MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  igamgam Structured version   Visualization version   GIF version

Theorem igamgam 26198
Description: Value of the inverse Gamma function in terms of the Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.)
Assertion
Ref Expression
igamgam (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (1/Γ‘𝐴) = (1 / (Γ‘𝐴)))

Proof of Theorem igamgam
StepHypRef Expression
1 eldif 3897 . 2 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (ℤ ∖ ℕ)))
2 igamval 26196 . . 3 (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))))
3 iffalse 4468 . . 3 𝐴 ∈ (ℤ ∖ ℕ) → if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))) = (1 / (Γ‘𝐴)))
42, 3sylan9eq 2798 . 2 ((𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (ℤ ∖ ℕ)) → (1/Γ‘𝐴) = (1 / (Γ‘𝐴)))
51, 4sylbi 216 1 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (1/Γ‘𝐴) = (1 / (Γ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  cdif 3884  ifcif 4459  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   / cdiv 11632  cn 11973  cz 12319  Γcgam 26166  1/Γcigam 26167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-mulcl 10933  ax-i2m1 10939
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-igam 26170
This theorem is referenced by:  igamlgam  26199  gamigam  26202
  Copyright terms: Public domain W3C validator