| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tglngne | Structured version Visualization version GIF version | ||
| Description: It takes two different points to form a line. (Contributed by Thierry Arnoux, 6-Aug-2019.) |
| Ref | Expression |
|---|---|
| tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| tglngne.1 | ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
| Ref | Expression |
|---|---|
| tglngne | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglngne.1 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) | |
| 2 | df-ov 7352 | . . . . . 6 ⊢ (𝑋𝐿𝑌) = (𝐿‘〈𝑋, 𝑌〉) | |
| 3 | 1, 2 | eleqtrdi 2838 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ (𝐿‘〈𝑋, 𝑌〉)) |
| 4 | elfvdm 6857 | . . . . 5 ⊢ (𝑍 ∈ (𝐿‘〈𝑋, 𝑌〉) → 〈𝑋, 𝑌〉 ∈ dom 𝐿) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom 𝐿) |
| 6 | tglngval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | tglngval.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
| 8 | tglngval.l | . . . . . 6 ⊢ 𝐿 = (LineG‘𝐺) | |
| 9 | tglngval.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
| 10 | 7, 8, 9 | tglnfn 28492 | . . . . 5 ⊢ (𝐺 ∈ TarskiG → 𝐿 Fn ((𝑃 × 𝑃) ∖ I )) |
| 11 | fndm 6585 | . . . . 5 ⊢ (𝐿 Fn ((𝑃 × 𝑃) ∖ I ) → dom 𝐿 = ((𝑃 × 𝑃) ∖ I )) | |
| 12 | 6, 10, 11 | 3syl 18 | . . . 4 ⊢ (𝜑 → dom 𝐿 = ((𝑃 × 𝑃) ∖ I )) |
| 13 | 5, 12 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ ((𝑃 × 𝑃) ∖ I )) |
| 14 | 13 | eldifbd 3916 | . 2 ⊢ (𝜑 → ¬ 〈𝑋, 𝑌〉 ∈ I ) |
| 15 | df-br 5093 | . . . 4 ⊢ (𝑋 I 𝑌 ↔ 〈𝑋, 𝑌〉 ∈ I ) | |
| 16 | tglngval.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 17 | ideqg 5794 | . . . . 5 ⊢ (𝑌 ∈ 𝑃 → (𝑋 I 𝑌 ↔ 𝑋 = 𝑌)) | |
| 18 | 16, 17 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑋 I 𝑌 ↔ 𝑋 = 𝑌)) |
| 19 | 15, 18 | bitr3id 285 | . . 3 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ I ↔ 𝑋 = 𝑌)) |
| 20 | 19 | necon3bbid 2962 | . 2 ⊢ (𝜑 → (¬ 〈𝑋, 𝑌〉 ∈ I ↔ 𝑋 ≠ 𝑌)) |
| 21 | 14, 20 | mpbid 232 | 1 ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3900 〈cop 4583 class class class wbr 5092 I cid 5513 × cxp 5617 dom cdm 5619 Fn wfn 6477 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 TarskiGcstrkg 28372 Itvcitv 28378 LineGclng 28379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-trkg 28398 |
| This theorem is referenced by: lnhl 28560 tglnne 28573 tglineneq 28589 tglineinteq 28590 ncolncol 28591 coltr 28592 coltr3 28593 perprag 28671 |
| Copyright terms: Public domain | W3C validator |