| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iccgelb | Structured version Visualization version GIF version | ||
| Description: An element of a closed interval is more than or equal to its lower bound. (Contributed by Thierry Arnoux, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| iccgelb | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc1 13357 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 2 | 1 | biimpa 476 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| 3 | 2 | simp2d 1143 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
| 4 | 3 | 3impa 1109 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℝ*cxr 11214 ≤ cle 11216 [,]cicc 13316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-xr 11219 df-icc 13320 |
| This theorem is referenced by: xrge0neqmnf 13420 supicc 13469 ttgcontlem1 28819 xrge0infss 32690 xrge0addgt0 32965 xrge0adddir 32966 esumcst 34060 esumpinfval 34070 oms0 34295 probmeasb 34428 broucube 37655 areaquad 43212 lefldiveq 45297 xadd0ge 45324 xrge0nemnfd 45335 eliccelioc 45526 iccintsng 45528 eliccnelico 45534 eliccelicod 45535 ge0xrre 45536 inficc 45539 iccdificc 45544 iccgelbd 45548 cncfiooiccre 45900 iblspltprt 45978 itgioocnicc 45982 itgspltprt 45984 itgiccshift 45985 fourierdlem1 46113 fourierdlem20 46132 fourierdlem24 46136 fourierdlem25 46137 fourierdlem27 46139 fourierdlem43 46155 fourierdlem44 46156 fourierdlem50 46161 fourierdlem51 46162 fourierdlem52 46163 fourierdlem64 46175 fourierdlem73 46184 fourierdlem76 46187 fourierdlem81 46192 fourierdlem92 46203 fourierdlem102 46213 fourierdlem103 46214 fourierdlem104 46215 fourierdlem114 46225 rrxsnicc 46305 salgencntex 46348 fge0iccico 46375 gsumge0cl 46376 sge0sn 46384 sge0tsms 46385 sge0cl 46386 sge0ge0 46389 sge0fsum 46392 sge0pr 46399 sge0prle 46406 sge0p1 46419 sge0rernmpt 46427 meage0 46480 omessre 46515 omeiunltfirp 46524 carageniuncllem2 46527 omege0 46538 ovnlerp 46567 ovn0lem 46570 hoidmvlelem1 46600 hoidmvlelem2 46601 hoidmvlelem3 46602 |
| Copyright terms: Public domain | W3C validator |