Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > igamz | Structured version Visualization version GIF version |
Description: Value of the inverse Gamma function on nonpositive integers. (Contributed by Mario Carneiro, 16-Jul-2017.) |
Ref | Expression |
---|---|
igamz | ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 4061 | . . . 4 ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → 𝐴 ∈ ℤ) | |
2 | 1 | zcnd 12427 | . . 3 ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → 𝐴 ∈ ℂ) |
3 | igamval 26196 | . . 3 ⊢ (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴)))) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴)))) |
5 | iftrue 4465 | . 2 ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))) = 0) | |
6 | 4, 5 | eqtrd 2778 | 1 ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ifcif 4459 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 / cdiv 11632 ℕcn 11973 ℤcz 12319 Γcgam 26166 1/Γcigam 26167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-mulcl 10933 ax-i2m1 10939 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-neg 11208 df-z 12320 df-igam 26170 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |