| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iccgelbd | Structured version Visualization version GIF version | ||
| Description: An element of a closed interval is more than or equal to its lower bound. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| iccgelbd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| iccgelbd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| iccgelbd.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
| Ref | Expression |
|---|---|
| iccgelbd | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccgelbd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | iccgelbd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 3 | iccgelbd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) | |
| 4 | iccgelb 13443 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5143 (class class class)co 7431 ℝ*cxr 11294 ≤ cle 11296 [,]cicc 13390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-xr 11299 df-icc 13394 |
| This theorem is referenced by: sqrlearg 45566 |
| Copyright terms: Public domain | W3C validator |