![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coahom | Structured version Visualization version GIF version |
Description: The composition of two composable arrows is an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homdmcoa.o | ⊢ · = (compa‘𝐶) |
homdmcoa.h | ⊢ 𝐻 = (Homa‘𝐶) |
homdmcoa.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
homdmcoa.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
Ref | Expression |
---|---|
coahom | ⊢ (𝜑 → (𝐺 · 𝐹) ∈ (𝑋𝐻𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homdmcoa.o | . . 3 ⊢ · = (compa‘𝐶) | |
2 | homdmcoa.h | . . 3 ⊢ 𝐻 = (Homa‘𝐶) | |
3 | homdmcoa.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
4 | homdmcoa.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
5 | eqid 2771 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
6 | 1, 2, 3, 4, 5 | coaval 17198 | . 2 ⊢ (𝜑 → (𝐺 · 𝐹) = 〈𝑋, 𝑍, ((2nd ‘𝐺)(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)(2nd ‘𝐹))〉) |
7 | eqid 2771 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
8 | 2 | homarcl 17158 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
9 | 3, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
10 | eqid 2771 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
11 | 2, 7 | homarcl2 17165 | . . . . 5 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
12 | 3, 11 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
13 | 12 | simpld 487 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
14 | 2, 7 | homarcl2 17165 | . . . . 5 ⊢ (𝐺 ∈ (𝑌𝐻𝑍) → (𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) |
15 | 4, 14 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) |
16 | 15 | simprd 488 | . . 3 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) |
17 | 12 | simprd 488 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
18 | 2, 10 | homahom 17169 | . . . . 5 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
19 | 3, 18 | syl 17 | . . . 4 ⊢ (𝜑 → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
20 | 2, 10 | homahom 17169 | . . . . 5 ⊢ (𝐺 ∈ (𝑌𝐻𝑍) → (2nd ‘𝐺) ∈ (𝑌(Hom ‘𝐶)𝑍)) |
21 | 4, 20 | syl 17 | . . . 4 ⊢ (𝜑 → (2nd ‘𝐺) ∈ (𝑌(Hom ‘𝐶)𝑍)) |
22 | 7, 10, 5, 9, 13, 17, 16, 19, 21 | catcocl 16826 | . . 3 ⊢ (𝜑 → ((2nd ‘𝐺)(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)(2nd ‘𝐹)) ∈ (𝑋(Hom ‘𝐶)𝑍)) |
23 | 2, 7, 9, 10, 13, 16, 22 | elhomai2 17164 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑍, ((2nd ‘𝐺)(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)(2nd ‘𝐹))〉 ∈ (𝑋𝐻𝑍)) |
24 | 6, 23 | eqeltrd 2859 | 1 ⊢ (𝜑 → (𝐺 · 𝐹) ∈ (𝑋𝐻𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 〈cop 4441 〈cotp 4443 ‘cfv 6185 (class class class)co 6974 2nd c2nd 7498 Basecbs 16337 Hom chom 16430 compcco 16431 Catccat 16805 Homachoma 17153 compaccoa 17184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-reu 3088 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-ot 4444 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-ov 6977 df-oprab 6978 df-mpo 6979 df-1st 7499 df-2nd 7500 df-cat 16809 df-doma 17154 df-coda 17155 df-homa 17156 df-arw 17157 df-coa 17186 |
This theorem is referenced by: coapm 17201 arwass 17204 |
Copyright terms: Public domain | W3C validator |