| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coahom | Structured version Visualization version GIF version | ||
| Description: The composition of two composable arrows is an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homdmcoa.o | ⊢ · = (compa‘𝐶) |
| homdmcoa.h | ⊢ 𝐻 = (Homa‘𝐶) |
| homdmcoa.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| homdmcoa.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
| Ref | Expression |
|---|---|
| coahom | ⊢ (𝜑 → (𝐺 · 𝐹) ∈ (𝑋𝐻𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homdmcoa.o | . . 3 ⊢ · = (compa‘𝐶) | |
| 2 | homdmcoa.h | . . 3 ⊢ 𝐻 = (Homa‘𝐶) | |
| 3 | homdmcoa.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 4 | homdmcoa.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
| 5 | eqid 2730 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 6 | 1, 2, 3, 4, 5 | coaval 18037 | . 2 ⊢ (𝜑 → (𝐺 · 𝐹) = 〈𝑋, 𝑍, ((2nd ‘𝐺)(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)(2nd ‘𝐹))〉) |
| 7 | eqid 2730 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 8 | 2 | homarcl 17997 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
| 9 | 3, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 10 | eqid 2730 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 11 | 2, 7 | homarcl2 18004 | . . . . 5 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 12 | 3, 11 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 13 | 12 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 14 | 2, 7 | homarcl2 18004 | . . . . 5 ⊢ (𝐺 ∈ (𝑌𝐻𝑍) → (𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) |
| 15 | 4, 14 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) |
| 16 | 15 | simprd 495 | . . 3 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) |
| 17 | 12 | simprd 495 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| 18 | 2, 10 | homahom 18008 | . . . . 5 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 19 | 3, 18 | syl 17 | . . . 4 ⊢ (𝜑 → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 20 | 2, 10 | homahom 18008 | . . . . 5 ⊢ (𝐺 ∈ (𝑌𝐻𝑍) → (2nd ‘𝐺) ∈ (𝑌(Hom ‘𝐶)𝑍)) |
| 21 | 4, 20 | syl 17 | . . . 4 ⊢ (𝜑 → (2nd ‘𝐺) ∈ (𝑌(Hom ‘𝐶)𝑍)) |
| 22 | 7, 10, 5, 9, 13, 17, 16, 19, 21 | catcocl 17653 | . . 3 ⊢ (𝜑 → ((2nd ‘𝐺)(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)(2nd ‘𝐹)) ∈ (𝑋(Hom ‘𝐶)𝑍)) |
| 23 | 2, 7, 9, 10, 13, 16, 22 | elhomai2 18003 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑍, ((2nd ‘𝐺)(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)(2nd ‘𝐹))〉 ∈ (𝑋𝐻𝑍)) |
| 24 | 6, 23 | eqeltrd 2829 | 1 ⊢ (𝜑 → (𝐺 · 𝐹) ∈ (𝑋𝐻𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4598 〈cotp 4600 ‘cfv 6514 (class class class)co 7390 2nd c2nd 7970 Basecbs 17186 Hom chom 17238 compcco 17239 Catccat 17632 Homachoma 17992 compaccoa 18023 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-ot 4601 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-cat 17636 df-doma 17993 df-coda 17994 df-homa 17995 df-arw 17996 df-coa 18025 |
| This theorem is referenced by: coapm 18040 arwass 18043 |
| Copyright terms: Public domain | W3C validator |