![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgelrnln | Structured version Visualization version GIF version |
Description: The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgelrnln.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
tgelrnln.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
tgelrnln.d | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Ref | Expression |
---|---|
tgelrnln | ⊢ (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7360 | . 2 ⊢ (𝑋𝐿𝑌) = (𝐿‘〈𝑋, 𝑌〉) | |
2 | tglineelsb2.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
3 | tglineelsb2.p | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
4 | tglineelsb2.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | tglineelsb2.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | 3, 4, 5 | tglnfn 27489 | . . . 4 ⊢ (𝐺 ∈ TarskiG → 𝐿 Fn ((𝐵 × 𝐵) ∖ I )) |
7 | 2, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝐿 Fn ((𝐵 × 𝐵) ∖ I )) |
8 | tgelrnln.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | tgelrnln.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | 8, 9 | opelxpd 5671 | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
11 | tgelrnln.d | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
12 | df-br 5106 | . . . . . . . 8 ⊢ (𝑋 I 𝑌 ↔ 〈𝑋, 𝑌〉 ∈ I ) | |
13 | ideqg 5807 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝐵 → (𝑋 I 𝑌 ↔ 𝑋 = 𝑌)) | |
14 | 12, 13 | bitr3id 284 | . . . . . . 7 ⊢ (𝑌 ∈ 𝐵 → (〈𝑋, 𝑌〉 ∈ I ↔ 𝑋 = 𝑌)) |
15 | 14 | necon3bbid 2981 | . . . . . 6 ⊢ (𝑌 ∈ 𝐵 → (¬ 〈𝑋, 𝑌〉 ∈ I ↔ 𝑋 ≠ 𝑌)) |
16 | 15 | biimpar 478 | . . . . 5 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → ¬ 〈𝑋, 𝑌〉 ∈ I ) |
17 | 9, 11, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ¬ 〈𝑋, 𝑌〉 ∈ I ) |
18 | 10, 17 | eldifd 3921 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ ((𝐵 × 𝐵) ∖ I )) |
19 | fnfvelrn 7031 | . . 3 ⊢ ((𝐿 Fn ((𝐵 × 𝐵) ∖ I ) ∧ 〈𝑋, 𝑌〉 ∈ ((𝐵 × 𝐵) ∖ I )) → (𝐿‘〈𝑋, 𝑌〉) ∈ ran 𝐿) | |
20 | 7, 18, 19 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐿‘〈𝑋, 𝑌〉) ∈ ran 𝐿) |
21 | 1, 20 | eqeltrid 2842 | 1 ⊢ (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3907 〈cop 4592 class class class wbr 5105 I cid 5530 × cxp 5631 ran crn 5634 Fn wfn 6491 ‘cfv 6496 (class class class)co 7357 Basecbs 17083 TarskiGcstrkg 27369 Itvcitv 27375 LineGclng 27376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pr 5384 ax-un 7672 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-id 5531 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-fv 6504 df-ov 7360 df-oprab 7361 df-mpo 7362 df-1st 7921 df-2nd 7922 df-trkg 27395 |
This theorem is referenced by: tghilberti1 27579 tglineinteq 27587 colline 27591 tglowdim2ln 27593 footexALT 27660 footexlem2 27662 foot 27664 perprag 27668 colperpexlem3 27674 mideulem2 27676 midex 27679 outpasch 27697 lnopp2hpgb 27705 colopp 27711 lmieu 27726 lmimid 27736 hypcgrlem1 27741 hypcgrlem2 27742 lnperpex 27745 trgcopy 27746 trgcopyeulem 27747 acopy 27775 acopyeu 27776 tgasa1 27800 |
Copyright terms: Public domain | W3C validator |