| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgelrnln | Structured version Visualization version GIF version | ||
| Description: The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019.) |
| Ref | Expression |
|---|---|
| tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
| tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgelrnln.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| tgelrnln.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| tgelrnln.d | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| Ref | Expression |
|---|---|
| tgelrnln | ⊢ (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7352 | . 2 ⊢ (𝑋𝐿𝑌) = (𝐿‘〈𝑋, 𝑌〉) | |
| 2 | tglineelsb2.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 3 | tglineelsb2.p | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | tglineelsb2.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | tglineelsb2.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
| 6 | 3, 4, 5 | tglnfn 28492 | . . . 4 ⊢ (𝐺 ∈ TarskiG → 𝐿 Fn ((𝐵 × 𝐵) ∖ I )) |
| 7 | 2, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝐿 Fn ((𝐵 × 𝐵) ∖ I )) |
| 8 | tgelrnln.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | tgelrnln.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 10 | 8, 9 | opelxpd 5658 | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 11 | tgelrnln.d | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
| 12 | df-br 5093 | . . . . . . . 8 ⊢ (𝑋 I 𝑌 ↔ 〈𝑋, 𝑌〉 ∈ I ) | |
| 13 | ideqg 5794 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝐵 → (𝑋 I 𝑌 ↔ 𝑋 = 𝑌)) | |
| 14 | 12, 13 | bitr3id 285 | . . . . . . 7 ⊢ (𝑌 ∈ 𝐵 → (〈𝑋, 𝑌〉 ∈ I ↔ 𝑋 = 𝑌)) |
| 15 | 14 | necon3bbid 2962 | . . . . . 6 ⊢ (𝑌 ∈ 𝐵 → (¬ 〈𝑋, 𝑌〉 ∈ I ↔ 𝑋 ≠ 𝑌)) |
| 16 | 15 | biimpar 477 | . . . . 5 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → ¬ 〈𝑋, 𝑌〉 ∈ I ) |
| 17 | 9, 11, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ¬ 〈𝑋, 𝑌〉 ∈ I ) |
| 18 | 10, 17 | eldifd 3914 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ ((𝐵 × 𝐵) ∖ I )) |
| 19 | fnfvelrn 7014 | . . 3 ⊢ ((𝐿 Fn ((𝐵 × 𝐵) ∖ I ) ∧ 〈𝑋, 𝑌〉 ∈ ((𝐵 × 𝐵) ∖ I )) → (𝐿‘〈𝑋, 𝑌〉) ∈ ran 𝐿) | |
| 20 | 7, 18, 19 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐿‘〈𝑋, 𝑌〉) ∈ ran 𝐿) |
| 21 | 1, 20 | eqeltrid 2832 | 1 ⊢ (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3900 〈cop 4583 class class class wbr 5092 I cid 5513 × cxp 5617 ran crn 5620 Fn wfn 6477 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 TarskiGcstrkg 28372 Itvcitv 28378 LineGclng 28379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-trkg 28398 |
| This theorem is referenced by: tghilberti1 28582 tglineinteq 28590 colline 28594 tglowdim2ln 28596 footexALT 28663 footexlem2 28665 foot 28667 perprag 28671 colperpexlem3 28677 mideulem2 28679 midex 28682 outpasch 28700 lnopp2hpgb 28708 colopp 28714 lmieu 28729 lmimid 28739 hypcgrlem1 28744 hypcgrlem2 28745 lnperpex 28748 trgcopy 28749 trgcopyeulem 28750 acopy 28778 acopyeu 28779 tgasa1 28803 |
| Copyright terms: Public domain | W3C validator |