MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  igamz Structured version   Visualization version   GIF version

Theorem igamz 25637
Description: Value of the inverse Gamma function on nonpositive integers. (Contributed by Mario Carneiro, 16-Jul-2017.)
Assertion
Ref Expression
igamz (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = 0)

Proof of Theorem igamz
StepHypRef Expression
1 eldifi 4057 . . . 4 (𝐴 ∈ (ℤ ∖ ℕ) → 𝐴 ∈ ℤ)
21zcnd 12080 . . 3 (𝐴 ∈ (ℤ ∖ ℕ) → 𝐴 ∈ ℂ)
3 igamval 25636 . . 3 (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))))
42, 3syl 17 . 2 (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))))
5 iftrue 4434 . 2 (𝐴 ∈ (ℤ ∖ ℕ) → if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))) = 0)
64, 5eqtrd 2836 1 (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2112  cdif 3881  ifcif 4428  cfv 6328  (class class class)co 7139  cc 10528  0cc0 10530  1c1 10531   / cdiv 11290  cn 11629  cz 11973  Γcgam 25606  1/Γcigam 25607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-mulcl 10592  ax-i2m1 10598
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-iota 6287  df-fun 6330  df-fv 6336  df-ov 7142  df-neg 10866  df-z 11974  df-igam 25610
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator