MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccgelb Structured version   Visualization version   GIF version

Theorem iccgelb 13135
Description: An element of a closed interval is more than or equal to its lower bound. (Contributed by Thierry Arnoux, 23-Dec-2016.)
Assertion
Ref Expression
iccgelb ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)

Proof of Theorem iccgelb
StepHypRef Expression
1 elicc1 13123 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
21biimpa 477 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵))
32simp2d 1142 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
433impa 1109 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2106   class class class wbr 5074  (class class class)co 7275  *cxr 11008  cle 11010  [,]cicc 13082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-xr 11013  df-icc 13086
This theorem is referenced by:  xrge0neqmnf  13184  supicc  13233  ttgcontlem1  27252  xrge0infss  31083  xrge0addgt0  31300  xrge0adddir  31301  esumcst  32031  esumpinfval  32041  oms0  32264  probmeasb  32397  broucube  35811  areaquad  41047  lefldiveq  42831  xadd0ge  42859  xrge0nemnfd  42871  eliccelioc  43059  iccintsng  43061  eliccnelico  43067  eliccelicod  43068  ge0xrre  43069  inficc  43072  iccdificc  43077  iccgelbd  43081  cncfiooiccre  43436  iblspltprt  43514  itgioocnicc  43518  itgspltprt  43520  itgiccshift  43521  fourierdlem1  43649  fourierdlem20  43668  fourierdlem24  43672  fourierdlem25  43673  fourierdlem27  43675  fourierdlem43  43691  fourierdlem44  43692  fourierdlem50  43697  fourierdlem51  43698  fourierdlem52  43699  fourierdlem64  43711  fourierdlem73  43720  fourierdlem76  43723  fourierdlem81  43728  fourierdlem92  43739  fourierdlem102  43749  fourierdlem103  43750  fourierdlem104  43751  fourierdlem114  43761  rrxsnicc  43841  salgencntex  43882  fge0iccico  43908  gsumge0cl  43909  sge0sn  43917  sge0tsms  43918  sge0cl  43919  sge0ge0  43922  sge0fsum  43925  sge0pr  43932  sge0prle  43939  sge0p1  43952  sge0rernmpt  43960  meage0  44013  omessre  44048  omeiunltfirp  44057  carageniuncllem2  44060  omege0  44071  ovnlerp  44100  ovn0lem  44103  hoidmvlelem1  44133  hoidmvlelem2  44134  hoidmvlelem3  44135
  Copyright terms: Public domain W3C validator