![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgelrnln | Structured version Visualization version GIF version |
Description: The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgelrnln.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
tgelrnln.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
tgelrnln.d | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Ref | Expression |
---|---|
tgelrnln | ⊢ (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7434 | . 2 ⊢ (𝑋𝐿𝑌) = (𝐿‘〈𝑋, 𝑌〉) | |
2 | tglineelsb2.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
3 | tglineelsb2.p | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
4 | tglineelsb2.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | tglineelsb2.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | 3, 4, 5 | tglnfn 28570 | . . . 4 ⊢ (𝐺 ∈ TarskiG → 𝐿 Fn ((𝐵 × 𝐵) ∖ I )) |
7 | 2, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝐿 Fn ((𝐵 × 𝐵) ∖ I )) |
8 | tgelrnln.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | tgelrnln.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | 8, 9 | opelxpd 5728 | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
11 | tgelrnln.d | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
12 | df-br 5149 | . . . . . . . 8 ⊢ (𝑋 I 𝑌 ↔ 〈𝑋, 𝑌〉 ∈ I ) | |
13 | ideqg 5865 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝐵 → (𝑋 I 𝑌 ↔ 𝑋 = 𝑌)) | |
14 | 12, 13 | bitr3id 285 | . . . . . . 7 ⊢ (𝑌 ∈ 𝐵 → (〈𝑋, 𝑌〉 ∈ I ↔ 𝑋 = 𝑌)) |
15 | 14 | necon3bbid 2976 | . . . . . 6 ⊢ (𝑌 ∈ 𝐵 → (¬ 〈𝑋, 𝑌〉 ∈ I ↔ 𝑋 ≠ 𝑌)) |
16 | 15 | biimpar 477 | . . . . 5 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → ¬ 〈𝑋, 𝑌〉 ∈ I ) |
17 | 9, 11, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ¬ 〈𝑋, 𝑌〉 ∈ I ) |
18 | 10, 17 | eldifd 3974 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ ((𝐵 × 𝐵) ∖ I )) |
19 | fnfvelrn 7100 | . . 3 ⊢ ((𝐿 Fn ((𝐵 × 𝐵) ∖ I ) ∧ 〈𝑋, 𝑌〉 ∈ ((𝐵 × 𝐵) ∖ I )) → (𝐿‘〈𝑋, 𝑌〉) ∈ ran 𝐿) | |
20 | 7, 18, 19 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐿‘〈𝑋, 𝑌〉) ∈ ran 𝐿) |
21 | 1, 20 | eqeltrid 2843 | 1 ⊢ (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∖ cdif 3960 〈cop 4637 class class class wbr 5148 I cid 5582 × cxp 5687 ran crn 5690 Fn wfn 6558 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 TarskiGcstrkg 28450 Itvcitv 28456 LineGclng 28457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-trkg 28476 |
This theorem is referenced by: tghilberti1 28660 tglineinteq 28668 colline 28672 tglowdim2ln 28674 footexALT 28741 footexlem2 28743 foot 28745 perprag 28749 colperpexlem3 28755 mideulem2 28757 midex 28760 outpasch 28778 lnopp2hpgb 28786 colopp 28792 lmieu 28807 lmimid 28817 hypcgrlem1 28822 hypcgrlem2 28823 lnperpex 28826 trgcopy 28827 trgcopyeulem 28828 acopy 28856 acopyeu 28857 tgasa1 28881 |
Copyright terms: Public domain | W3C validator |