Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idrval Structured version   Visualization version   GIF version

Theorem idrval 37851
Description: The value of the identity element. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
idrval.1 𝑋 = ran 𝐺
idrval.2 𝑈 = (GId‘𝐺)
Assertion
Ref Expression
idrval (𝐺𝐴𝑈 = (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
Distinct variable groups:   𝑢,𝐺,𝑥   𝑢,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑢)   𝑈(𝑥,𝑢)

Proof of Theorem idrval
StepHypRef Expression
1 idrval.2 . 2 𝑈 = (GId‘𝐺)
2 idrval.1 . . 3 𝑋 = ran 𝐺
32gidval 30441 . 2 (𝐺𝐴 → (GId‘𝐺) = (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
41, 3eqtrid 2776 1 (𝐺𝐴𝑈 = (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  ran crn 5639  cfv 6511  crio 7343  (class class class)co 7387  GIdcgi 30419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fv 6519  df-riota 7344  df-ov 7390  df-gid 30423
This theorem is referenced by:  iorlid  37852  cmpidelt  37853
  Copyright terms: Public domain W3C validator