MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  igamz Structured version   Visualization version   GIF version

Theorem igamz 27015
Description: Value of the inverse Gamma function on nonpositive integers. (Contributed by Mario Carneiro, 16-Jul-2017.)
Assertion
Ref Expression
igamz (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = 0)

Proof of Theorem igamz
StepHypRef Expression
1 eldifi 4111 . . . 4 (𝐴 ∈ (ℤ ∖ ℕ) → 𝐴 ∈ ℤ)
21zcnd 12703 . . 3 (𝐴 ∈ (ℤ ∖ ℕ) → 𝐴 ∈ ℂ)
3 igamval 27014 . . 3 (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))))
42, 3syl 17 . 2 (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))))
5 iftrue 4511 . 2 (𝐴 ∈ (ℤ ∖ ℕ) → if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))) = 0)
64, 5eqtrd 2771 1 (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3928  ifcif 4505  cfv 6536  (class class class)co 7410  cc 11132  0cc0 11134  1c1 11135   / cdiv 11899  cn 12245  cz 12593  Γcgam 26984  1/Γcigam 26985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-mulcl 11196  ax-i2m1 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-neg 11474  df-z 12594  df-igam 26988
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator