| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iccgelb | Structured version Visualization version GIF version | ||
| Description: An element of a closed interval is more than or equal to its lower bound. (Contributed by Thierry Arnoux, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| iccgelb | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc1 13292 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 2 | 1 | biimpa 476 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| 3 | 2 | simp2d 1143 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
| 4 | 3 | 3impa 1109 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5092 (class class class)co 7349 ℝ*cxr 11148 ≤ cle 11150 [,]cicc 13251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-xr 11153 df-icc 13255 |
| This theorem is referenced by: xrge0neqmnf 13355 supicc 13404 ttgcontlem1 28834 xrge0infss 32712 xrge0addgt0 32980 xrge0adddir 32981 esumcst 34046 esumpinfval 34056 oms0 34281 probmeasb 34414 broucube 37654 areaquad 43209 lefldiveq 45294 xadd0ge 45321 xrge0nemnfd 45332 eliccelioc 45522 iccintsng 45524 eliccnelico 45530 eliccelicod 45531 ge0xrre 45532 inficc 45535 iccdificc 45540 iccgelbd 45544 cncfiooiccre 45896 iblspltprt 45974 itgioocnicc 45978 itgspltprt 45980 itgiccshift 45981 fourierdlem1 46109 fourierdlem20 46128 fourierdlem24 46132 fourierdlem25 46133 fourierdlem27 46135 fourierdlem43 46151 fourierdlem44 46152 fourierdlem50 46157 fourierdlem51 46158 fourierdlem52 46159 fourierdlem64 46171 fourierdlem73 46180 fourierdlem76 46183 fourierdlem81 46188 fourierdlem92 46199 fourierdlem102 46209 fourierdlem103 46210 fourierdlem104 46211 fourierdlem114 46221 rrxsnicc 46301 salgencntex 46344 fge0iccico 46371 gsumge0cl 46372 sge0sn 46380 sge0tsms 46381 sge0cl 46382 sge0ge0 46385 sge0fsum 46388 sge0pr 46395 sge0prle 46402 sge0p1 46415 sge0rernmpt 46423 meage0 46476 omessre 46511 omeiunltfirp 46520 carageniuncllem2 46523 omege0 46534 ovnlerp 46563 ovn0lem 46566 hoidmvlelem1 46596 hoidmvlelem2 46597 hoidmvlelem3 46598 |
| Copyright terms: Public domain | W3C validator |