Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iorlid Structured version   Visualization version   GIF version

Theorem iorlid 37326
Description: A magma right and left identity belongs to the underlying set of the operation. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
iorlid.1 𝑋 = ran 𝐺
iorlid.2 𝑈 = (GId‘𝐺)
Assertion
Ref Expression
iorlid (𝐺 ∈ (Magma ∩ ExId ) → 𝑈𝑋)

Proof of Theorem iorlid
Dummy variables 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iorlid.1 . . 3 𝑋 = ran 𝐺
2 iorlid.2 . . 3 𝑈 = (GId‘𝐺)
31, 2idrval 37325 . 2 (𝐺 ∈ (Magma ∩ ExId ) → 𝑈 = (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
41exidu1 37324 . . 3 (𝐺 ∈ (Magma ∩ ExId ) → ∃!𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
5 riotacl 7389 . . 3 (∃!𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) ∈ 𝑋)
64, 5syl 17 . 2 (𝐺 ∈ (Magma ∩ ExId ) → (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) ∈ 𝑋)
73, 6eqeltrd 2829 1 (𝐺 ∈ (Magma ∩ ExId ) → 𝑈𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3057  ∃!wreu 3370  cin 3944  ran crn 5674  cfv 6543  crio 7370  (class class class)co 7415  GIdcgi 30294   ExId cexid 37312  Magmacmagm 37316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551  df-riota 7371  df-ov 7418  df-gid 30298  df-exid 37313  df-mgmOLD 37317
This theorem is referenced by:  cmpidelt  37327  rngo1cl  37407
  Copyright terms: Public domain W3C validator