Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqrlearg Structured version   Visualization version   GIF version

Theorem sqrlearg 45558
Description: The square compared with its argument. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
sqrlearg.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
sqrlearg (𝜑 → ((𝐴↑2) ≤ 𝐴𝐴 ∈ (0[,]1)))

Proof of Theorem sqrlearg
StepHypRef Expression
1 0re 11183 . . . . 5 0 ∈ ℝ
21a1i 11 . . . 4 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 0 ∈ ℝ)
3 simpr 484 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴 ≤ 1) → ¬ 𝐴 ≤ 1)
4 1red 11182 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴 ≤ 1) → 1 ∈ ℝ)
5 sqrlearg.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
65adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴 ≤ 1) → 𝐴 ∈ ℝ)
74, 6ltnled 11328 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴 ≤ 1) → (1 < 𝐴 ↔ ¬ 𝐴 ≤ 1))
83, 7mpbird 257 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 ≤ 1) → 1 < 𝐴)
9 1red 11182 . . . . . . . . . 10 ((𝜑 ∧ 1 < 𝐴) → 1 ∈ ℝ)
105adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
111a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < 𝐴) → 0 ∈ ℝ)
12 0lt1 11707 . . . . . . . . . . . . 13 0 < 1
1312a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < 𝐴) → 0 < 1)
14 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < 𝐴) → 1 < 𝐴)
1511, 9, 10, 13, 14lttrd 11342 . . . . . . . . . . 11 ((𝜑 ∧ 1 < 𝐴) → 0 < 𝐴)
1610, 15elrpd 12999 . . . . . . . . . 10 ((𝜑 ∧ 1 < 𝐴) → 𝐴 ∈ ℝ+)
179, 10, 16, 14ltmul2dd 13058 . . . . . . . . 9 ((𝜑 ∧ 1 < 𝐴) → (𝐴 · 1) < (𝐴 · 𝐴))
185recnd 11209 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
1918mulridd 11198 . . . . . . . . . . 11 (𝜑 → (𝐴 · 1) = 𝐴)
2019adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 1 < 𝐴) → (𝐴 · 1) = 𝐴)
2118sqvald 14115 . . . . . . . . . . . 12 (𝜑 → (𝐴↑2) = (𝐴 · 𝐴))
2221eqcomd 2736 . . . . . . . . . . 11 (𝜑 → (𝐴 · 𝐴) = (𝐴↑2))
2322adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 1 < 𝐴) → (𝐴 · 𝐴) = (𝐴↑2))
2420, 23breq12d 5123 . . . . . . . . 9 ((𝜑 ∧ 1 < 𝐴) → ((𝐴 · 1) < (𝐴 · 𝐴) ↔ 𝐴 < (𝐴↑2)))
2517, 24mpbid 232 . . . . . . . 8 ((𝜑 ∧ 1 < 𝐴) → 𝐴 < (𝐴↑2))
268, 25syldan 591 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 ≤ 1) → 𝐴 < (𝐴↑2))
2726adantlr 715 . . . . . 6 (((𝜑 ∧ (𝐴↑2) ≤ 𝐴) ∧ ¬ 𝐴 ≤ 1) → 𝐴 < (𝐴↑2))
28 simpr 484 . . . . . . . 8 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → (𝐴↑2) ≤ 𝐴)
295resqcld 14097 . . . . . . . . . 10 (𝜑 → (𝐴↑2) ∈ ℝ)
3029adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → (𝐴↑2) ∈ ℝ)
315adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 𝐴 ∈ ℝ)
3230, 31lenltd 11327 . . . . . . . 8 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → ((𝐴↑2) ≤ 𝐴 ↔ ¬ 𝐴 < (𝐴↑2)))
3328, 32mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → ¬ 𝐴 < (𝐴↑2))
3433adantr 480 . . . . . 6 (((𝜑 ∧ (𝐴↑2) ≤ 𝐴) ∧ ¬ 𝐴 ≤ 1) → ¬ 𝐴 < (𝐴↑2))
3527, 34condan 817 . . . . 5 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 𝐴 ≤ 1)
36 1red 11182 . . . . 5 ((𝜑𝐴 ≤ 1) → 1 ∈ ℝ)
3735, 36syldan 591 . . . 4 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 1 ∈ ℝ)
3831sqge0d 14109 . . . . 5 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 0 ≤ (𝐴↑2))
392, 30, 31, 38, 28letrd 11338 . . . 4 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 0 ≤ 𝐴)
402, 37, 31, 39, 35eliccd 45509 . . 3 ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 𝐴 ∈ (0[,]1))
4140ex 412 . 2 (𝜑 → ((𝐴↑2) ≤ 𝐴𝐴 ∈ (0[,]1)))
42 unitssre 13467 . . . . . . 7 (0[,]1) ⊆ ℝ
4342sseli 3945 . . . . . 6 (𝐴 ∈ (0[,]1) → 𝐴 ∈ ℝ)
44 1red 11182 . . . . . 6 (𝐴 ∈ (0[,]1) → 1 ∈ ℝ)
45 0xr 11228 . . . . . . . 8 0 ∈ ℝ*
4645a1i 11 . . . . . . 7 (𝐴 ∈ (0[,]1) → 0 ∈ ℝ*)
4744rexrd 11231 . . . . . . 7 (𝐴 ∈ (0[,]1) → 1 ∈ ℝ*)
48 id 22 . . . . . . 7 (𝐴 ∈ (0[,]1) → 𝐴 ∈ (0[,]1))
4946, 47, 48iccgelbd 45548 . . . . . 6 (𝐴 ∈ (0[,]1) → 0 ≤ 𝐴)
5046, 47, 48iccleubd 45553 . . . . . 6 (𝐴 ∈ (0[,]1) → 𝐴 ≤ 1)
5143, 44, 43, 49, 50lemul2ad 12130 . . . . 5 (𝐴 ∈ (0[,]1) → (𝐴 · 𝐴) ≤ (𝐴 · 1))
5251adantl 481 . . . 4 ((𝜑𝐴 ∈ (0[,]1)) → (𝐴 · 𝐴) ≤ (𝐴 · 1))
5322adantr 480 . . . . 5 ((𝜑𝐴 ∈ (0[,]1)) → (𝐴 · 𝐴) = (𝐴↑2))
5419adantr 480 . . . . 5 ((𝜑𝐴 ∈ (0[,]1)) → (𝐴 · 1) = 𝐴)
5553, 54breq12d 5123 . . . 4 ((𝜑𝐴 ∈ (0[,]1)) → ((𝐴 · 𝐴) ≤ (𝐴 · 1) ↔ (𝐴↑2) ≤ 𝐴))
5652, 55mpbid 232 . . 3 ((𝜑𝐴 ∈ (0[,]1)) → (𝐴↑2) ≤ 𝐴)
5756ex 412 . 2 (𝜑 → (𝐴 ∈ (0[,]1) → (𝐴↑2) ≤ 𝐴))
5841, 57impbid 212 1 (𝜑 → ((𝐴↑2) ≤ 𝐴𝐴 ∈ (0[,]1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   · cmul 11080  *cxr 11214   < clt 11215  cle 11216  2c2 12248  [,]cicc 13316  cexp 14033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-icc 13320  df-seq 13974  df-exp 14034
This theorem is referenced by:  smfmullem1  46796
  Copyright terms: Public domain W3C validator