Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cmpidelt | Structured version Visualization version GIF version |
Description: A magma right and left identity element keeps the other elements unchanged. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cmpidelt.1 | ⊢ 𝑋 = ran 𝐺 |
cmpidelt.2 | ⊢ 𝑈 = (GId‘𝐺) |
Ref | Expression |
---|---|
cmpidelt | ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmpidelt.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
2 | cmpidelt.2 | . . . . 5 ⊢ 𝑈 = (GId‘𝐺) | |
3 | 1, 2 | idrval 35627 | . . . 4 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝑈 = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
4 | 3 | eqcomd 2744 | . . 3 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) = 𝑈) |
5 | 1, 2 | iorlid 35628 | . . . 4 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝑈 ∈ 𝑋) |
6 | 1 | exidu1 35626 | . . . 4 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) |
7 | oveq1 7171 | . . . . . . 7 ⊢ (𝑢 = 𝑈 → (𝑢𝐺𝑥) = (𝑈𝐺𝑥)) | |
8 | 7 | eqeq1d 2740 | . . . . . 6 ⊢ (𝑢 = 𝑈 → ((𝑢𝐺𝑥) = 𝑥 ↔ (𝑈𝐺𝑥) = 𝑥)) |
9 | 8 | ovanraleqv 7188 | . . . . 5 ⊢ (𝑢 = 𝑈 → (∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∀𝑥 ∈ 𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥))) |
10 | 9 | riota2 7147 | . . . 4 ⊢ ((𝑈 ∈ 𝑋 ∧ ∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → (∀𝑥 ∈ 𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ↔ (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) = 𝑈)) |
11 | 5, 6, 10 | syl2anc 587 | . . 3 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → (∀𝑥 ∈ 𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ↔ (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) = 𝑈)) |
12 | 4, 11 | mpbird 260 | . 2 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ∀𝑥 ∈ 𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥)) |
13 | oveq2 7172 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑈𝐺𝑥) = (𝑈𝐺𝐴)) | |
14 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
15 | 13, 14 | eqeq12d 2754 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑈𝐺𝑥) = 𝑥 ↔ (𝑈𝐺𝐴) = 𝐴)) |
16 | oveq1 7171 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝐺𝑈) = (𝐴𝐺𝑈)) | |
17 | 16, 14 | eqeq12d 2754 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥𝐺𝑈) = 𝑥 ↔ (𝐴𝐺𝑈) = 𝐴)) |
18 | 15, 17 | anbi12d 634 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ↔ ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴))) |
19 | 18 | rspccva 3523 | . 2 ⊢ ((∀𝑥 ∈ 𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴)) |
20 | 12, 19 | sylan 583 | 1 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ∀wral 3053 ∃!wreu 3055 ∩ cin 3840 ran crn 5520 ‘cfv 6333 ℩crio 7120 (class class class)co 7164 GIdcgi 28417 ExId cexid 35614 Magmacmagm 35618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pr 5293 ax-un 7473 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-fo 6339 df-fv 6341 df-riota 7121 df-ov 7167 df-gid 28421 df-exid 35615 df-mgmOLD 35619 |
This theorem is referenced by: exidreslem 35647 rngoidmlem 35706 |
Copyright terms: Public domain | W3C validator |