| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgelrnln | Structured version Visualization version GIF version | ||
| Description: The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019.) |
| Ref | Expression |
|---|---|
| tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
| tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgelrnln.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| tgelrnln.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| tgelrnln.d | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| Ref | Expression |
|---|---|
| tgelrnln | ⊢ (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7393 | . 2 ⊢ (𝑋𝐿𝑌) = (𝐿‘〈𝑋, 𝑌〉) | |
| 2 | tglineelsb2.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 3 | tglineelsb2.p | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | tglineelsb2.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | tglineelsb2.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
| 6 | 3, 4, 5 | tglnfn 28481 | . . . 4 ⊢ (𝐺 ∈ TarskiG → 𝐿 Fn ((𝐵 × 𝐵) ∖ I )) |
| 7 | 2, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝐿 Fn ((𝐵 × 𝐵) ∖ I )) |
| 8 | tgelrnln.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | tgelrnln.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 10 | 8, 9 | opelxpd 5680 | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 11 | tgelrnln.d | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
| 12 | df-br 5111 | . . . . . . . 8 ⊢ (𝑋 I 𝑌 ↔ 〈𝑋, 𝑌〉 ∈ I ) | |
| 13 | ideqg 5818 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝐵 → (𝑋 I 𝑌 ↔ 𝑋 = 𝑌)) | |
| 14 | 12, 13 | bitr3id 285 | . . . . . . 7 ⊢ (𝑌 ∈ 𝐵 → (〈𝑋, 𝑌〉 ∈ I ↔ 𝑋 = 𝑌)) |
| 15 | 14 | necon3bbid 2963 | . . . . . 6 ⊢ (𝑌 ∈ 𝐵 → (¬ 〈𝑋, 𝑌〉 ∈ I ↔ 𝑋 ≠ 𝑌)) |
| 16 | 15 | biimpar 477 | . . . . 5 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → ¬ 〈𝑋, 𝑌〉 ∈ I ) |
| 17 | 9, 11, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ¬ 〈𝑋, 𝑌〉 ∈ I ) |
| 18 | 10, 17 | eldifd 3928 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ ((𝐵 × 𝐵) ∖ I )) |
| 19 | fnfvelrn 7055 | . . 3 ⊢ ((𝐿 Fn ((𝐵 × 𝐵) ∖ I ) ∧ 〈𝑋, 𝑌〉 ∈ ((𝐵 × 𝐵) ∖ I )) → (𝐿‘〈𝑋, 𝑌〉) ∈ ran 𝐿) | |
| 20 | 7, 18, 19 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐿‘〈𝑋, 𝑌〉) ∈ ran 𝐿) |
| 21 | 1, 20 | eqeltrid 2833 | 1 ⊢ (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 〈cop 4598 class class class wbr 5110 I cid 5535 × cxp 5639 ran crn 5642 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 TarskiGcstrkg 28361 Itvcitv 28367 LineGclng 28368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-trkg 28387 |
| This theorem is referenced by: tghilberti1 28571 tglineinteq 28579 colline 28583 tglowdim2ln 28585 footexALT 28652 footexlem2 28654 foot 28656 perprag 28660 colperpexlem3 28666 mideulem2 28668 midex 28671 outpasch 28689 lnopp2hpgb 28697 colopp 28703 lmieu 28718 lmimid 28728 hypcgrlem1 28733 hypcgrlem2 28734 lnperpex 28737 trgcopy 28738 trgcopyeulem 28739 acopy 28767 acopyeu 28768 tgasa1 28792 |
| Copyright terms: Public domain | W3C validator |