MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  igamgam Structured version   Visualization version   GIF version

Theorem igamgam 26931
Description: Value of the inverse Gamma function in terms of the Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.)
Assertion
Ref Expression
igamgam (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (1/Γ‘𝐴) = (1 / (Γ‘𝐴)))

Proof of Theorem igamgam
StepHypRef Expression
1 eldif 3953 . 2 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (ℤ ∖ ℕ)))
2 igamval 26929 . . 3 (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))))
3 iffalse 4532 . . 3 𝐴 ∈ (ℤ ∖ ℕ) → if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))) = (1 / (Γ‘𝐴)))
42, 3sylan9eq 2786 . 2 ((𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (ℤ ∖ ℕ)) → (1/Γ‘𝐴) = (1 / (Γ‘𝐴)))
51, 4sylbi 216 1 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (1/Γ‘𝐴) = (1 / (Γ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wcel 2098  cdif 3940  ifcif 4523  cfv 6536  (class class class)co 7404  cc 11107  0cc0 11109  1c1 11110   / cdiv 11872  cn 12213  cz 12559  Γcgam 26899  1/Γcigam 26900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-mulcl 11171  ax-i2m1 11177
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6488  df-fun 6538  df-fv 6544  df-ov 7407  df-igam 26903
This theorem is referenced by:  igamlgam  26932  gamigam  26935
  Copyright terms: Public domain W3C validator