| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iccgelb | Structured version Visualization version GIF version | ||
| Description: An element of a closed interval is more than or equal to its lower bound. (Contributed by Thierry Arnoux, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| iccgelb | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc1 13326 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 2 | 1 | biimpa 476 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| 3 | 2 | simp2d 1143 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
| 4 | 3 | 3impa 1109 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 ℝ*cxr 11183 ≤ cle 11185 [,]cicc 13285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-xr 11188 df-icc 13289 |
| This theorem is referenced by: xrge0neqmnf 13389 supicc 13438 ttgcontlem1 28865 xrge0infss 32733 xrge0addgt0 33001 xrge0adddir 33002 esumcst 34046 esumpinfval 34056 oms0 34281 probmeasb 34414 broucube 37641 areaquad 43198 lefldiveq 45283 xadd0ge 45310 xrge0nemnfd 45321 eliccelioc 45512 iccintsng 45514 eliccnelico 45520 eliccelicod 45521 ge0xrre 45522 inficc 45525 iccdificc 45530 iccgelbd 45534 cncfiooiccre 45886 iblspltprt 45964 itgioocnicc 45968 itgspltprt 45970 itgiccshift 45971 fourierdlem1 46099 fourierdlem20 46118 fourierdlem24 46122 fourierdlem25 46123 fourierdlem27 46125 fourierdlem43 46141 fourierdlem44 46142 fourierdlem50 46147 fourierdlem51 46148 fourierdlem52 46149 fourierdlem64 46161 fourierdlem73 46170 fourierdlem76 46173 fourierdlem81 46178 fourierdlem92 46189 fourierdlem102 46199 fourierdlem103 46200 fourierdlem104 46201 fourierdlem114 46211 rrxsnicc 46291 salgencntex 46334 fge0iccico 46361 gsumge0cl 46362 sge0sn 46370 sge0tsms 46371 sge0cl 46372 sge0ge0 46375 sge0fsum 46378 sge0pr 46385 sge0prle 46392 sge0p1 46405 sge0rernmpt 46413 meage0 46466 omessre 46501 omeiunltfirp 46510 carageniuncllem2 46513 omege0 46524 ovnlerp 46553 ovn0lem 46556 hoidmvlelem1 46586 hoidmvlelem2 46587 hoidmvlelem3 46588 |
| Copyright terms: Public domain | W3C validator |