![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccgelb | Structured version Visualization version GIF version |
Description: An element of a closed interval is more than or equal to its lower bound. (Contributed by Thierry Arnoux, 23-Dec-2016.) |
Ref | Expression |
---|---|
iccgelb | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc1 13451 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
2 | 1 | biimpa 476 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
3 | 2 | simp2d 1143 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
4 | 3 | 3impa 1110 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℝ*cxr 11323 ≤ cle 11325 [,]cicc 13410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-xr 11328 df-icc 13414 |
This theorem is referenced by: xrge0neqmnf 13512 supicc 13561 ttgcontlem1 28917 xrge0infss 32767 xrge0addgt0 33003 xrge0adddir 33004 esumcst 34027 esumpinfval 34037 oms0 34262 probmeasb 34395 broucube 37614 areaquad 43177 lefldiveq 45207 xadd0ge 45235 xrge0nemnfd 45247 eliccelioc 45439 iccintsng 45441 eliccnelico 45447 eliccelicod 45448 ge0xrre 45449 inficc 45452 iccdificc 45457 iccgelbd 45461 cncfiooiccre 45816 iblspltprt 45894 itgioocnicc 45898 itgspltprt 45900 itgiccshift 45901 fourierdlem1 46029 fourierdlem20 46048 fourierdlem24 46052 fourierdlem25 46053 fourierdlem27 46055 fourierdlem43 46071 fourierdlem44 46072 fourierdlem50 46077 fourierdlem51 46078 fourierdlem52 46079 fourierdlem64 46091 fourierdlem73 46100 fourierdlem76 46103 fourierdlem81 46108 fourierdlem92 46119 fourierdlem102 46129 fourierdlem103 46130 fourierdlem104 46131 fourierdlem114 46141 rrxsnicc 46221 salgencntex 46264 fge0iccico 46291 gsumge0cl 46292 sge0sn 46300 sge0tsms 46301 sge0cl 46302 sge0ge0 46305 sge0fsum 46308 sge0pr 46315 sge0prle 46322 sge0p1 46335 sge0rernmpt 46343 meage0 46396 omessre 46431 omeiunltfirp 46440 carageniuncllem2 46443 omege0 46454 ovnlerp 46483 ovn0lem 46486 hoidmvlelem1 46516 hoidmvlelem2 46517 hoidmvlelem3 46518 |
Copyright terms: Public domain | W3C validator |