![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgelrnln | Structured version Visualization version GIF version |
Description: The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | β’ π΅ = (BaseβπΊ) |
tglineelsb2.i | β’ πΌ = (ItvβπΊ) |
tglineelsb2.l | β’ πΏ = (LineGβπΊ) |
tglineelsb2.g | β’ (π β πΊ β TarskiG) |
tgelrnln.x | β’ (π β π β π΅) |
tgelrnln.y | β’ (π β π β π΅) |
tgelrnln.d | β’ (π β π β π) |
Ref | Expression |
---|---|
tgelrnln | β’ (π β (ππΏπ) β ran πΏ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7414 | . 2 β’ (ππΏπ) = (πΏββ¨π, πβ©) | |
2 | tglineelsb2.g | . . . 4 β’ (π β πΊ β TarskiG) | |
3 | tglineelsb2.p | . . . . 5 β’ π΅ = (BaseβπΊ) | |
4 | tglineelsb2.l | . . . . 5 β’ πΏ = (LineGβπΊ) | |
5 | tglineelsb2.i | . . . . 5 β’ πΌ = (ItvβπΊ) | |
6 | 3, 4, 5 | tglnfn 27836 | . . . 4 β’ (πΊ β TarskiG β πΏ Fn ((π΅ Γ π΅) β I )) |
7 | 2, 6 | syl 17 | . . 3 β’ (π β πΏ Fn ((π΅ Γ π΅) β I )) |
8 | tgelrnln.x | . . . . 5 β’ (π β π β π΅) | |
9 | tgelrnln.y | . . . . 5 β’ (π β π β π΅) | |
10 | 8, 9 | opelxpd 5715 | . . . 4 β’ (π β β¨π, πβ© β (π΅ Γ π΅)) |
11 | tgelrnln.d | . . . . 5 β’ (π β π β π) | |
12 | df-br 5149 | . . . . . . . 8 β’ (π I π β β¨π, πβ© β I ) | |
13 | ideqg 5851 | . . . . . . . 8 β’ (π β π΅ β (π I π β π = π)) | |
14 | 12, 13 | bitr3id 284 | . . . . . . 7 β’ (π β π΅ β (β¨π, πβ© β I β π = π)) |
15 | 14 | necon3bbid 2978 | . . . . . 6 β’ (π β π΅ β (Β¬ β¨π, πβ© β I β π β π)) |
16 | 15 | biimpar 478 | . . . . 5 β’ ((π β π΅ β§ π β π) β Β¬ β¨π, πβ© β I ) |
17 | 9, 11, 16 | syl2anc 584 | . . . 4 β’ (π β Β¬ β¨π, πβ© β I ) |
18 | 10, 17 | eldifd 3959 | . . 3 β’ (π β β¨π, πβ© β ((π΅ Γ π΅) β I )) |
19 | fnfvelrn 7082 | . . 3 β’ ((πΏ Fn ((π΅ Γ π΅) β I ) β§ β¨π, πβ© β ((π΅ Γ π΅) β I )) β (πΏββ¨π, πβ©) β ran πΏ) | |
20 | 7, 18, 19 | syl2anc 584 | . 2 β’ (π β (πΏββ¨π, πβ©) β ran πΏ) |
21 | 1, 20 | eqeltrid 2837 | 1 β’ (π β (ππΏπ) β ran πΏ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 = wceq 1541 β wcel 2106 β wne 2940 β cdif 3945 β¨cop 4634 class class class wbr 5148 I cid 5573 Γ cxp 5674 ran crn 5677 Fn wfn 6538 βcfv 6543 (class class class)co 7411 Basecbs 17146 TarskiGcstrkg 27716 Itvcitv 27722 LineGclng 27723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-trkg 27742 |
This theorem is referenced by: tghilberti1 27926 tglineinteq 27934 colline 27938 tglowdim2ln 27940 footexALT 28007 footexlem2 28009 foot 28011 perprag 28015 colperpexlem3 28021 mideulem2 28023 midex 28026 outpasch 28044 lnopp2hpgb 28052 colopp 28058 lmieu 28073 lmimid 28083 hypcgrlem1 28088 hypcgrlem2 28089 lnperpex 28092 trgcopy 28093 trgcopyeulem 28094 acopy 28122 acopyeu 28123 tgasa1 28147 |
Copyright terms: Public domain | W3C validator |