺 ∈ (𝑌𝐻𝑍) → (𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶)))
154, 14syl 17 . . . 4 (𝜑 → (𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶)))
1615simprd 495 . . 3 (𝜑𝑍 ∈ (Base‘𝐶))
1712simprd 495 . . . 4 (𝜑𝑌 ∈ (Base‘𝐶))
182, 10homahom 18084 . . . . 5 (𝐹 ∈ (𝑋𝐻𝑌) → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
193, 18syl 17 . . . 4 (𝜑 → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
202, 10homahom 18084 . . . . 5 (𝐺 ∈ (𝑌𝐻𝑍) → (2nd𝐺) ∈ (𝑌(Hom ‘𝐶)𝑍))
214, 20syl 17 . . . 4 (𝜑 → (2nd𝐺) ∈ (𝑌(Hom ‘𝐶)𝑍))
227, 10, 5, 9, 13, 17, 16, 19, 21catcocl 17728 . . 3 (𝜑 → ((2nd𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)(2nd𝐹)) ∈ (𝑋(Hom ‘𝐶)𝑍))
232, 7, 9, 10, 13, 16, 22elhomai2 18079 . 2 (𝜑 → ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)(2nd𝐹))⟩ ∈ (𝑋𝐻𝑍))
246, 23eqeltrd 2841 1 (𝜑 → (𝐺 · 𝐹) ∈ (𝑋𝐻𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cop 4632  cotp 4634  cfv 6561  (class class class)co 7431  2nd c2nd 8013  Basecbs 17247  Hom chom 17308  compcco 17309  Catccat 17707  Homachoma 18068  compaccoa 18099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-ot 4635  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-cat 17711  df-doma 18069  df-coda 18070  df-homa 18071  df-arw 18072  df-coa 18101
This theorem is referenced by:  coapm  18116  arwass  18119
  Copyright terms: Public domain W3C validator