![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglngne | Structured version Visualization version GIF version |
Description: It takes two different points to form a line. (Contributed by Thierry Arnoux, 6-Aug-2019.) |
Ref | Expression |
---|---|
tglngval.p | β’ π = (BaseβπΊ) |
tglngval.l | β’ πΏ = (LineGβπΊ) |
tglngval.i | β’ πΌ = (ItvβπΊ) |
tglngval.g | β’ (π β πΊ β TarskiG) |
tglngval.x | β’ (π β π β π) |
tglngval.y | β’ (π β π β π) |
tglngne.1 | β’ (π β π β (ππΏπ)) |
Ref | Expression |
---|---|
tglngne | β’ (π β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglngne.1 | . . . . . 6 β’ (π β π β (ππΏπ)) | |
2 | df-ov 7415 | . . . . . 6 β’ (ππΏπ) = (πΏββ¨π, πβ©) | |
3 | 1, 2 | eleqtrdi 2842 | . . . . 5 β’ (π β π β (πΏββ¨π, πβ©)) |
4 | elfvdm 6928 | . . . . 5 β’ (π β (πΏββ¨π, πβ©) β β¨π, πβ© β dom πΏ) | |
5 | 3, 4 | syl 17 | . . . 4 β’ (π β β¨π, πβ© β dom πΏ) |
6 | tglngval.g | . . . . 5 β’ (π β πΊ β TarskiG) | |
7 | tglngval.p | . . . . . 6 β’ π = (BaseβπΊ) | |
8 | tglngval.l | . . . . . 6 β’ πΏ = (LineGβπΊ) | |
9 | tglngval.i | . . . . . 6 β’ πΌ = (ItvβπΊ) | |
10 | 7, 8, 9 | tglnfn 28066 | . . . . 5 β’ (πΊ β TarskiG β πΏ Fn ((π Γ π) β I )) |
11 | fndm 6652 | . . . . 5 β’ (πΏ Fn ((π Γ π) β I ) β dom πΏ = ((π Γ π) β I )) | |
12 | 6, 10, 11 | 3syl 18 | . . . 4 β’ (π β dom πΏ = ((π Γ π) β I )) |
13 | 5, 12 | eleqtrd 2834 | . . 3 β’ (π β β¨π, πβ© β ((π Γ π) β I )) |
14 | 13 | eldifbd 3961 | . 2 β’ (π β Β¬ β¨π, πβ© β I ) |
15 | df-br 5149 | . . . 4 β’ (π I π β β¨π, πβ© β I ) | |
16 | tglngval.y | . . . . 5 β’ (π β π β π) | |
17 | ideqg 5851 | . . . . 5 β’ (π β π β (π I π β π = π)) | |
18 | 16, 17 | syl 17 | . . . 4 β’ (π β (π I π β π = π)) |
19 | 15, 18 | bitr3id 285 | . . 3 β’ (π β (β¨π, πβ© β I β π = π)) |
20 | 19 | necon3bbid 2977 | . 2 β’ (π β (Β¬ β¨π, πβ© β I β π β π)) |
21 | 14, 20 | mpbid 231 | 1 β’ (π β π β π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 = wceq 1540 β wcel 2105 β wne 2939 β cdif 3945 β¨cop 4634 class class class wbr 5148 I cid 5573 Γ cxp 5674 dom cdm 5676 Fn wfn 6538 βcfv 6543 (class class class)co 7412 Basecbs 17149 TarskiGcstrkg 27946 Itvcitv 27952 LineGclng 27953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7978 df-2nd 7979 df-trkg 27972 |
This theorem is referenced by: lnhl 28134 tglnne 28147 tglineneq 28163 tglineinteq 28164 ncolncol 28165 coltr 28166 coltr3 28167 perprag 28245 |
Copyright terms: Public domain | W3C validator |