Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqrlearg Structured version   Visualization version   GIF version

Theorem sqrlearg 42116
Description: The square compared with its argument. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
sqrlearg.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
sqrlearg (𝜑 → ((𝐴↑2) ≤ 𝐴𝐴 ∈ (0[,]1)))

Proof of Theorem sqrlearg
StepHypRef Expression
1 0re 10641 . . . . 5 0 ∈ ℝ
21a1i 11 . . . 4 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 0 ∈ ℝ)
3 simpr 488 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴 ≤ 1) → ¬ 𝐴 ≤ 1)
4 1red 10640 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴 ≤ 1) → 1 ∈ ℝ)
5 sqrlearg.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
65adantr 484 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴 ≤ 1) → 𝐴 ∈ ℝ)
74, 6ltnled 10785 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴 ≤ 1) → (1 < 𝐴 ↔ ¬ 𝐴 ≤ 1))
83, 7mpbird 260 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 ≤ 1) → 1 < 𝐴)
9 1red 10640 . . . . . . . . . 10 ((𝜑 ∧ 1 < 𝐴) → 1 ∈ ℝ)
105adantr 484 . . . . . . . . . 10 ((𝜑 ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
111a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < 𝐴) → 0 ∈ ℝ)
12 0lt1 11160 . . . . . . . . . . . . 13 0 < 1
1312a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < 𝐴) → 0 < 1)
14 simpr 488 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < 𝐴) → 1 < 𝐴)
1511, 9, 10, 13, 14lttrd 10799 . . . . . . . . . . 11 ((𝜑 ∧ 1 < 𝐴) → 0 < 𝐴)
1610, 15elrpd 12425 . . . . . . . . . 10 ((𝜑 ∧ 1 < 𝐴) → 𝐴 ∈ ℝ+)
179, 10, 16, 14ltmul2dd 12484 . . . . . . . . 9 ((𝜑 ∧ 1 < 𝐴) → (𝐴 · 1) < (𝐴 · 𝐴))
185recnd 10667 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
1918mulid1d 10656 . . . . . . . . . . 11 (𝜑 → (𝐴 · 1) = 𝐴)
2019adantr 484 . . . . . . . . . 10 ((𝜑 ∧ 1 < 𝐴) → (𝐴 · 1) = 𝐴)
2118sqvald 13512 . . . . . . . . . . . 12 (𝜑 → (𝐴↑2) = (𝐴 · 𝐴))
2221eqcomd 2830 . . . . . . . . . . 11 (𝜑 → (𝐴 · 𝐴) = (𝐴↑2))
2322adantr 484 . . . . . . . . . 10 ((𝜑 ∧ 1 < 𝐴) → (𝐴 · 𝐴) = (𝐴↑2))
2420, 23breq12d 5065 . . . . . . . . 9 ((𝜑 ∧ 1 < 𝐴) → ((𝐴 · 1) < (𝐴 · 𝐴) ↔ 𝐴 < (𝐴↑2)))
2517, 24mpbid 235 . . . . . . . 8 ((𝜑 ∧ 1 < 𝐴) → 𝐴 < (𝐴↑2))
268, 25syldan 594 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 ≤ 1) → 𝐴 < (𝐴↑2))
2726adantlr 714 . . . . . 6 (((𝜑 ∧ (𝐴↑2) ≤ 𝐴) ∧ ¬ 𝐴 ≤ 1) → 𝐴 < (𝐴↑2))
28 simpr 488 . . . . . . . 8 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → (𝐴↑2) ≤ 𝐴)
295resqcld 13616 . . . . . . . . . 10 (𝜑 → (𝐴↑2) ∈ ℝ)
3029adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → (𝐴↑2) ∈ ℝ)
315adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 𝐴 ∈ ℝ)
3230, 31lenltd 10784 . . . . . . . 8 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → ((𝐴↑2) ≤ 𝐴 ↔ ¬ 𝐴 < (𝐴↑2)))
3328, 32mpbid 235 . . . . . . 7 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → ¬ 𝐴 < (𝐴↑2))
3433adantr 484 . . . . . 6 (((𝜑 ∧ (𝐴↑2) ≤ 𝐴) ∧ ¬ 𝐴 ≤ 1) → ¬ 𝐴 < (𝐴↑2))
3527, 34condan 817 . . . . 5 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 𝐴 ≤ 1)
36 1red 10640 . . . . 5 ((𝜑𝐴 ≤ 1) → 1 ∈ ℝ)
3735, 36syldan 594 . . . 4 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 1 ∈ ℝ)
3831sqge0d 13617 . . . . 5 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 0 ≤ (𝐴↑2))
392, 30, 31, 38, 28letrd 10795 . . . 4 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 0 ≤ 𝐴)
402, 37, 31, 39, 35eliccd 42067 . . 3 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 𝐴 ∈ (0[,]1))
4140ex 416 . 2 (𝜑 → ((𝐴↑2) ≤ 𝐴𝐴 ∈ (0[,]1)))
42 unitssre 12886 . . . . . . 7 (0[,]1) ⊆ ℝ
4342sseli 3949 . . . . . 6 (𝐴 ∈ (0[,]1) → 𝐴 ∈ ℝ)
44 1red 10640 . . . . . 6 (𝐴 ∈ (0[,]1) → 1 ∈ ℝ)
45 0xr 10686 . . . . . . . 8 0 ∈ ℝ*
4645a1i 11 . . . . . . 7 (𝐴 ∈ (0[,]1) → 0 ∈ ℝ*)
4744rexrd 10689 . . . . . . 7 (𝐴 ∈ (0[,]1) → 1 ∈ ℝ*)
48 id 22 . . . . . . 7 (𝐴 ∈ (0[,]1) → 𝐴 ∈ (0[,]1))
4946, 47, 48iccgelbd 42106 . . . . . 6 (𝐴 ∈ (0[,]1) → 0 ≤ 𝐴)
5046, 47, 48iccleubd 42111 . . . . . 6 (𝐴 ∈ (0[,]1) → 𝐴 ≤ 1)
5143, 44, 43, 49, 50lemul2ad 11578 . . . . 5 (𝐴 ∈ (0[,]1) → (𝐴 · 𝐴) ≤ (𝐴 · 1))
5251adantl 485 . . . 4 ((𝜑𝐴 ∈ (0[,]1)) → (𝐴 · 𝐴) ≤ (𝐴 · 1))
5322adantr 484 . . . . 5 ((𝜑𝐴 ∈ (0[,]1)) → (𝐴 · 𝐴) = (𝐴↑2))
5419adantr 484 . . . . 5 ((𝜑𝐴 ∈ (0[,]1)) → (𝐴 · 1) = 𝐴)
5553, 54breq12d 5065 . . . 4 ((𝜑𝐴 ∈ (0[,]1)) → ((𝐴 · 𝐴) ≤ (𝐴 · 1) ↔ (𝐴↑2) ≤ 𝐴))
5652, 55mpbid 235 . . 3 ((𝜑𝐴 ∈ (0[,]1)) → (𝐴↑2) ≤ 𝐴)
5756ex 416 . 2 (𝜑 → (𝐴 ∈ (0[,]1) → (𝐴↑2) ≤ 𝐴))
5841, 57impbid 215 1 (𝜑 → ((𝐴↑2) ≤ 𝐴𝐴 ∈ (0[,]1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115   class class class wbr 5052  (class class class)co 7149  cr 10534  0cc0 10535  1c1 10536   · cmul 10540  *cxr 10672   < clt 10673  cle 10674  2c2 11689  [,]cicc 12738  cexp 13434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-n0 11895  df-z 11979  df-uz 12241  df-rp 12387  df-icc 12742  df-seq 13374  df-exp 13435
This theorem is referenced by:  smfmullem1  43349
  Copyright terms: Public domain W3C validator