![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccgelb | Structured version Visualization version GIF version |
Description: An element of a closed interval is more than or equal to its lower bound. (Contributed by Thierry Arnoux, 23-Dec-2016.) |
Ref | Expression |
---|---|
iccgelb | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc1 13368 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
2 | 1 | biimpa 478 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
3 | 2 | simp2d 1144 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
4 | 3 | 3impa 1111 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 class class class wbr 5149 (class class class)co 7409 ℝ*cxr 11247 ≤ cle 11249 [,]cicc 13327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-xr 11252 df-icc 13331 |
This theorem is referenced by: xrge0neqmnf 13429 supicc 13478 ttgcontlem1 28142 xrge0infss 31973 xrge0addgt0 32192 xrge0adddir 32193 esumcst 33061 esumpinfval 33071 oms0 33296 probmeasb 33429 broucube 36522 areaquad 41965 lefldiveq 44002 xadd0ge 44030 xrge0nemnfd 44042 eliccelioc 44234 iccintsng 44236 eliccnelico 44242 eliccelicod 44243 ge0xrre 44244 inficc 44247 iccdificc 44252 iccgelbd 44256 cncfiooiccre 44611 iblspltprt 44689 itgioocnicc 44693 itgspltprt 44695 itgiccshift 44696 fourierdlem1 44824 fourierdlem20 44843 fourierdlem24 44847 fourierdlem25 44848 fourierdlem27 44850 fourierdlem43 44866 fourierdlem44 44867 fourierdlem50 44872 fourierdlem51 44873 fourierdlem52 44874 fourierdlem64 44886 fourierdlem73 44895 fourierdlem76 44898 fourierdlem81 44903 fourierdlem92 44914 fourierdlem102 44924 fourierdlem103 44925 fourierdlem104 44926 fourierdlem114 44936 rrxsnicc 45016 salgencntex 45059 fge0iccico 45086 gsumge0cl 45087 sge0sn 45095 sge0tsms 45096 sge0cl 45097 sge0ge0 45100 sge0fsum 45103 sge0pr 45110 sge0prle 45117 sge0p1 45130 sge0rernmpt 45138 meage0 45191 omessre 45226 omeiunltfirp 45235 carageniuncllem2 45238 omege0 45249 ovnlerp 45278 ovn0lem 45281 hoidmvlelem1 45311 hoidmvlelem2 45312 hoidmvlelem3 45313 |
Copyright terms: Public domain | W3C validator |