MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coahom Structured version   Visualization version   GIF version

Theorem coahom 17200
Description: The composition of two composable arrows is an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homdmcoa.o · = (compa𝐶)
homdmcoa.h 𝐻 = (Homa𝐶)
homdmcoa.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
homdmcoa.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
Assertion
Ref Expression
coahom (𝜑 → (𝐺 · 𝐹) ∈ (𝑋𝐻𝑍))

Proof of Theorem coahom
StepHypRef Expression
1 homdmcoa.o . . 3 · = (compa𝐶)
2 homdmcoa.h . . 3 𝐻 = (Homa𝐶)
3 homdmcoa.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
4 homdmcoa.g . . 3 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
5 eqid 2771 . . 3 (comp‘𝐶) = (comp‘𝐶)
61, 2, 3, 4, 5coaval 17198 . 2 (𝜑 → (𝐺 · 𝐹) = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)(2nd𝐹))⟩)
7 eqid 2771 . . 3 (Base‘𝐶) = (Base‘𝐶)
82homarcl 17158 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
93, 8syl 17 . . 3 (𝜑𝐶 ∈ Cat)
10 eqid 2771 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
112, 7homarcl2 17165 . . . . 5 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
123, 11syl 17 . . . 4 (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
1312simpld 487 . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
142, 7homarcl2 17165 . . . . 5 (𝐺 ∈ (𝑌𝐻𝑍) → (𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶)))
154, 14syl 17 . . . 4 (𝜑 → (𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶)))
1615simprd 488 . . 3 (𝜑𝑍 ∈ (Base‘𝐶))
1712simprd 488 . . . 4 (𝜑𝑌 ∈ (Base‘𝐶))
182, 10homahom 17169 . . . . 5 (𝐹 ∈ (𝑋𝐻𝑌) → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
193, 18syl 17 . . . 4 (𝜑 → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
202, 10homahom 17169 . . . . 5 (𝐺 ∈ (𝑌𝐻𝑍) → (2nd𝐺) ∈ (𝑌(Hom ‘𝐶)𝑍))
214, 20syl 17 . . . 4 (𝜑 → (2nd𝐺) ∈ (𝑌(Hom ‘𝐶)𝑍))
227, 10, 5, 9, 13, 17, 16, 19, 21catcocl 16826 . . 3 (𝜑 → ((2nd𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)(2nd𝐹)) ∈ (𝑋(Hom ‘𝐶)𝑍))
232, 7, 9, 10, 13, 16, 22elhomai2 17164 . 2 (𝜑 → ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)(2nd𝐹))⟩ ∈ (𝑋𝐻𝑍))
246, 23eqeltrd 2859 1 (𝜑 → (𝐺 · 𝐹) ∈ (𝑋𝐻𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wcel 2051  cop 4441  cotp 4443  cfv 6185  (class class class)co 6974  2nd c2nd 7498  Basecbs 16337  Hom chom 16430  compcco 16431  Catccat 16805  Homachoma 17153  compaccoa 17184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-ral 3086  df-rex 3087  df-reu 3088  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-ot 4444  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-ov 6977  df-oprab 6978  df-mpo 6979  df-1st 7499  df-2nd 7500  df-cat 16809  df-doma 17154  df-coda 17155  df-homa 17156  df-arw 17157  df-coa 17186
This theorem is referenced by:  coapm  17201  arwass  17204
  Copyright terms: Public domain W3C validator