![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglngne | Structured version Visualization version GIF version |
Description: It takes two different points to form a line. (Contributed by Thierry Arnoux, 6-Aug-2019.) |
Ref | Expression |
---|---|
tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tglngne.1 | ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
Ref | Expression |
---|---|
tglngne | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglngne.1 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) | |
2 | df-ov 7022 | . . . . . 6 ⊢ (𝑋𝐿𝑌) = (𝐿‘〈𝑋, 𝑌〉) | |
3 | 1, 2 | syl6eleq 2892 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ (𝐿‘〈𝑋, 𝑌〉)) |
4 | elfvdm 6573 | . . . . 5 ⊢ (𝑍 ∈ (𝐿‘〈𝑋, 𝑌〉) → 〈𝑋, 𝑌〉 ∈ dom 𝐿) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom 𝐿) |
6 | tglngval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | tglngval.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
8 | tglngval.l | . . . . . 6 ⊢ 𝐿 = (LineG‘𝐺) | |
9 | tglngval.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
10 | 7, 8, 9 | tglnfn 26015 | . . . . 5 ⊢ (𝐺 ∈ TarskiG → 𝐿 Fn ((𝑃 × 𝑃) ∖ I )) |
11 | fndm 6328 | . . . . 5 ⊢ (𝐿 Fn ((𝑃 × 𝑃) ∖ I ) → dom 𝐿 = ((𝑃 × 𝑃) ∖ I )) | |
12 | 6, 10, 11 | 3syl 18 | . . . 4 ⊢ (𝜑 → dom 𝐿 = ((𝑃 × 𝑃) ∖ I )) |
13 | 5, 12 | eleqtrd 2884 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ ((𝑃 × 𝑃) ∖ I )) |
14 | 13 | eldifbd 3874 | . 2 ⊢ (𝜑 → ¬ 〈𝑋, 𝑌〉 ∈ I ) |
15 | df-br 4965 | . . . 4 ⊢ (𝑋 I 𝑌 ↔ 〈𝑋, 𝑌〉 ∈ I ) | |
16 | tglngval.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
17 | ideqg 5611 | . . . . 5 ⊢ (𝑌 ∈ 𝑃 → (𝑋 I 𝑌 ↔ 𝑋 = 𝑌)) | |
18 | 16, 17 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑋 I 𝑌 ↔ 𝑋 = 𝑌)) |
19 | 15, 18 | syl5bbr 286 | . . 3 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ I ↔ 𝑋 = 𝑌)) |
20 | 19 | necon3bbid 3020 | . 2 ⊢ (𝜑 → (¬ 〈𝑋, 𝑌〉 ∈ I ↔ 𝑋 ≠ 𝑌)) |
21 | 14, 20 | mpbid 233 | 1 ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 = wceq 1522 ∈ wcel 2080 ≠ wne 2983 ∖ cdif 3858 〈cop 4480 class class class wbr 4964 I cid 5350 × cxp 5444 dom cdm 5446 Fn wfn 6223 ‘cfv 6228 (class class class)co 7019 Basecbs 16312 TarskiGcstrkg 25898 Itvcitv 25904 LineGclng 25905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-ral 3109 df-rex 3110 df-rab 3113 df-v 3438 df-sbc 3708 df-csb 3814 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-nul 4214 df-if 4384 df-sn 4475 df-pr 4477 df-op 4481 df-uni 4748 df-iun 4829 df-br 4965 df-opab 5027 df-mpt 5044 df-id 5351 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-iota 6192 df-fun 6230 df-fn 6231 df-f 6232 df-fv 6236 df-ov 7022 df-oprab 7023 df-mpo 7024 df-1st 7548 df-2nd 7549 df-trkg 25921 |
This theorem is referenced by: lnhl 26083 tglnne 26096 tglineneq 26112 tglineinteq 26113 ncolncol 26114 coltr 26115 coltr3 26116 perprag 26194 |
Copyright terms: Public domain | W3C validator |