| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > igamz | Structured version Visualization version GIF version | ||
| Description: Value of the inverse Gamma function on nonpositive integers. (Contributed by Mario Carneiro, 16-Jul-2017.) |
| Ref | Expression |
|---|---|
| igamz | ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 4106 | . . . 4 ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → 𝐴 ∈ ℤ) | |
| 2 | 1 | zcnd 12696 | . . 3 ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → 𝐴 ∈ ℂ) |
| 3 | igamval 27007 | . . 3 ⊢ (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴)))) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴)))) |
| 5 | iftrue 4506 | . 2 ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))) = 0) | |
| 6 | 4, 5 | eqtrd 2770 | 1 ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 ifcif 4500 ‘cfv 6530 (class class class)co 7403 ℂcc 11125 0cc0 11127 1c1 11128 / cdiv 11892 ℕcn 12238 ℤcz 12586 Γcgam 26977 1/Γcigam 26978 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-mulcl 11189 ax-i2m1 11195 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6483 df-fun 6532 df-fv 6538 df-ov 7406 df-neg 11467 df-z 12587 df-igam 26981 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |