MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglngne Structured version   Visualization version   GIF version

Theorem tglngne 28495
Description: It takes two different points to form a line. (Contributed by Thierry Arnoux, 6-Aug-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tglngne.1 (𝜑𝑍 ∈ (𝑋𝐿𝑌))
Assertion
Ref Expression
tglngne (𝜑𝑋𝑌)

Proof of Theorem tglngne
StepHypRef Expression
1 tglngne.1 . . . . . 6 (𝜑𝑍 ∈ (𝑋𝐿𝑌))
2 df-ov 7352 . . . . . 6 (𝑋𝐿𝑌) = (𝐿‘⟨𝑋, 𝑌⟩)
31, 2eleqtrdi 2838 . . . . 5 (𝜑𝑍 ∈ (𝐿‘⟨𝑋, 𝑌⟩))
4 elfvdm 6857 . . . . 5 (𝑍 ∈ (𝐿‘⟨𝑋, 𝑌⟩) → ⟨𝑋, 𝑌⟩ ∈ dom 𝐿)
53, 4syl 17 . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom 𝐿)
6 tglngval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
7 tglngval.p . . . . . 6 𝑃 = (Base‘𝐺)
8 tglngval.l . . . . . 6 𝐿 = (LineG‘𝐺)
9 tglngval.i . . . . . 6 𝐼 = (Itv‘𝐺)
107, 8, 9tglnfn 28492 . . . . 5 (𝐺 ∈ TarskiG → 𝐿 Fn ((𝑃 × 𝑃) ∖ I ))
11 fndm 6585 . . . . 5 (𝐿 Fn ((𝑃 × 𝑃) ∖ I ) → dom 𝐿 = ((𝑃 × 𝑃) ∖ I ))
126, 10, 113syl 18 . . . 4 (𝜑 → dom 𝐿 = ((𝑃 × 𝑃) ∖ I ))
135, 12eleqtrd 2830 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((𝑃 × 𝑃) ∖ I ))
1413eldifbd 3916 . 2 (𝜑 → ¬ ⟨𝑋, 𝑌⟩ ∈ I )
15 df-br 5093 . . . 4 (𝑋 I 𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ I )
16 tglngval.y . . . . 5 (𝜑𝑌𝑃)
17 ideqg 5794 . . . . 5 (𝑌𝑃 → (𝑋 I 𝑌𝑋 = 𝑌))
1816, 17syl 17 . . . 4 (𝜑 → (𝑋 I 𝑌𝑋 = 𝑌))
1915, 18bitr3id 285 . . 3 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ I ↔ 𝑋 = 𝑌))
2019necon3bbid 2962 . 2 (𝜑 → (¬ ⟨𝑋, 𝑌⟩ ∈ I ↔ 𝑋𝑌))
2114, 20mpbid 232 1 (𝜑𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2925  cdif 3900  cop 4583   class class class wbr 5092   I cid 5513   × cxp 5617  dom cdm 5619   Fn wfn 6477  cfv 6482  (class class class)co 7349  Basecbs 17120  TarskiGcstrkg 28372  Itvcitv 28378  LineGclng 28379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-trkg 28398
This theorem is referenced by:  lnhl  28560  tglnne  28573  tglineneq  28589  tglineinteq  28590  ncolncol  28591  coltr  28592  coltr3  28593  perprag  28671
  Copyright terms: Public domain W3C validator