Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iccgelb | Structured version Visualization version GIF version |
Description: An element of a closed interval is more than or equal to its lower bound. (Contributed by Thierry Arnoux, 23-Dec-2016.) |
Ref | Expression |
---|---|
iccgelb | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc1 13052 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
2 | 1 | biimpa 476 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
3 | 2 | simp2d 1141 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
4 | 3 | 3impa 1108 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝ*cxr 10939 ≤ cle 10941 [,]cicc 13011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-xr 10944 df-icc 13015 |
This theorem is referenced by: xrge0neqmnf 13113 supicc 13162 ttgcontlem1 27155 xrge0infss 30985 xrge0addgt0 31202 xrge0adddir 31203 esumcst 31931 esumpinfval 31941 oms0 32164 probmeasb 32297 broucube 35738 areaquad 40963 lefldiveq 42721 xadd0ge 42749 xrge0nemnfd 42761 eliccelioc 42949 iccintsng 42951 eliccnelico 42957 eliccelicod 42958 ge0xrre 42959 inficc 42962 iccdificc 42967 iccgelbd 42971 cncfiooiccre 43326 iblspltprt 43404 itgioocnicc 43408 itgspltprt 43410 itgiccshift 43411 fourierdlem1 43539 fourierdlem20 43558 fourierdlem24 43562 fourierdlem25 43563 fourierdlem27 43565 fourierdlem43 43581 fourierdlem44 43582 fourierdlem50 43587 fourierdlem51 43588 fourierdlem52 43589 fourierdlem64 43601 fourierdlem73 43610 fourierdlem76 43613 fourierdlem81 43618 fourierdlem92 43629 fourierdlem102 43639 fourierdlem103 43640 fourierdlem104 43641 fourierdlem114 43651 rrxsnicc 43731 salgencntex 43772 fge0iccico 43798 gsumge0cl 43799 sge0sn 43807 sge0tsms 43808 sge0cl 43809 sge0ge0 43812 sge0fsum 43815 sge0pr 43822 sge0prle 43829 sge0p1 43842 sge0rernmpt 43850 meage0 43903 omessre 43938 omeiunltfirp 43947 carageniuncllem2 43950 omege0 43961 ovnlerp 43990 ovn0lem 43993 hoidmvlelem1 44023 hoidmvlelem2 44024 hoidmvlelem3 44025 |
Copyright terms: Public domain | W3C validator |