![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > igamz | Structured version Visualization version GIF version |
Description: Value of the inverse Gamma function on nonpositive integers. (Contributed by Mario Carneiro, 16-Jul-2017.) |
Ref | Expression |
---|---|
igamz | ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 4126 | . . . 4 ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → 𝐴 ∈ ℤ) | |
2 | 1 | zcnd 12671 | . . 3 ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → 𝐴 ∈ ℂ) |
3 | igamval 26775 | . . 3 ⊢ (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴)))) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴)))) |
5 | iftrue 4534 | . 2 ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))) = 0) | |
6 | 4, 5 | eqtrd 2772 | 1 ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∖ cdif 3945 ifcif 4528 ‘cfv 6543 (class class class)co 7411 ℂcc 11110 0cc0 11112 1c1 11113 / cdiv 11875 ℕcn 12216 ℤcz 12562 Γcgam 26745 1/Γcigam 26746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-mulcl 11174 ax-i2m1 11180 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7414 df-neg 11451 df-z 12563 df-igam 26749 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |