Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iorlid Structured version   Visualization version   GIF version

Theorem iorlid 36721
Description: A magma right and left identity belongs to the underlying set of the operation. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
iorlid.1 𝑋 = ran 𝐺
iorlid.2 𝑈 = (GId‘𝐺)
Assertion
Ref Expression
iorlid (𝐺 ∈ (Magma ∩ ExId ) → 𝑈𝑋)

Proof of Theorem iorlid
Dummy variables 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iorlid.1 . . 3 𝑋 = ran 𝐺
2 iorlid.2 . . 3 𝑈 = (GId‘𝐺)
31, 2idrval 36720 . 2 (𝐺 ∈ (Magma ∩ ExId ) → 𝑈 = (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
41exidu1 36719 . . 3 (𝐺 ∈ (Magma ∩ ExId ) → ∃!𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
5 riotacl 7382 . . 3 (∃!𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) ∈ 𝑋)
64, 5syl 17 . 2 (𝐺 ∈ (Magma ∩ ExId ) → (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) ∈ 𝑋)
73, 6eqeltrd 2833 1 (𝐺 ∈ (Magma ∩ ExId ) → 𝑈𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3061  ∃!wreu 3374  cin 3947  ran crn 5677  cfv 6543  crio 7363  (class class class)co 7408  GIdcgi 29738   ExId cexid 36707  Magmacmagm 36711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551  df-riota 7364  df-ov 7411  df-gid 29742  df-exid 36708  df-mgmOLD 36712
This theorem is referenced by:  cmpidelt  36722  rngo1cl  36802
  Copyright terms: Public domain W3C validator