| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgelrnln | Structured version Visualization version GIF version | ||
| Description: The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019.) |
| Ref | Expression |
|---|---|
| tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
| tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgelrnln.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| tgelrnln.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| tgelrnln.d | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| Ref | Expression |
|---|---|
| tgelrnln | ⊢ (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7413 | . 2 ⊢ (𝑋𝐿𝑌) = (𝐿‘〈𝑋, 𝑌〉) | |
| 2 | tglineelsb2.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 3 | tglineelsb2.p | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | tglineelsb2.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | tglineelsb2.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
| 6 | 3, 4, 5 | tglnfn 28531 | . . . 4 ⊢ (𝐺 ∈ TarskiG → 𝐿 Fn ((𝐵 × 𝐵) ∖ I )) |
| 7 | 2, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝐿 Fn ((𝐵 × 𝐵) ∖ I )) |
| 8 | tgelrnln.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | tgelrnln.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 10 | 8, 9 | opelxpd 5698 | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 11 | tgelrnln.d | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
| 12 | df-br 5125 | . . . . . . . 8 ⊢ (𝑋 I 𝑌 ↔ 〈𝑋, 𝑌〉 ∈ I ) | |
| 13 | ideqg 5836 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝐵 → (𝑋 I 𝑌 ↔ 𝑋 = 𝑌)) | |
| 14 | 12, 13 | bitr3id 285 | . . . . . . 7 ⊢ (𝑌 ∈ 𝐵 → (〈𝑋, 𝑌〉 ∈ I ↔ 𝑋 = 𝑌)) |
| 15 | 14 | necon3bbid 2970 | . . . . . 6 ⊢ (𝑌 ∈ 𝐵 → (¬ 〈𝑋, 𝑌〉 ∈ I ↔ 𝑋 ≠ 𝑌)) |
| 16 | 15 | biimpar 477 | . . . . 5 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → ¬ 〈𝑋, 𝑌〉 ∈ I ) |
| 17 | 9, 11, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ¬ 〈𝑋, 𝑌〉 ∈ I ) |
| 18 | 10, 17 | eldifd 3942 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ ((𝐵 × 𝐵) ∖ I )) |
| 19 | fnfvelrn 7075 | . . 3 ⊢ ((𝐿 Fn ((𝐵 × 𝐵) ∖ I ) ∧ 〈𝑋, 𝑌〉 ∈ ((𝐵 × 𝐵) ∖ I )) → (𝐿‘〈𝑋, 𝑌〉) ∈ ran 𝐿) | |
| 20 | 7, 18, 19 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐿‘〈𝑋, 𝑌〉) ∈ ran 𝐿) |
| 21 | 1, 20 | eqeltrid 2839 | 1 ⊢ (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∖ cdif 3928 〈cop 4612 class class class wbr 5124 I cid 5552 × cxp 5657 ran crn 5660 Fn wfn 6531 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 TarskiGcstrkg 28411 Itvcitv 28417 LineGclng 28418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-trkg 28437 |
| This theorem is referenced by: tghilberti1 28621 tglineinteq 28629 colline 28633 tglowdim2ln 28635 footexALT 28702 footexlem2 28704 foot 28706 perprag 28710 colperpexlem3 28716 mideulem2 28718 midex 28721 outpasch 28739 lnopp2hpgb 28747 colopp 28753 lmieu 28768 lmimid 28778 hypcgrlem1 28783 hypcgrlem2 28784 lnperpex 28787 trgcopy 28788 trgcopyeulem 28789 acopy 28817 acopyeu 28818 tgasa1 28842 |
| Copyright terms: Public domain | W3C validator |