Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmpidelt Structured version   Visualization version   GIF version

Theorem cmpidelt 37866
Description: A magma right and left identity element keeps the other elements unchanged. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmpidelt.1 𝑋 = ran 𝐺
cmpidelt.2 𝑈 = (GId‘𝐺)
Assertion
Ref Expression
cmpidelt ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴𝑋) → ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴))

Proof of Theorem cmpidelt
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmpidelt.1 . . . . 5 𝑋 = ran 𝐺
2 cmpidelt.2 . . . . 5 𝑈 = (GId‘𝐺)
31, 2idrval 37864 . . . 4 (𝐺 ∈ (Magma ∩ ExId ) → 𝑈 = (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
43eqcomd 2743 . . 3 (𝐺 ∈ (Magma ∩ ExId ) → (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) = 𝑈)
51, 2iorlid 37865 . . . 4 (𝐺 ∈ (Magma ∩ ExId ) → 𝑈𝑋)
61exidu1 37863 . . . 4 (𝐺 ∈ (Magma ∩ ExId ) → ∃!𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
7 oveq1 7438 . . . . . . 7 (𝑢 = 𝑈 → (𝑢𝐺𝑥) = (𝑈𝐺𝑥))
87eqeq1d 2739 . . . . . 6 (𝑢 = 𝑈 → ((𝑢𝐺𝑥) = 𝑥 ↔ (𝑈𝐺𝑥) = 𝑥))
98ovanraleqv 7455 . . . . 5 (𝑢 = 𝑈 → (∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∀𝑥𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥)))
109riota2 7413 . . . 4 ((𝑈𝑋 ∧ ∃!𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → (∀𝑥𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ↔ (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) = 𝑈))
115, 6, 10syl2anc 584 . . 3 (𝐺 ∈ (Magma ∩ ExId ) → (∀𝑥𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ↔ (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) = 𝑈))
124, 11mpbird 257 . 2 (𝐺 ∈ (Magma ∩ ExId ) → ∀𝑥𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥))
13 oveq2 7439 . . . . 5 (𝑥 = 𝐴 → (𝑈𝐺𝑥) = (𝑈𝐺𝐴))
14 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
1513, 14eqeq12d 2753 . . . 4 (𝑥 = 𝐴 → ((𝑈𝐺𝑥) = 𝑥 ↔ (𝑈𝐺𝐴) = 𝐴))
16 oveq1 7438 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐺𝑈) = (𝐴𝐺𝑈))
1716, 14eqeq12d 2753 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐺𝑈) = 𝑥 ↔ (𝐴𝐺𝑈) = 𝐴))
1815, 17anbi12d 632 . . 3 (𝑥 = 𝐴 → (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ↔ ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴)))
1918rspccva 3621 . 2 ((∀𝑥𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ 𝐴𝑋) → ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴))
2012, 19sylan 580 1 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴𝑋) → ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  ∃!wreu 3378  cin 3950  ran crn 5686  cfv 6561  crio 7387  (class class class)co 7431  GIdcgi 30509   ExId cexid 37851  Magmacmagm 37855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fo 6567  df-fv 6569  df-riota 7388  df-ov 7434  df-gid 30513  df-exid 37852  df-mgmOLD 37856
This theorem is referenced by:  exidreslem  37884  rngoidmlem  37943
  Copyright terms: Public domain W3C validator