![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cmpidelt | Structured version Visualization version GIF version |
Description: A magma right and left identity element keeps the other elements unchanged. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cmpidelt.1 | ⊢ 𝑋 = ran 𝐺 |
cmpidelt.2 | ⊢ 𝑈 = (GId‘𝐺) |
Ref | Expression |
---|---|
cmpidelt | ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmpidelt.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
2 | cmpidelt.2 | . . . . 5 ⊢ 𝑈 = (GId‘𝐺) | |
3 | 1, 2 | idrval 37229 | . . . 4 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝑈 = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
4 | 3 | eqcomd 2730 | . . 3 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) = 𝑈) |
5 | 1, 2 | iorlid 37230 | . . . 4 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝑈 ∈ 𝑋) |
6 | 1 | exidu1 37228 | . . . 4 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) |
7 | oveq1 7409 | . . . . . . 7 ⊢ (𝑢 = 𝑈 → (𝑢𝐺𝑥) = (𝑈𝐺𝑥)) | |
8 | 7 | eqeq1d 2726 | . . . . . 6 ⊢ (𝑢 = 𝑈 → ((𝑢𝐺𝑥) = 𝑥 ↔ (𝑈𝐺𝑥) = 𝑥)) |
9 | 8 | ovanraleqv 7426 | . . . . 5 ⊢ (𝑢 = 𝑈 → (∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∀𝑥 ∈ 𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥))) |
10 | 9 | riota2 7384 | . . . 4 ⊢ ((𝑈 ∈ 𝑋 ∧ ∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → (∀𝑥 ∈ 𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ↔ (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) = 𝑈)) |
11 | 5, 6, 10 | syl2anc 583 | . . 3 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → (∀𝑥 ∈ 𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ↔ (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) = 𝑈)) |
12 | 4, 11 | mpbird 257 | . 2 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ∀𝑥 ∈ 𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥)) |
13 | oveq2 7410 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑈𝐺𝑥) = (𝑈𝐺𝐴)) | |
14 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
15 | 13, 14 | eqeq12d 2740 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑈𝐺𝑥) = 𝑥 ↔ (𝑈𝐺𝐴) = 𝐴)) |
16 | oveq1 7409 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝐺𝑈) = (𝐴𝐺𝑈)) | |
17 | 16, 14 | eqeq12d 2740 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥𝐺𝑈) = 𝑥 ↔ (𝐴𝐺𝑈) = 𝐴)) |
18 | 15, 17 | anbi12d 630 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ↔ ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴))) |
19 | 18 | rspccva 3603 | . 2 ⊢ ((∀𝑥 ∈ 𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴)) |
20 | 12, 19 | sylan 579 | 1 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ∃!wreu 3366 ∩ cin 3940 ran crn 5668 ‘cfv 6534 ℩crio 7357 (class class class)co 7402 GIdcgi 30238 ExId cexid 37216 Magmacmagm 37220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-fo 6540 df-fv 6542 df-riota 7358 df-ov 7405 df-gid 30242 df-exid 37217 df-mgmOLD 37221 |
This theorem is referenced by: exidreslem 37249 rngoidmlem 37308 |
Copyright terms: Public domain | W3C validator |