MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgelrnln Structured version   Visualization version   GIF version

Theorem tgelrnln 26416
Description: The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tgelrnln.x (𝜑𝑋𝐵)
tgelrnln.y (𝜑𝑌𝐵)
tgelrnln.d (𝜑𝑋𝑌)
Assertion
Ref Expression
tgelrnln (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿)

Proof of Theorem tgelrnln
StepHypRef Expression
1 df-ov 7159 . 2 (𝑋𝐿𝑌) = (𝐿‘⟨𝑋, 𝑌⟩)
2 tglineelsb2.g . . . 4 (𝜑𝐺 ∈ TarskiG)
3 tglineelsb2.p . . . . 5 𝐵 = (Base‘𝐺)
4 tglineelsb2.l . . . . 5 𝐿 = (LineG‘𝐺)
5 tglineelsb2.i . . . . 5 𝐼 = (Itv‘𝐺)
63, 4, 5tglnfn 26333 . . . 4 (𝐺 ∈ TarskiG → 𝐿 Fn ((𝐵 × 𝐵) ∖ I ))
72, 6syl 17 . . 3 (𝜑𝐿 Fn ((𝐵 × 𝐵) ∖ I ))
8 tgelrnln.x . . . . 5 (𝜑𝑋𝐵)
9 tgelrnln.y . . . . 5 (𝜑𝑌𝐵)
108, 9opelxpd 5593 . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
11 tgelrnln.d . . . . 5 (𝜑𝑋𝑌)
12 df-br 5067 . . . . . . . 8 (𝑋 I 𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ I )
13 ideqg 5722 . . . . . . . 8 (𝑌𝐵 → (𝑋 I 𝑌𝑋 = 𝑌))
1412, 13syl5bbr 287 . . . . . . 7 (𝑌𝐵 → (⟨𝑋, 𝑌⟩ ∈ I ↔ 𝑋 = 𝑌))
1514necon3bbid 3053 . . . . . 6 (𝑌𝐵 → (¬ ⟨𝑋, 𝑌⟩ ∈ I ↔ 𝑋𝑌))
1615biimpar 480 . . . . 5 ((𝑌𝐵𝑋𝑌) → ¬ ⟨𝑋, 𝑌⟩ ∈ I )
179, 11, 16syl2anc 586 . . . 4 (𝜑 → ¬ ⟨𝑋, 𝑌⟩ ∈ I )
1810, 17eldifd 3947 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((𝐵 × 𝐵) ∖ I ))
19 fnfvelrn 6848 . . 3 ((𝐿 Fn ((𝐵 × 𝐵) ∖ I ) ∧ ⟨𝑋, 𝑌⟩ ∈ ((𝐵 × 𝐵) ∖ I )) → (𝐿‘⟨𝑋, 𝑌⟩) ∈ ran 𝐿)
207, 18, 19syl2anc 586 . 2 (𝜑 → (𝐿‘⟨𝑋, 𝑌⟩) ∈ ran 𝐿)
211, 20eqeltrid 2917 1 (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2114  wne 3016  cdif 3933  cop 4573   class class class wbr 5066   I cid 5459   × cxp 5553  ran crn 5556   Fn wfn 6350  cfv 6355  (class class class)co 7156  Basecbs 16483  TarskiGcstrkg 26216  Itvcitv 26222  LineGclng 26223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-trkg 26239
This theorem is referenced by:  tghilberti1  26423  tglineinteq  26431  colline  26435  tglowdim2ln  26437  footexALT  26504  footexlem2  26506  foot  26508  perprag  26512  colperpexlem3  26518  mideulem2  26520  midex  26523  outpasch  26541  lnopp2hpgb  26549  colopp  26555  lmieu  26570  lmimid  26580  hypcgrlem1  26585  hypcgrlem2  26586  lnperpex  26589  trgcopy  26590  trgcopyeulem  26591  acopy  26619  acopyeu  26620  tgasa1  26644
  Copyright terms: Public domain W3C validator