![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coahom | Structured version Visualization version GIF version |
Description: The composition of two composable arrows is an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homdmcoa.o | ⊢ · = (compa‘𝐶) |
homdmcoa.h | ⊢ 𝐻 = (Homa‘𝐶) |
homdmcoa.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
homdmcoa.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
Ref | Expression |
---|---|
coahom | ⊢ (𝜑 → (𝐺 · 𝐹) ∈ (𝑋𝐻𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homdmcoa.o | . . 3 ⊢ · = (compa‘𝐶) | |
2 | homdmcoa.h | . . 3 ⊢ 𝐻 = (Homa‘𝐶) | |
3 | homdmcoa.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
4 | homdmcoa.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
5 | eqid 2740 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
6 | 1, 2, 3, 4, 5 | coaval 18135 | . 2 ⊢ (𝜑 → (𝐺 · 𝐹) = 〈𝑋, 𝑍, ((2nd ‘𝐺)(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)(2nd ‘𝐹))〉) |
7 | eqid 2740 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
8 | 2 | homarcl 18095 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
9 | 3, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
10 | eqid 2740 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
11 | 2, 7 | homarcl2 18102 | . . . . 5 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
12 | 3, 11 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
13 | 12 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
14 | 2, 7 | homarcl2 18102 | . . . . 5 ⊢ (𝐺 ∈ (𝑌𝐻𝑍) → (𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) |
15 | 4, 14 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) |
16 | 15 | simprd 495 | . . 3 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) |
17 | 12 | simprd 495 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
18 | 2, 10 | homahom 18106 | . . . . 5 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
19 | 3, 18 | syl 17 | . . . 4 ⊢ (𝜑 → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
20 | 2, 10 | homahom 18106 | . . . . 5 ⊢ (𝐺 ∈ (𝑌𝐻𝑍) → (2nd ‘𝐺) ∈ (𝑌(Hom ‘𝐶)𝑍)) |
21 | 4, 20 | syl 17 | . . . 4 ⊢ (𝜑 → (2nd ‘𝐺) ∈ (𝑌(Hom ‘𝐶)𝑍)) |
22 | 7, 10, 5, 9, 13, 17, 16, 19, 21 | catcocl 17743 | . . 3 ⊢ (𝜑 → ((2nd ‘𝐺)(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)(2nd ‘𝐹)) ∈ (𝑋(Hom ‘𝐶)𝑍)) |
23 | 2, 7, 9, 10, 13, 16, 22 | elhomai2 18101 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑍, ((2nd ‘𝐺)(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)(2nd ‘𝐹))〉 ∈ (𝑋𝐻𝑍)) |
24 | 6, 23 | eqeltrd 2844 | 1 ⊢ (𝜑 → (𝐺 · 𝐹) ∈ (𝑋𝐻𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 〈cop 4654 〈cotp 4656 ‘cfv 6573 (class class class)co 7448 2nd c2nd 8029 Basecbs 17258 Hom chom 17322 compcco 17323 Catccat 17722 Homachoma 18090 compaccoa 18121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-ot 4657 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-cat 17726 df-doma 18091 df-coda 18092 df-homa 18093 df-arw 18094 df-coa 18123 |
This theorem is referenced by: coapm 18138 arwass 18141 |
Copyright terms: Public domain | W3C validator |