| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > igamz | Structured version Visualization version GIF version | ||
| Description: Value of the inverse Gamma function on nonpositive integers. (Contributed by Mario Carneiro, 16-Jul-2017.) |
| Ref | Expression |
|---|---|
| igamz | ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 4090 | . . . 4 ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → 𝐴 ∈ ℤ) | |
| 2 | 1 | zcnd 12615 | . . 3 ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → 𝐴 ∈ ℂ) |
| 3 | igamval 26990 | . . 3 ⊢ (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴)))) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴)))) |
| 5 | iftrue 4490 | . 2 ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))) = 0) | |
| 6 | 4, 5 | eqtrd 2764 | 1 ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3908 ifcif 4484 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 0cc0 11044 1c1 11045 / cdiv 11811 ℕcn 12162 ℤcz 12505 Γcgam 26960 1/Γcigam 26961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-mulcl 11106 ax-i2m1 11112 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-neg 11384 df-z 12506 df-igam 26964 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |