MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglngne Structured version   Visualization version   GIF version

Theorem tglngne 26911
Description: It takes two different points to form a line. (Contributed by Thierry Arnoux, 6-Aug-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tglngne.1 (𝜑𝑍 ∈ (𝑋𝐿𝑌))
Assertion
Ref Expression
tglngne (𝜑𝑋𝑌)

Proof of Theorem tglngne
StepHypRef Expression
1 tglngne.1 . . . . . 6 (𝜑𝑍 ∈ (𝑋𝐿𝑌))
2 df-ov 7278 . . . . . 6 (𝑋𝐿𝑌) = (𝐿‘⟨𝑋, 𝑌⟩)
31, 2eleqtrdi 2849 . . . . 5 (𝜑𝑍 ∈ (𝐿‘⟨𝑋, 𝑌⟩))
4 elfvdm 6806 . . . . 5 (𝑍 ∈ (𝐿‘⟨𝑋, 𝑌⟩) → ⟨𝑋, 𝑌⟩ ∈ dom 𝐿)
53, 4syl 17 . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom 𝐿)
6 tglngval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
7 tglngval.p . . . . . 6 𝑃 = (Base‘𝐺)
8 tglngval.l . . . . . 6 𝐿 = (LineG‘𝐺)
9 tglngval.i . . . . . 6 𝐼 = (Itv‘𝐺)
107, 8, 9tglnfn 26908 . . . . 5 (𝐺 ∈ TarskiG → 𝐿 Fn ((𝑃 × 𝑃) ∖ I ))
11 fndm 6536 . . . . 5 (𝐿 Fn ((𝑃 × 𝑃) ∖ I ) → dom 𝐿 = ((𝑃 × 𝑃) ∖ I ))
126, 10, 113syl 18 . . . 4 (𝜑 → dom 𝐿 = ((𝑃 × 𝑃) ∖ I ))
135, 12eleqtrd 2841 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((𝑃 × 𝑃) ∖ I ))
1413eldifbd 3900 . 2 (𝜑 → ¬ ⟨𝑋, 𝑌⟩ ∈ I )
15 df-br 5075 . . . 4 (𝑋 I 𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ I )
16 tglngval.y . . . . 5 (𝜑𝑌𝑃)
17 ideqg 5760 . . . . 5 (𝑌𝑃 → (𝑋 I 𝑌𝑋 = 𝑌))
1816, 17syl 17 . . . 4 (𝜑 → (𝑋 I 𝑌𝑋 = 𝑌))
1915, 18bitr3id 285 . . 3 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ I ↔ 𝑋 = 𝑌))
2019necon3bbid 2981 . 2 (𝜑 → (¬ ⟨𝑋, 𝑌⟩ ∈ I ↔ 𝑋𝑌))
2114, 20mpbid 231 1 (𝜑𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1539  wcel 2106  wne 2943  cdif 3884  cop 4567   class class class wbr 5074   I cid 5488   × cxp 5587  dom cdm 5589   Fn wfn 6428  cfv 6433  (class class class)co 7275  Basecbs 16912  TarskiGcstrkg 26788  Itvcitv 26794  LineGclng 26795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-trkg 26814
This theorem is referenced by:  lnhl  26976  tglnne  26989  tglineneq  27005  tglineinteq  27006  ncolncol  27007  coltr  27008  coltr3  27009  perprag  27087
  Copyright terms: Public domain W3C validator