| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iccgelb | Structured version Visualization version GIF version | ||
| Description: An element of a closed interval is more than or equal to its lower bound. (Contributed by Thierry Arnoux, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| iccgelb | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc1 13328 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 2 | 1 | biimpa 476 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| 3 | 2 | simp2d 1143 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
| 4 | 3 | 3impa 1109 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 ℝ*cxr 11185 ≤ cle 11187 [,]cicc 13287 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-xr 11190 df-icc 13291 |
| This theorem is referenced by: xrge0neqmnf 13391 supicc 13440 ttgcontlem1 28866 xrge0infss 32734 xrge0addgt0 33002 xrge0adddir 33003 esumcst 34047 esumpinfval 34057 oms0 34282 probmeasb 34415 broucube 37642 areaquad 43199 lefldiveq 45284 xadd0ge 45311 xrge0nemnfd 45322 eliccelioc 45513 iccintsng 45515 eliccnelico 45521 eliccelicod 45522 ge0xrre 45523 inficc 45526 iccdificc 45531 iccgelbd 45535 cncfiooiccre 45887 iblspltprt 45965 itgioocnicc 45969 itgspltprt 45971 itgiccshift 45972 fourierdlem1 46100 fourierdlem20 46119 fourierdlem24 46123 fourierdlem25 46124 fourierdlem27 46126 fourierdlem43 46142 fourierdlem44 46143 fourierdlem50 46148 fourierdlem51 46149 fourierdlem52 46150 fourierdlem64 46162 fourierdlem73 46171 fourierdlem76 46174 fourierdlem81 46179 fourierdlem92 46190 fourierdlem102 46200 fourierdlem103 46201 fourierdlem104 46202 fourierdlem114 46212 rrxsnicc 46292 salgencntex 46335 fge0iccico 46362 gsumge0cl 46363 sge0sn 46371 sge0tsms 46372 sge0cl 46373 sge0ge0 46376 sge0fsum 46379 sge0pr 46386 sge0prle 46393 sge0p1 46406 sge0rernmpt 46414 meage0 46467 omessre 46502 omeiunltfirp 46511 carageniuncllem2 46514 omege0 46525 ovnlerp 46554 ovn0lem 46557 hoidmvlelem1 46587 hoidmvlelem2 46588 hoidmvlelem3 46589 |
| Copyright terms: Public domain | W3C validator |