| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iccgelb | Structured version Visualization version GIF version | ||
| Description: An element of a closed interval is more than or equal to its lower bound. (Contributed by Thierry Arnoux, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| iccgelb | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc1 13406 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 2 | 1 | biimpa 476 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| 3 | 2 | simp2d 1143 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
| 4 | 3 | 3impa 1109 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 ℝ*cxr 11268 ≤ cle 11270 [,]cicc 13365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-xr 11273 df-icc 13369 |
| This theorem is referenced by: xrge0neqmnf 13469 supicc 13518 ttgcontlem1 28864 xrge0infss 32737 xrge0addgt0 33012 xrge0adddir 33013 esumcst 34094 esumpinfval 34104 oms0 34329 probmeasb 34462 broucube 37678 areaquad 43240 lefldiveq 45321 xadd0ge 45348 xrge0nemnfd 45359 eliccelioc 45550 iccintsng 45552 eliccnelico 45558 eliccelicod 45559 ge0xrre 45560 inficc 45563 iccdificc 45568 iccgelbd 45572 cncfiooiccre 45924 iblspltprt 46002 itgioocnicc 46006 itgspltprt 46008 itgiccshift 46009 fourierdlem1 46137 fourierdlem20 46156 fourierdlem24 46160 fourierdlem25 46161 fourierdlem27 46163 fourierdlem43 46179 fourierdlem44 46180 fourierdlem50 46185 fourierdlem51 46186 fourierdlem52 46187 fourierdlem64 46199 fourierdlem73 46208 fourierdlem76 46211 fourierdlem81 46216 fourierdlem92 46227 fourierdlem102 46237 fourierdlem103 46238 fourierdlem104 46239 fourierdlem114 46249 rrxsnicc 46329 salgencntex 46372 fge0iccico 46399 gsumge0cl 46400 sge0sn 46408 sge0tsms 46409 sge0cl 46410 sge0ge0 46413 sge0fsum 46416 sge0pr 46423 sge0prle 46430 sge0p1 46443 sge0rernmpt 46451 meage0 46504 omessre 46539 omeiunltfirp 46548 carageniuncllem2 46551 omege0 46562 ovnlerp 46591 ovn0lem 46594 hoidmvlelem1 46624 hoidmvlelem2 46625 hoidmvlelem3 46626 |
| Copyright terms: Public domain | W3C validator |