![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idrval | Structured version Visualization version GIF version |
Description: The value of the identity element. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
idrval.1 | ⊢ 𝑋 = ran 𝐺 |
idrval.2 | ⊢ 𝑈 = (GId‘𝐺) |
Ref | Expression |
---|---|
idrval | ⊢ (𝐺 ∈ 𝐴 → 𝑈 = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idrval.2 | . 2 ⊢ 𝑈 = (GId‘𝐺) | |
2 | idrval.1 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
3 | 2 | gidval 30544 | . 2 ⊢ (𝐺 ∈ 𝐴 → (GId‘𝐺) = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
4 | 1, 3 | eqtrid 2792 | 1 ⊢ (𝐺 ∈ 𝐴 → 𝑈 = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ran crn 5701 ‘cfv 6573 ℩crio 7403 (class class class)co 7448 GIdcgi 30522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-riota 7404 df-ov 7451 df-gid 30526 |
This theorem is referenced by: iorlid 37818 cmpidelt 37819 |
Copyright terms: Public domain | W3C validator |