Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccgelbd | Structured version Visualization version GIF version |
Description: An element of a closed interval is more than or equal to its lower bound. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
iccgelbd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
iccgelbd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
iccgelbd.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
Ref | Expression |
---|---|
iccgelbd | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccgelbd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | iccgelbd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
3 | iccgelbd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) | |
4 | iccgelb 12835 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) | |
5 | 1, 2, 3, 4 | syl3anc 1368 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5032 (class class class)co 7150 ℝ*cxr 10712 ≤ cle 10714 [,]cicc 12782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-iota 6294 df-fun 6337 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-xr 10717 df-icc 12786 |
This theorem is referenced by: sqrlearg 42556 |
Copyright terms: Public domain | W3C validator |