| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iccgelb | Structured version Visualization version GIF version | ||
| Description: An element of a closed interval is more than or equal to its lower bound. (Contributed by Thierry Arnoux, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| iccgelb | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc1 13289 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 2 | 1 | biimpa 476 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| 3 | 2 | simp2d 1143 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
| 4 | 3 | 3impa 1109 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 class class class wbr 5089 (class class class)co 7346 ℝ*cxr 11145 ≤ cle 11147 [,]cicc 13248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-xr 11150 df-icc 13252 |
| This theorem is referenced by: xrge0neqmnf 13352 supicc 13401 ttgcontlem1 28863 xrge0infss 32743 xrge0addgt0 32998 xrge0adddir 32999 esumcst 34076 esumpinfval 34086 oms0 34310 probmeasb 34443 broucube 37693 areaquad 43308 lefldiveq 45392 xadd0ge 45419 xrge0nemnfd 45430 eliccelioc 45620 iccintsng 45622 eliccnelico 45628 eliccelicod 45629 ge0xrre 45630 inficc 45633 iccdificc 45638 iccgelbd 45642 cncfiooiccre 45992 iblspltprt 46070 itgioocnicc 46074 itgspltprt 46076 itgiccshift 46077 fourierdlem1 46205 fourierdlem20 46224 fourierdlem24 46228 fourierdlem25 46229 fourierdlem27 46231 fourierdlem43 46247 fourierdlem44 46248 fourierdlem50 46253 fourierdlem51 46254 fourierdlem52 46255 fourierdlem64 46267 fourierdlem73 46276 fourierdlem76 46279 fourierdlem81 46284 fourierdlem92 46295 fourierdlem102 46305 fourierdlem103 46306 fourierdlem104 46307 fourierdlem114 46317 rrxsnicc 46397 salgencntex 46440 fge0iccico 46467 gsumge0cl 46468 sge0sn 46476 sge0tsms 46477 sge0cl 46478 sge0ge0 46481 sge0fsum 46484 sge0pr 46491 sge0prle 46498 sge0p1 46511 sge0rernmpt 46519 meage0 46572 omessre 46607 omeiunltfirp 46616 carageniuncllem2 46619 omege0 46630 ovnlerp 46659 ovn0lem 46662 hoidmvlelem1 46692 hoidmvlelem2 46693 hoidmvlelem3 46694 |
| Copyright terms: Public domain | W3C validator |