MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  igamz Structured version   Visualization version   GIF version

Theorem igamz 26893
Description: Value of the inverse Gamma function on nonpositive integers. (Contributed by Mario Carneiro, 16-Jul-2017.)
Assertion
Ref Expression
igamz (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = 0)

Proof of Theorem igamz
StepHypRef Expression
1 eldifi 4126 . . . 4 (𝐴 ∈ (ℤ ∖ ℕ) → 𝐴 ∈ ℤ)
21zcnd 12674 . . 3 (𝐴 ∈ (ℤ ∖ ℕ) → 𝐴 ∈ ℂ)
3 igamval 26892 . . 3 (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))))
42, 3syl 17 . 2 (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))))
5 iftrue 4534 . 2 (𝐴 ∈ (ℤ ∖ ℕ) → if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))) = 0)
64, 5eqtrd 2771 1 (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cdif 3945  ifcif 4528  cfv 6543  (class class class)co 7412  cc 11114  0cc0 11116  1c1 11117   / cdiv 11878  cn 12219  cz 12565  Γcgam 26862  1/Γcigam 26863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-mulcl 11178  ax-i2m1 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-neg 11454  df-z 12566  df-igam 26866
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator