Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iccgelb | Structured version Visualization version GIF version |
Description: An element of a closed interval is more than or equal to its lower bound. (Contributed by Thierry Arnoux, 23-Dec-2016.) |
Ref | Expression |
---|---|
iccgelb | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc1 13123 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
2 | 1 | biimpa 477 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
3 | 2 | simp2d 1142 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
4 | 3 | 3impa 1109 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 ℝ*cxr 11008 ≤ cle 11010 [,]cicc 13082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-xr 11013 df-icc 13086 |
This theorem is referenced by: xrge0neqmnf 13184 supicc 13233 ttgcontlem1 27252 xrge0infss 31083 xrge0addgt0 31300 xrge0adddir 31301 esumcst 32031 esumpinfval 32041 oms0 32264 probmeasb 32397 broucube 35811 areaquad 41047 lefldiveq 42831 xadd0ge 42859 xrge0nemnfd 42871 eliccelioc 43059 iccintsng 43061 eliccnelico 43067 eliccelicod 43068 ge0xrre 43069 inficc 43072 iccdificc 43077 iccgelbd 43081 cncfiooiccre 43436 iblspltprt 43514 itgioocnicc 43518 itgspltprt 43520 itgiccshift 43521 fourierdlem1 43649 fourierdlem20 43668 fourierdlem24 43672 fourierdlem25 43673 fourierdlem27 43675 fourierdlem43 43691 fourierdlem44 43692 fourierdlem50 43697 fourierdlem51 43698 fourierdlem52 43699 fourierdlem64 43711 fourierdlem73 43720 fourierdlem76 43723 fourierdlem81 43728 fourierdlem92 43739 fourierdlem102 43749 fourierdlem103 43750 fourierdlem104 43751 fourierdlem114 43761 rrxsnicc 43841 salgencntex 43882 fge0iccico 43908 gsumge0cl 43909 sge0sn 43917 sge0tsms 43918 sge0cl 43919 sge0ge0 43922 sge0fsum 43925 sge0pr 43932 sge0prle 43939 sge0p1 43952 sge0rernmpt 43960 meage0 44013 omessre 44048 omeiunltfirp 44057 carageniuncllem2 44060 omege0 44071 ovnlerp 44100 ovn0lem 44103 hoidmvlelem1 44133 hoidmvlelem2 44134 hoidmvlelem3 44135 |
Copyright terms: Public domain | W3C validator |