![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cmpidelt | Structured version Visualization version GIF version |
Description: A magma right and left identity element keeps the other elements unchanged. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cmpidelt.1 | ⊢ 𝑋 = ran 𝐺 |
cmpidelt.2 | ⊢ 𝑈 = (GId‘𝐺) |
Ref | Expression |
---|---|
cmpidelt | ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmpidelt.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
2 | cmpidelt.2 | . . . . 5 ⊢ 𝑈 = (GId‘𝐺) | |
3 | 1, 2 | idrval 37817 | . . . 4 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝑈 = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
4 | 3 | eqcomd 2746 | . . 3 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) = 𝑈) |
5 | 1, 2 | iorlid 37818 | . . . 4 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝑈 ∈ 𝑋) |
6 | 1 | exidu1 37816 | . . . 4 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) |
7 | oveq1 7455 | . . . . . . 7 ⊢ (𝑢 = 𝑈 → (𝑢𝐺𝑥) = (𝑈𝐺𝑥)) | |
8 | 7 | eqeq1d 2742 | . . . . . 6 ⊢ (𝑢 = 𝑈 → ((𝑢𝐺𝑥) = 𝑥 ↔ (𝑈𝐺𝑥) = 𝑥)) |
9 | 8 | ovanraleqv 7472 | . . . . 5 ⊢ (𝑢 = 𝑈 → (∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∀𝑥 ∈ 𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥))) |
10 | 9 | riota2 7430 | . . . 4 ⊢ ((𝑈 ∈ 𝑋 ∧ ∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → (∀𝑥 ∈ 𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ↔ (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) = 𝑈)) |
11 | 5, 6, 10 | syl2anc 583 | . . 3 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → (∀𝑥 ∈ 𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ↔ (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) = 𝑈)) |
12 | 4, 11 | mpbird 257 | . 2 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ∀𝑥 ∈ 𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥)) |
13 | oveq2 7456 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑈𝐺𝑥) = (𝑈𝐺𝐴)) | |
14 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
15 | 13, 14 | eqeq12d 2756 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑈𝐺𝑥) = 𝑥 ↔ (𝑈𝐺𝐴) = 𝐴)) |
16 | oveq1 7455 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝐺𝑈) = (𝐴𝐺𝑈)) | |
17 | 16, 14 | eqeq12d 2756 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥𝐺𝑈) = 𝑥 ↔ (𝐴𝐺𝑈) = 𝐴)) |
18 | 15, 17 | anbi12d 631 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ↔ ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴))) |
19 | 18 | rspccva 3634 | . 2 ⊢ ((∀𝑥 ∈ 𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴)) |
20 | 12, 19 | sylan 579 | 1 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃!wreu 3386 ∩ cin 3975 ran crn 5701 ‘cfv 6573 ℩crio 7403 (class class class)co 7448 GIdcgi 30522 ExId cexid 37804 Magmacmagm 37808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-riota 7404 df-ov 7451 df-gid 30526 df-exid 37805 df-mgmOLD 37809 |
This theorem is referenced by: exidreslem 37837 rngoidmlem 37896 |
Copyright terms: Public domain | W3C validator |