Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqrlearg Structured version   Visualization version   GIF version

Theorem sqrlearg 43091
Description: The square compared with its argument. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
sqrlearg.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
sqrlearg (𝜑 → ((𝐴↑2) ≤ 𝐴𝐴 ∈ (0[,]1)))

Proof of Theorem sqrlearg
StepHypRef Expression
1 0re 10977 . . . . 5 0 ∈ ℝ
21a1i 11 . . . 4 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 0 ∈ ℝ)
3 simpr 485 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴 ≤ 1) → ¬ 𝐴 ≤ 1)
4 1red 10976 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴 ≤ 1) → 1 ∈ ℝ)
5 sqrlearg.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
65adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴 ≤ 1) → 𝐴 ∈ ℝ)
74, 6ltnled 11122 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴 ≤ 1) → (1 < 𝐴 ↔ ¬ 𝐴 ≤ 1))
83, 7mpbird 256 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 ≤ 1) → 1 < 𝐴)
9 1red 10976 . . . . . . . . . 10 ((𝜑 ∧ 1 < 𝐴) → 1 ∈ ℝ)
105adantr 481 . . . . . . . . . 10 ((𝜑 ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
111a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < 𝐴) → 0 ∈ ℝ)
12 0lt1 11497 . . . . . . . . . . . . 13 0 < 1
1312a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < 𝐴) → 0 < 1)
14 simpr 485 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < 𝐴) → 1 < 𝐴)
1511, 9, 10, 13, 14lttrd 11136 . . . . . . . . . . 11 ((𝜑 ∧ 1 < 𝐴) → 0 < 𝐴)
1610, 15elrpd 12769 . . . . . . . . . 10 ((𝜑 ∧ 1 < 𝐴) → 𝐴 ∈ ℝ+)
179, 10, 16, 14ltmul2dd 12828 . . . . . . . . 9 ((𝜑 ∧ 1 < 𝐴) → (𝐴 · 1) < (𝐴 · 𝐴))
185recnd 11003 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
1918mulid1d 10992 . . . . . . . . . . 11 (𝜑 → (𝐴 · 1) = 𝐴)
2019adantr 481 . . . . . . . . . 10 ((𝜑 ∧ 1 < 𝐴) → (𝐴 · 1) = 𝐴)
2118sqvald 13861 . . . . . . . . . . . 12 (𝜑 → (𝐴↑2) = (𝐴 · 𝐴))
2221eqcomd 2744 . . . . . . . . . . 11 (𝜑 → (𝐴 · 𝐴) = (𝐴↑2))
2322adantr 481 . . . . . . . . . 10 ((𝜑 ∧ 1 < 𝐴) → (𝐴 · 𝐴) = (𝐴↑2))
2420, 23breq12d 5087 . . . . . . . . 9 ((𝜑 ∧ 1 < 𝐴) → ((𝐴 · 1) < (𝐴 · 𝐴) ↔ 𝐴 < (𝐴↑2)))
2517, 24mpbid 231 . . . . . . . 8 ((𝜑 ∧ 1 < 𝐴) → 𝐴 < (𝐴↑2))
268, 25syldan 591 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 ≤ 1) → 𝐴 < (𝐴↑2))
2726adantlr 712 . . . . . 6 (((𝜑 ∧ (𝐴↑2) ≤ 𝐴) ∧ ¬ 𝐴 ≤ 1) → 𝐴 < (𝐴↑2))
28 simpr 485 . . . . . . . 8 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → (𝐴↑2) ≤ 𝐴)
295resqcld 13965 . . . . . . . . . 10 (𝜑 → (𝐴↑2) ∈ ℝ)
3029adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → (𝐴↑2) ∈ ℝ)
315adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 𝐴 ∈ ℝ)
3230, 31lenltd 11121 . . . . . . . 8 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → ((𝐴↑2) ≤ 𝐴 ↔ ¬ 𝐴 < (𝐴↑2)))
3328, 32mpbid 231 . . . . . . 7 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → ¬ 𝐴 < (𝐴↑2))
3433adantr 481 . . . . . 6 (((𝜑 ∧ (𝐴↑2) ≤ 𝐴) ∧ ¬ 𝐴 ≤ 1) → ¬ 𝐴 < (𝐴↑2))
3527, 34condan 815 . . . . 5 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 𝐴 ≤ 1)
36 1red 10976 . . . . 5 ((𝜑𝐴 ≤ 1) → 1 ∈ ℝ)
3735, 36syldan 591 . . . 4 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 1 ∈ ℝ)
3831sqge0d 13966 . . . . 5 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 0 ≤ (𝐴↑2))
392, 30, 31, 38, 28letrd 11132 . . . 4 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 0 ≤ 𝐴)
402, 37, 31, 39, 35eliccd 43042 . . 3 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 𝐴 ∈ (0[,]1))
4140ex 413 . 2 (𝜑 → ((𝐴↑2) ≤ 𝐴𝐴 ∈ (0[,]1)))
42 unitssre 13231 . . . . . . 7 (0[,]1) ⊆ ℝ
4342sseli 3917 . . . . . 6 (𝐴 ∈ (0[,]1) → 𝐴 ∈ ℝ)
44 1red 10976 . . . . . 6 (𝐴 ∈ (0[,]1) → 1 ∈ ℝ)
45 0xr 11022 . . . . . . . 8 0 ∈ ℝ*
4645a1i 11 . . . . . . 7 (𝐴 ∈ (0[,]1) → 0 ∈ ℝ*)
4744rexrd 11025 . . . . . . 7 (𝐴 ∈ (0[,]1) → 1 ∈ ℝ*)
48 id 22 . . . . . . 7 (𝐴 ∈ (0[,]1) → 𝐴 ∈ (0[,]1))
4946, 47, 48iccgelbd 43081 . . . . . 6 (𝐴 ∈ (0[,]1) → 0 ≤ 𝐴)
5046, 47, 48iccleubd 43086 . . . . . 6 (𝐴 ∈ (0[,]1) → 𝐴 ≤ 1)
5143, 44, 43, 49, 50lemul2ad 11915 . . . . 5 (𝐴 ∈ (0[,]1) → (𝐴 · 𝐴) ≤ (𝐴 · 1))
5251adantl 482 . . . 4 ((𝜑𝐴 ∈ (0[,]1)) → (𝐴 · 𝐴) ≤ (𝐴 · 1))
5322adantr 481 . . . . 5 ((𝜑𝐴 ∈ (0[,]1)) → (𝐴 · 𝐴) = (𝐴↑2))
5419adantr 481 . . . . 5 ((𝜑𝐴 ∈ (0[,]1)) → (𝐴 · 1) = 𝐴)
5553, 54breq12d 5087 . . . 4 ((𝜑𝐴 ∈ (0[,]1)) → ((𝐴 · 𝐴) ≤ (𝐴 · 1) ↔ (𝐴↑2) ≤ 𝐴))
5652, 55mpbid 231 . . 3 ((𝜑𝐴 ∈ (0[,]1)) → (𝐴↑2) ≤ 𝐴)
5756ex 413 . 2 (𝜑 → (𝐴 ∈ (0[,]1) → (𝐴↑2) ≤ 𝐴))
5841, 57impbid 211 1 (𝜑 → ((𝐴↑2) ≤ 𝐴𝐴 ∈ (0[,]1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   · cmul 10876  *cxr 11008   < clt 11009  cle 11010  2c2 12028  [,]cicc 13082  cexp 13782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-icc 13086  df-seq 13722  df-exp 13783
This theorem is referenced by:  smfmullem1  44325
  Copyright terms: Public domain W3C validator