Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tglngne | Structured version Visualization version GIF version |
Description: It takes two different points to form a line. (Contributed by Thierry Arnoux, 6-Aug-2019.) |
Ref | Expression |
---|---|
tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tglngne.1 | ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
Ref | Expression |
---|---|
tglngne | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglngne.1 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) | |
2 | df-ov 7258 | . . . . . 6 ⊢ (𝑋𝐿𝑌) = (𝐿‘〈𝑋, 𝑌〉) | |
3 | 1, 2 | eleqtrdi 2849 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ (𝐿‘〈𝑋, 𝑌〉)) |
4 | elfvdm 6788 | . . . . 5 ⊢ (𝑍 ∈ (𝐿‘〈𝑋, 𝑌〉) → 〈𝑋, 𝑌〉 ∈ dom 𝐿) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom 𝐿) |
6 | tglngval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | tglngval.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
8 | tglngval.l | . . . . . 6 ⊢ 𝐿 = (LineG‘𝐺) | |
9 | tglngval.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
10 | 7, 8, 9 | tglnfn 26812 | . . . . 5 ⊢ (𝐺 ∈ TarskiG → 𝐿 Fn ((𝑃 × 𝑃) ∖ I )) |
11 | fndm 6520 | . . . . 5 ⊢ (𝐿 Fn ((𝑃 × 𝑃) ∖ I ) → dom 𝐿 = ((𝑃 × 𝑃) ∖ I )) | |
12 | 6, 10, 11 | 3syl 18 | . . . 4 ⊢ (𝜑 → dom 𝐿 = ((𝑃 × 𝑃) ∖ I )) |
13 | 5, 12 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ ((𝑃 × 𝑃) ∖ I )) |
14 | 13 | eldifbd 3896 | . 2 ⊢ (𝜑 → ¬ 〈𝑋, 𝑌〉 ∈ I ) |
15 | df-br 5071 | . . . 4 ⊢ (𝑋 I 𝑌 ↔ 〈𝑋, 𝑌〉 ∈ I ) | |
16 | tglngval.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
17 | ideqg 5749 | . . . . 5 ⊢ (𝑌 ∈ 𝑃 → (𝑋 I 𝑌 ↔ 𝑋 = 𝑌)) | |
18 | 16, 17 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑋 I 𝑌 ↔ 𝑋 = 𝑌)) |
19 | 15, 18 | bitr3id 284 | . . 3 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ I ↔ 𝑋 = 𝑌)) |
20 | 19 | necon3bbid 2980 | . 2 ⊢ (𝜑 → (¬ 〈𝑋, 𝑌〉 ∈ I ↔ 𝑋 ≠ 𝑌)) |
21 | 14, 20 | mpbid 231 | 1 ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 〈cop 4564 class class class wbr 5070 I cid 5479 × cxp 5578 dom cdm 5580 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 TarskiGcstrkg 26693 Itvcitv 26699 LineGclng 26700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-trkg 26718 |
This theorem is referenced by: lnhl 26880 tglnne 26893 tglineneq 26909 tglineinteq 26910 ncolncol 26911 coltr 26912 coltr3 26913 perprag 26991 |
Copyright terms: Public domain | W3C validator |