Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idrval Structured version   Visualization version   GIF version

Theorem idrval 35921
Description: The value of the identity element. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
idrval.1 𝑋 = ran 𝐺
idrval.2 𝑈 = (GId‘𝐺)
Assertion
Ref Expression
idrval (𝐺𝐴𝑈 = (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
Distinct variable groups:   𝑢,𝐺,𝑥   𝑢,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑢)   𝑈(𝑥,𝑢)

Proof of Theorem idrval
StepHypRef Expression
1 idrval.2 . 2 𝑈 = (GId‘𝐺)
2 idrval.1 . . 3 𝑋 = ran 𝐺
32gidval 28750 . 2 (𝐺𝐴 → (GId‘𝐺) = (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
41, 3syl5eq 2792 1 (𝐺𝐴𝑈 = (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wral 3064  ran crn 5580  cfv 6415  crio 7208  (class class class)co 7252  GIdcgi 28728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5153  df-id 5479  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-iota 6373  df-fun 6417  df-fv 6423  df-riota 7209  df-ov 7255  df-gid 28732
This theorem is referenced by:  iorlid  35922  cmpidelt  35923
  Copyright terms: Public domain W3C validator