MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgelrnln Structured version   Visualization version   GIF version

Theorem tgelrnln 27572
Description: The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tgelrnln.x (𝜑𝑋𝐵)
tgelrnln.y (𝜑𝑌𝐵)
tgelrnln.d (𝜑𝑋𝑌)
Assertion
Ref Expression
tgelrnln (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿)

Proof of Theorem tgelrnln
StepHypRef Expression
1 df-ov 7360 . 2 (𝑋𝐿𝑌) = (𝐿‘⟨𝑋, 𝑌⟩)
2 tglineelsb2.g . . . 4 (𝜑𝐺 ∈ TarskiG)
3 tglineelsb2.p . . . . 5 𝐵 = (Base‘𝐺)
4 tglineelsb2.l . . . . 5 𝐿 = (LineG‘𝐺)
5 tglineelsb2.i . . . . 5 𝐼 = (Itv‘𝐺)
63, 4, 5tglnfn 27489 . . . 4 (𝐺 ∈ TarskiG → 𝐿 Fn ((𝐵 × 𝐵) ∖ I ))
72, 6syl 17 . . 3 (𝜑𝐿 Fn ((𝐵 × 𝐵) ∖ I ))
8 tgelrnln.x . . . . 5 (𝜑𝑋𝐵)
9 tgelrnln.y . . . . 5 (𝜑𝑌𝐵)
108, 9opelxpd 5671 . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
11 tgelrnln.d . . . . 5 (𝜑𝑋𝑌)
12 df-br 5106 . . . . . . . 8 (𝑋 I 𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ I )
13 ideqg 5807 . . . . . . . 8 (𝑌𝐵 → (𝑋 I 𝑌𝑋 = 𝑌))
1412, 13bitr3id 284 . . . . . . 7 (𝑌𝐵 → (⟨𝑋, 𝑌⟩ ∈ I ↔ 𝑋 = 𝑌))
1514necon3bbid 2981 . . . . . 6 (𝑌𝐵 → (¬ ⟨𝑋, 𝑌⟩ ∈ I ↔ 𝑋𝑌))
1615biimpar 478 . . . . 5 ((𝑌𝐵𝑋𝑌) → ¬ ⟨𝑋, 𝑌⟩ ∈ I )
179, 11, 16syl2anc 584 . . . 4 (𝜑 → ¬ ⟨𝑋, 𝑌⟩ ∈ I )
1810, 17eldifd 3921 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((𝐵 × 𝐵) ∖ I ))
19 fnfvelrn 7031 . . 3 ((𝐿 Fn ((𝐵 × 𝐵) ∖ I ) ∧ ⟨𝑋, 𝑌⟩ ∈ ((𝐵 × 𝐵) ∖ I )) → (𝐿‘⟨𝑋, 𝑌⟩) ∈ ran 𝐿)
207, 18, 19syl2anc 584 . 2 (𝜑 → (𝐿‘⟨𝑋, 𝑌⟩) ∈ ran 𝐿)
211, 20eqeltrid 2842 1 (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2106  wne 2943  cdif 3907  cop 4592   class class class wbr 5105   I cid 5530   × cxp 5631  ran crn 5634   Fn wfn 6491  cfv 6496  (class class class)co 7357  Basecbs 17083  TarskiGcstrkg 27369  Itvcitv 27375  LineGclng 27376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-trkg 27395
This theorem is referenced by:  tghilberti1  27579  tglineinteq  27587  colline  27591  tglowdim2ln  27593  footexALT  27660  footexlem2  27662  foot  27664  perprag  27668  colperpexlem3  27674  mideulem2  27676  midex  27679  outpasch  27697  lnopp2hpgb  27705  colopp  27711  lmieu  27726  lmimid  27736  hypcgrlem1  27741  hypcgrlem2  27742  lnperpex  27745  trgcopy  27746  trgcopyeulem  27747  acopy  27775  acopyeu  27776  tgasa1  27800
  Copyright terms: Public domain W3C validator