| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tglngne | Structured version Visualization version GIF version | ||
| Description: It takes two different points to form a line. (Contributed by Thierry Arnoux, 6-Aug-2019.) |
| Ref | Expression |
|---|---|
| tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| tglngne.1 | ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
| Ref | Expression |
|---|---|
| tglngne | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglngne.1 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) | |
| 2 | df-ov 7393 | . . . . . 6 ⊢ (𝑋𝐿𝑌) = (𝐿‘〈𝑋, 𝑌〉) | |
| 3 | 1, 2 | eleqtrdi 2839 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ (𝐿‘〈𝑋, 𝑌〉)) |
| 4 | elfvdm 6898 | . . . . 5 ⊢ (𝑍 ∈ (𝐿‘〈𝑋, 𝑌〉) → 〈𝑋, 𝑌〉 ∈ dom 𝐿) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom 𝐿) |
| 6 | tglngval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | tglngval.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
| 8 | tglngval.l | . . . . . 6 ⊢ 𝐿 = (LineG‘𝐺) | |
| 9 | tglngval.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
| 10 | 7, 8, 9 | tglnfn 28481 | . . . . 5 ⊢ (𝐺 ∈ TarskiG → 𝐿 Fn ((𝑃 × 𝑃) ∖ I )) |
| 11 | fndm 6624 | . . . . 5 ⊢ (𝐿 Fn ((𝑃 × 𝑃) ∖ I ) → dom 𝐿 = ((𝑃 × 𝑃) ∖ I )) | |
| 12 | 6, 10, 11 | 3syl 18 | . . . 4 ⊢ (𝜑 → dom 𝐿 = ((𝑃 × 𝑃) ∖ I )) |
| 13 | 5, 12 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ ((𝑃 × 𝑃) ∖ I )) |
| 14 | 13 | eldifbd 3930 | . 2 ⊢ (𝜑 → ¬ 〈𝑋, 𝑌〉 ∈ I ) |
| 15 | df-br 5111 | . . . 4 ⊢ (𝑋 I 𝑌 ↔ 〈𝑋, 𝑌〉 ∈ I ) | |
| 16 | tglngval.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 17 | ideqg 5818 | . . . . 5 ⊢ (𝑌 ∈ 𝑃 → (𝑋 I 𝑌 ↔ 𝑋 = 𝑌)) | |
| 18 | 16, 17 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑋 I 𝑌 ↔ 𝑋 = 𝑌)) |
| 19 | 15, 18 | bitr3id 285 | . . 3 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ I ↔ 𝑋 = 𝑌)) |
| 20 | 19 | necon3bbid 2963 | . 2 ⊢ (𝜑 → (¬ 〈𝑋, 𝑌〉 ∈ I ↔ 𝑋 ≠ 𝑌)) |
| 21 | 14, 20 | mpbid 232 | 1 ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 〈cop 4598 class class class wbr 5110 I cid 5535 × cxp 5639 dom cdm 5641 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 TarskiGcstrkg 28361 Itvcitv 28367 LineGclng 28368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-trkg 28387 |
| This theorem is referenced by: lnhl 28549 tglnne 28562 tglineneq 28578 tglineinteq 28579 ncolncol 28580 coltr 28581 coltr3 28582 perprag 28660 |
| Copyright terms: Public domain | W3C validator |