MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglngne Structured version   Visualization version   GIF version

Theorem tglngne 28576
Description: It takes two different points to form a line. (Contributed by Thierry Arnoux, 6-Aug-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tglngne.1 (𝜑𝑍 ∈ (𝑋𝐿𝑌))
Assertion
Ref Expression
tglngne (𝜑𝑋𝑌)

Proof of Theorem tglngne
StepHypRef Expression
1 tglngne.1 . . . . . 6 (𝜑𝑍 ∈ (𝑋𝐿𝑌))
2 df-ov 7451 . . . . . 6 (𝑋𝐿𝑌) = (𝐿‘⟨𝑋, 𝑌⟩)
31, 2eleqtrdi 2854 . . . . 5 (𝜑𝑍 ∈ (𝐿‘⟨𝑋, 𝑌⟩))
4 elfvdm 6957 . . . . 5 (𝑍 ∈ (𝐿‘⟨𝑋, 𝑌⟩) → ⟨𝑋, 𝑌⟩ ∈ dom 𝐿)
53, 4syl 17 . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom 𝐿)
6 tglngval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
7 tglngval.p . . . . . 6 𝑃 = (Base‘𝐺)
8 tglngval.l . . . . . 6 𝐿 = (LineG‘𝐺)
9 tglngval.i . . . . . 6 𝐼 = (Itv‘𝐺)
107, 8, 9tglnfn 28573 . . . . 5 (𝐺 ∈ TarskiG → 𝐿 Fn ((𝑃 × 𝑃) ∖ I ))
11 fndm 6682 . . . . 5 (𝐿 Fn ((𝑃 × 𝑃) ∖ I ) → dom 𝐿 = ((𝑃 × 𝑃) ∖ I ))
126, 10, 113syl 18 . . . 4 (𝜑 → dom 𝐿 = ((𝑃 × 𝑃) ∖ I ))
135, 12eleqtrd 2846 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((𝑃 × 𝑃) ∖ I ))
1413eldifbd 3989 . 2 (𝜑 → ¬ ⟨𝑋, 𝑌⟩ ∈ I )
15 df-br 5167 . . . 4 (𝑋 I 𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ I )
16 tglngval.y . . . . 5 (𝜑𝑌𝑃)
17 ideqg 5876 . . . . 5 (𝑌𝑃 → (𝑋 I 𝑌𝑋 = 𝑌))
1816, 17syl 17 . . . 4 (𝜑 → (𝑋 I 𝑌𝑋 = 𝑌))
1915, 18bitr3id 285 . . 3 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ I ↔ 𝑋 = 𝑌))
2019necon3bbid 2984 . 2 (𝜑 → (¬ ⟨𝑋, 𝑌⟩ ∈ I ↔ 𝑋𝑌))
2114, 20mpbid 232 1 (𝜑𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1537  wcel 2108  wne 2946  cdif 3973  cop 4654   class class class wbr 5166   I cid 5592   × cxp 5698  dom cdm 5700   Fn wfn 6568  cfv 6573  (class class class)co 7448  Basecbs 17258  TarskiGcstrkg 28453  Itvcitv 28459  LineGclng 28460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-trkg 28479
This theorem is referenced by:  lnhl  28641  tglnne  28654  tglineneq  28670  tglineinteq  28671  ncolncol  28672  coltr  28673  coltr3  28674  perprag  28752
  Copyright terms: Public domain W3C validator