MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  igamz Structured version   Visualization version   GIF version

Theorem igamz 26102
Description: Value of the inverse Gamma function on nonpositive integers. (Contributed by Mario Carneiro, 16-Jul-2017.)
Assertion
Ref Expression
igamz (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = 0)

Proof of Theorem igamz
StepHypRef Expression
1 eldifi 4057 . . . 4 (𝐴 ∈ (ℤ ∖ ℕ) → 𝐴 ∈ ℤ)
21zcnd 12356 . . 3 (𝐴 ∈ (ℤ ∖ ℕ) → 𝐴 ∈ ℂ)
3 igamval 26101 . . 3 (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))))
42, 3syl 17 . 2 (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))))
5 iftrue 4462 . 2 (𝐴 ∈ (ℤ ∖ ℕ) → if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))) = 0)
64, 5eqtrd 2778 1 (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cdif 3880  ifcif 4456  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   / cdiv 11562  cn 11903  cz 12249  Γcgam 26071  1/Γcigam 26072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-mulcl 10864  ax-i2m1 10870
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-neg 11138  df-z 12250  df-igam 26075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator