Home | Metamath
Proof Explorer Theorem List (p. 271 of 469) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29568) |
Hilbert Space Explorer
(29569-31091) |
Users' Mathboxes
(31092-46881) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | slttr 27001 | Surreal less-than is transitive. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 <s 𝐵 ∧ 𝐵 <s 𝐶) → 𝐴 <s 𝐶)) | ||
Theorem | sltasym 27002 | Surreal less-than is asymmetric. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 → ¬ 𝐵 <s 𝐴)) | ||
Theorem | sltlin 27003 | Surreal less-than obeys trichotomy. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 <s 𝐴)) | ||
Theorem | slttrieq2 27004 | Trichotomy law for surreal less-than. (Contributed by Scott Fenton, 22-Apr-2012.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 <s 𝐵 ∧ ¬ 𝐵 <s 𝐴))) | ||
Theorem | slttrine 27005 | Trichotomy law for surreals. (Contributed by Scott Fenton, 23-Nov-2021.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≠ 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐵 <s 𝐴))) | ||
Theorem | slenlt 27006 | Surreal less-than or equal in terms of less-than. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) | ||
Theorem | sltnle 27007 | Surreal less-than in terms of less-than or equal. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴)) | ||
Theorem | sleloe 27008 | Surreal less-than or equal in terms of less-than. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐴 = 𝐵))) | ||
Theorem | sletri3 27009 | Trichotomy law for surreal less-than or equal. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 = 𝐵 ↔ (𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐴))) | ||
Theorem | sltletr 27010 | Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 <s 𝐵 ∧ 𝐵 ≤s 𝐶) → 𝐴 <s 𝐶)) | ||
Theorem | slelttr 27011 | Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 <s 𝐶) → 𝐴 <s 𝐶)) | ||
Theorem | sletr 27012 | Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐶) → 𝐴 ≤s 𝐶)) | ||
Theorem | slttrd 27013 | Surreal less-than is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) & ⊢ (𝜑 → 𝐵 <s 𝐶) ⇒ ⊢ (𝜑 → 𝐴 <s 𝐶) | ||
Theorem | sltletrd 27014 | Surreal less-than is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) & ⊢ (𝜑 → 𝐵 ≤s 𝐶) ⇒ ⊢ (𝜑 → 𝐴 <s 𝐶) | ||
Theorem | slelttrd 27015 | Surreal less-than is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐴 ≤s 𝐵) & ⊢ (𝜑 → 𝐵 <s 𝐶) ⇒ ⊢ (𝜑 → 𝐴 <s 𝐶) | ||
Theorem | sletrd 27016 | Surreal less-than or equal is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐴 ≤s 𝐵) & ⊢ (𝜑 → 𝐵 ≤s 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≤s 𝐶) | ||
Theorem | slerflex 27017 | Surreal less-than or equal is reflexive. Theorem 0(iii) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
⊢ (𝐴 ∈ No → 𝐴 ≤s 𝐴) | ||
Theorem | bdayfun 27018 | The birthday function is a function. (Contributed by Scott Fenton, 14-Jun-2011.) |
⊢ Fun bday | ||
Theorem | bdayfn 27019 | The birthday function is a function over No . (Contributed by Scott Fenton, 30-Jun-2011.) |
⊢ bday Fn No | ||
Theorem | bdaydm 27020 | The birthday function's domain is No . (Contributed by Scott Fenton, 14-Jun-2011.) |
⊢ dom bday = No | ||
Theorem | bdayrn 27021 | The birthday function's range is On. (Contributed by Scott Fenton, 14-Jun-2011.) |
⊢ ran bday = On | ||
Theorem | bdayelon 27022 | The value of the birthday function is always an ordinal. (Contributed by Scott Fenton, 14-Jun-2011.) (Proof shortened by Scott Fenton, 8-Dec-2021.) |
⊢ ( bday ‘𝐴) ∈ On | ||
Theorem | nocvxminlem 27023* | Lemma for nocvxmin 27024. Given two birthday-minimal elements of a convex class of surreals, they are not comparable. (Contributed by Scott Fenton, 30-Jun-2011.) |
⊢ ((𝐴 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No ((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) → (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ (( bday ‘𝑋) = ∩ ( bday “ 𝐴) ∧ ( bday ‘𝑌) = ∩ ( bday “ 𝐴))) → ¬ 𝑋 <s 𝑌)) | ||
Theorem | nocvxmin 27024* | Given a nonempty convex class of surreals, there is a unique birthday-minimal element of that class. Lemma 0 of [Alling] p. 185. (Contributed by Scott Fenton, 30-Jun-2011.) |
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No ((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) → ∃!𝑤 ∈ 𝐴 ( bday ‘𝑤) = ∩ ( bday “ 𝐴)) | ||
Theorem | noprc 27025 | The surreal numbers are a proper class. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ ¬ No ∈ V | ||
Syntax | csslt 27026 | Declare the syntax for surreal set less-than. |
class <<s | ||
Definition | df-sslt 27027* | Define the relation that holds iff one set of surreals completely precedes another. (Contributed by Scott Fenton, 7-Dec-2021.) |
⊢ <<s = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦)} | ||
Syntax | cscut 27028 | Declare the syntax for the surreal cut operator. |
class |s | ||
Definition | df-scut 27029* | Define the cut operator on surreal numbers. This operator, which Conway takes as the primitive operator over surreals, picks the surreal lying between two sets of surreals of minimal birthday. Definition from [Gonshor] p. 7. (Contributed by Scott Fenton, 7-Dec-2021.) |
⊢ |s = (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (℩𝑥 ∈ {𝑦 ∈ No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))) | ||
Theorem | noeta2 27030* | A version of noeta 26997 with fewer hypotheses but a weaker upper bound (Contributed by Scott Fenton, 7-Dec-2021.) |
⊢ (((𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) → ∃𝑧 ∈ No (∀𝑥 ∈ 𝐴 𝑥 <s 𝑧 ∧ ∀𝑦 ∈ 𝐵 𝑧 <s 𝑦 ∧ ( bday ‘𝑧) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) | ||
Theorem | brsslt 27031* | Binary relation form of the surreal set less-than relation. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | ||
Theorem | ssltex1 27032 | The first argument of surreal set less-than exists. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) | ||
Theorem | ssltex2 27033 | The second argument of surreal set less-than exists. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝐴 <<s 𝐵 → 𝐵 ∈ V) | ||
Theorem | ssltss1 27034 | The first argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) | ||
Theorem | ssltss2 27035 | The second argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No ) | ||
Theorem | ssltsep 27036* | The separation property of surreal set less-than. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝐴 <<s 𝐵 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) | ||
Theorem | ssltd 27037* | Deduce surreal set less-than. (Contributed by Scott Fenton, 24-Sep-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ⊆ No ) & ⊢ (𝜑 → 𝐵 ⊆ No ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 <s 𝑦) ⇒ ⊢ (𝜑 → 𝐴 <<s 𝐵) | ||
Theorem | ssltsepc 27038 | Two elements of separated sets obey less-than. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 <s 𝑌) | ||
Theorem | ssltsepcd 27039 | Two elements of separated sets obey less-than. Deduction form of ssltsepc 27038. (Contributed by Scott Fenton, 25-Sep-2024.) |
⊢ (𝜑 → 𝐴 <<s 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 <s 𝑌) | ||
Theorem | sssslt1 27040 | Relation between surreal set less-than and subset. (Contributed by Scott Fenton, 9-Dec-2021.) |
⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐶 <<s 𝐵) | ||
Theorem | sssslt2 27041 | Relation between surreal set less-than and subset. (Contributed by Scott Fenton, 9-Dec-2021.) |
⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → 𝐴 <<s 𝐶) | ||
Theorem | nulsslt 27042 | The empty set is less-than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝐴 ∈ 𝒫 No → ∅ <<s 𝐴) | ||
Theorem | nulssgt 27043 | The empty set is greater than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) | ||
Theorem | conway 27044* | Conway's Simplicity Theorem. Given 𝐴 preceeding 𝐵, there is a unique surreal of minimal length separating them. This is a fundamental property of surreals and will be used (via surreal cuts) to prove many properties later on. Theorem from [Alling] p. 185. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝐴 <<s 𝐵 → ∃!𝑥 ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) | ||
Theorem | scutval 27045* | The value of the surreal cut operation. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (℩𝑥 ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))) | ||
Theorem | scutcut 27046 | Cut properties of the surreal cut operation. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) | ||
Theorem | scutcl 27047 | Closure law for surreal cuts. (Contributed by Scott Fenton, 23-Aug-2024.) |
⊢ (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) ∈ No ) | ||
Theorem | scutcld 27048 | Closure law for surreal cuts. (Contributed by Scott Fenton, 23-Aug-2024.) |
⊢ (𝜑 → 𝐴 <<s 𝐵) ⇒ ⊢ (𝜑 → (𝐴 |s 𝐵) ∈ No ) | ||
Theorem | scutbday 27049* | The birthday of the surreal cut is equal to the minimum birthday in the gap. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ∩ ( bday “ {𝑥 ∈ No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})) | ||
Theorem | eqscut 27050* | Condition for equality to a surreal cut. (Contributed by Scott Fenton, 8-Aug-2024.) |
⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday ‘𝑋) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))) | ||
Theorem | eqscut2 27051* | Condition for equality to a surreal cut. (Contributed by Scott Fenton, 8-Aug-2024.) |
⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ∀𝑦 ∈ No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑦))))) | ||
Theorem | sslttr 27052 | Transitive law for surreal set less-than. (Contributed by Scott Fenton, 9-Dec-2021.) |
⊢ ((𝐴 <<s 𝐵 ∧ 𝐵 <<s 𝐶 ∧ 𝐵 ≠ ∅) → 𝐴 <<s 𝐶) | ||
Theorem | ssltun1 27053 | Union law for surreal set less-than. (Contributed by Scott Fenton, 9-Dec-2021.) |
⊢ ((𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶) → (𝐴 ∪ 𝐵) <<s 𝐶) | ||
Theorem | ssltun2 27054 | Union law for surreal set less-than. (Contributed by Scott Fenton, 9-Dec-2021.) |
⊢ ((𝐴 <<s 𝐵 ∧ 𝐴 <<s 𝐶) → 𝐴 <<s (𝐵 ∪ 𝐶)) | ||
Theorem | scutun12 27055 | Union law for surreal cuts. (Contributed by Scott Fenton, 9-Dec-2021.) |
⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴 ∪ 𝐶) |s (𝐵 ∪ 𝐷)) = (𝐴 |s 𝐵)) | ||
Theorem | dmscut 27056 | The domain of the surreal cut operation is all separated surreal sets. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ dom |s = <<s | ||
Theorem | scutf 27057 | Functionality statement for the surreal cut operator. (Contributed by Scott Fenton, 15-Dec-2021.) |
⊢ |s : <<s ⟶ No | ||
Theorem | etasslt 27058* | A restatement of noeta 26997 using set less-than. (Contributed by Scott Fenton, 10-Aug-2024.) |
⊢ ((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂) → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ 𝑂)) | ||
Theorem | etasslt2 27059* | A version of etasslt 27058 with fewer hypotheses but a weaker upper bound. (Contributed by Scott Fenton, 10-Dec-2021.) |
⊢ (𝐴 <<s 𝐵 → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) | ||
Theorem | scutbdaybnd 27060 | An upper bound on the birthday of a surreal cut. (Contributed by Scott Fenton, 10-Aug-2024.) |
⊢ ((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑂) | ||
Theorem | scutbdaybnd2 27061 | An upper bound on the birthday of a surreal cut. (Contributed by Scott Fenton, 10-Dec-2021.) |
⊢ (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵))) | ||
Theorem | scutbdaybnd2lim 27062 | An upper bound on the birthday of a surreal cut when it is a limit birthday. (Contributed by Scott Fenton, 7-Aug-2024.) |
⊢ ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ∪ ( bday “ (𝐴 ∪ 𝐵))) | ||
Theorem | scutbdaylt 27063 | If a surreal lies in a gap and is not equal to the cut, its birthday is greater than the cut's. (Contributed by Scott Fenton, 11-Dec-2021.) |
⊢ ((𝑋 ∈ No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday ‘𝑋)) | ||
Theorem | slerec 27064* | A comparison law for surreals considered as cuts of sets of surreals. Definition from [Conway] p. 4. Theorem 4 of [Alling] p. 186. Theorem 2.5 of [Gonshor] p. 9. (Contributed by Scott Fenton, 11-Dec-2021.) |
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑋 ≤s 𝑌 ↔ (∀𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑌))) | ||
Theorem | sltrec 27065* | A comparison law for surreals considered as cuts of sets of surreals. (Contributed by Scott Fenton, 11-Dec-2021.) |
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑋 <s 𝑌 ↔ (∃𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏 ∈ 𝐵 𝑏 ≤s 𝑌))) | ||
Theorem | ssltdisj 27066 | If 𝐴 preceeds 𝐵, then 𝐴 and 𝐵 are disjoint. (Contributed by Scott Fenton, 18-Sep-2024.) |
⊢ (𝐴 <<s 𝐵 → (𝐴 ∩ 𝐵) = ∅) | ||
Syntax | c0s 27067 | Declare the class syntax for surreal zero. |
class 0s | ||
Syntax | c1s 27068 | Declare the class syntax for surreal one. |
class 1s | ||
Definition | df-0s 27069 | Define surreal zero. This is the simplest cut of surreal number sets. Definition from [Conway] p. 17. (Contributed by Scott Fenton, 7-Aug-2024.) |
⊢ 0s = (∅ |s ∅) | ||
Definition | df-1s 27070 | Define surreal one. This is the simplest number greater than surreal zero. Definition from [Conway] p. 18. (Contributed by Scott Fenton, 7-Aug-2024.) |
⊢ 1s = ({ 0s } |s ∅) | ||
Theorem | 0sno 27071 | Surreal zero is a surreal. (Contributed by Scott Fenton, 7-Aug-2024.) |
⊢ 0s ∈ No | ||
Theorem | 1sno 27072 | Surreal one is a surreal. (Contributed by Scott Fenton, 7-Aug-2024.) |
⊢ 1s ∈ No | ||
Theorem | bday0s 27073 | Calculate the birthday of surreal zero. (Contributed by Scott Fenton, 7-Aug-2024.) |
⊢ ( bday ‘ 0s ) = ∅ | ||
Theorem | 0slt1s 27074 | Surreal zero is less than surreal one. Theorem from [Conway] p. 7. (Contributed by Scott Fenton, 7-Aug-2024.) |
⊢ 0s <s 1s | ||
Theorem | bday0b 27075 | The only surreal with birthday ∅ is 0s. (Contributed by Scott Fenton, 8-Aug-2024.) |
⊢ (𝑋 ∈ No → (( bday ‘𝑋) = ∅ ↔ 𝑋 = 0s )) | ||
Theorem | bday1s 27076 | The birthday of surreal one is ordinal one. (Contributed by Scott Fenton, 8-Aug-2024.) |
⊢ ( bday ‘ 1s ) = 1o | ||
This part develops elementary geometry based on Tarski's axioms, following [Schwabhauser]. Tarski's geometry is a first-order theory with one sort, the "points". It has two primitive notions, the ternary predicate of "betweenness" and the quaternary predicate of "congruence". To adapt this theory to the framework of set.mm, and to be able to talk of *a* Tarski structure as a space satisfying the given axioms, we use the following definition, stated informally: A Tarski structure 𝑓 is a set (of points) (Base‘𝑓) together with functions (Itv‘𝑓) and (dist‘𝑓) on ((Base‘𝑓) × (Base‘𝑓)) satisfying certain axioms (given in Definitions df-trkg 27103 et sequentes). This allows to treat a Tarski structure as a special kind of extensible structure (see df-struct 16945). The translation to and from Tarski's treatment is as follows (given, again, informally). Suppose that one is given an extensible structure 𝑓. One defines a betweenness ternary predicate Btw by positing that, for any 𝑥, 𝑦, 𝑧 ∈ (Base‘𝑓), one has "Btw 𝑥𝑦𝑧 " if and only if 𝑦 ∈ 𝑥(Itv‘𝑓)𝑧, and a congruence quaternary predicate Congr by positing that, for any 𝑥, 𝑦, 𝑧, 𝑡 ∈ (Base‘𝑓), one has "Congr 𝑥𝑦𝑧𝑡 " if and only if 𝑥(dist‘𝑓)𝑦 = 𝑧(dist‘𝑓)𝑡. It is easy to check that if 𝑓 satisfies our Tarski axioms, then Btw and Congr satisfy Tarski's Tarski axioms when (Base‘𝑓) is interpreted as the universe of discourse. Conversely, suppose that one is given a set 𝑎, a ternary predicate Btw, and a quaternary predicate Congr. One defines the extensible structure 𝑓 such that (Base‘𝑓) is 𝑎, and (Itv‘𝑓) is the function which associates with each 〈𝑥, 𝑦〉 ∈ (𝑎 × 𝑎) the set of points 𝑧 ∈ 𝑎 such that "Btw 𝑥𝑧𝑦", and (dist‘𝑓) is the function which associates with each 〈𝑥, 𝑦〉 ∈ (𝑎 × 𝑎) the set of ordered pairs 〈𝑧, 𝑡〉 ∈ (𝑎 × 𝑎) such that "Congr 𝑥𝑦𝑧𝑡". It is easy to check that if Btw and Congr satisfy Tarski's Tarski axioms when 𝑎 is interpreted as the universe of discourse, then 𝑓 satisfies our Tarski axioms. We intentionally choose to represent congruence (without loss of generality) as 𝑥(dist‘𝑓)𝑦 = 𝑧(dist‘𝑓)𝑡 instead of "Congr 𝑥𝑦𝑧𝑡", as it is more convenient. It is always possible to define dist for any particular geometry to produce equal results when conguence is desired, and in many cases there is an obvious interpretation of "distance" between two points that can be useful in other situations. Encoding congruence as an equality of distances makes it easier to use these theorems in cases where there is a preferred distance function. We prove that representing a congruence relationship using a distance in the form 𝑥(dist‘𝑓)𝑦 = 𝑧(dist‘𝑓)𝑡 causes no loss of generality in tgjustc1 27125 and tgjustc2 27126, which in turn are supported by tgjustf 27123 and tgjustr 27124. A similar representation of congruence (using a "distance" function) is used in Axiom A1 of [Beeson2016] p. 5, which discusses how a large number of formalized proofs were found in Tarskian Geometry using OTTER. Their detailed proofs in Tarski Geometry, along with other information, are available at https://www.michaelbeeson.com/research/FormalTarski/ 27124. Most theorems are in deduction form, as this is a very general, simple, and convenient format to use in Metamath. An assertion in deduction form can be easily converted into an assertion in inference form (removing the antecedents 𝜑 →) by insert a ⊤ → in each hypothesis, using a1i 11, then using mptru 1547 to remove the final ⊤ → prefix. In some cases we represent, without loss of generality, an implication antecedent in [Schwabhauser] as a hypothesis. The implication can be retrieved from the by using simpr 485, the theorem as stated, and ex 413. For descriptions of individual axioms, we refer to the specific definitions below. A particular feature of Tarski's axioms is modularity, so by using various subsets of the set of axioms, we can define the classes of "absolute dimensionless Tarski structures" (df-trkg 27103), of "Euclidean dimensionless Tarski structures" (df-trkge 27101) and of "Tarski structures of dimension no less than N" (df-trkgld 27102). In this system, angles are not a primitive notion, but instead a derived notion (see df-cgra 27458 and iscgra 27459). To maintain its simplicity, in this system congruence between shapes (a finite sequence of points) is the case where corresponding segments between all corresponding points are congruent. This includes triangles (a shape of 3 distinct points). Note that this definition has no direct regard for angles. For more details and rationale, see df-cgrg 27161. The first section is devoted to the definitions of these various structures. The second section ("Tarskian geometry") develops the synthetic treatment of geometry. The remaining sections prove that real Euclidean spaces and complex Hilbert spaces, with intended interpretations, are Euclidean Tarski structures. Most of the work in this part is due to Thierry Arnoux, with earlier work by Mario Carneiro and Scott Fenton. See also the credits in the comment of each statement. | ||
Syntax | cstrkg 27077 | Extends class notation with the class of Tarski geometries. |
class TarskiG | ||
Syntax | cstrkgc 27078 | Extends class notation with the class of geometries fulfilling the congruence axioms. |
class TarskiGC | ||
Syntax | cstrkgb 27079 | Extends class notation with the class of geometries fulfilling the betweenness axioms. |
class TarskiGB | ||
Syntax | cstrkgcb 27080 | Extends class notation with the class of geometries fulfilling the congruence and betweenness axioms. |
class TarskiGCB | ||
Syntax | cstrkgld 27081 | Extends class notation with the relation for geometries fulfilling the lower dimension axioms. |
class DimTarskiG≥ | ||
Syntax | cstrkge 27082 | Extends class notation with the class of geometries fulfilling Euclid's axiom. |
class TarskiGE | ||
Syntax | citv 27083 | Declare the syntax for the Interval (segment) index extractor. |
class Itv | ||
Syntax | clng 27084 | Declare the syntax for the Line function. |
class LineG | ||
Definition | df-itv 27085 | Define the Interval (segment) index extractor for Tarski geometries. (Contributed by Thierry Arnoux, 24-Aug-2017.) Use its index-independent form itvid 27089 instead. (New usage is discouraged.) |
⊢ Itv = Slot ;16 | ||
Definition | df-lng 27086 | Define the line index extractor for geometries. (Contributed by Thierry Arnoux, 27-Mar-2019.) Use its index-independent form lngid 27090 instead. (New usage is discouraged.) |
⊢ LineG = Slot ;17 | ||
Theorem | itvndx 27087 | Index value of the Interval (segment) slot. Use ndxarg 16994. (Contributed by Thierry Arnoux, 24-Aug-2017.) (New usage is discouraged.) |
⊢ (Itv‘ndx) = ;16 | ||
Theorem | lngndx 27088 | Index value of the "line" slot. Use ndxarg 16994. (Contributed by Thierry Arnoux, 27-Mar-2019.) (New usage is discouraged.) |
⊢ (LineG‘ndx) = ;17 | ||
Theorem | itvid 27089 | Utility theorem: index-independent form of df-itv 27085. (Contributed by Thierry Arnoux, 24-Aug-2017.) |
⊢ Itv = Slot (Itv‘ndx) | ||
Theorem | lngid 27090 | Utility theorem: index-independent form of df-lng 27086. (Contributed by Thierry Arnoux, 27-Mar-2019.) |
⊢ LineG = Slot (LineG‘ndx) | ||
Theorem | slotsinbpsd 27091 | The slots Base, +g, ·𝑠 and dist are different from the slot Itv. Formerly part of ttglem 27527 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
⊢ (((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) ∧ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx))) | ||
Theorem | slotslnbpsd 27092 | The slots Base, +g, ·𝑠 and dist are different from the slot LineG. Formerly part of ttglem 27527 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
⊢ (((LineG‘ndx) ≠ (Base‘ndx) ∧ (LineG‘ndx) ≠ (+g‘ndx)) ∧ ((LineG‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (LineG‘ndx) ≠ (dist‘ndx))) | ||
Theorem | lngndxnitvndx 27093 | The slot for the line is not the slot for the Interval (segment) in an extensible structure. Formerly part of proof for ttgval 27525. (Contributed by AV, 9-Nov-2024.) |
⊢ (LineG‘ndx) ≠ (Itv‘ndx) | ||
Theorem | trkgstr 27094 | Functionality of a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017.) |
⊢ 𝑊 = {〈(Base‘ndx), 𝑈〉, 〈(dist‘ndx), 𝐷〉, 〈(Itv‘ndx), 𝐼〉} ⇒ ⊢ 𝑊 Struct 〈1, ;16〉 | ||
Theorem | trkgbas 27095 | The base set of a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017.) |
⊢ 𝑊 = {〈(Base‘ndx), 𝑈〉, 〈(dist‘ndx), 𝐷〉, 〈(Itv‘ndx), 𝐼〉} ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝑈 = (Base‘𝑊)) | ||
Theorem | trkgdist 27096 | The measure of a distance in a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017.) |
⊢ 𝑊 = {〈(Base‘ndx), 𝑈〉, 〈(dist‘ndx), 𝐷〉, 〈(Itv‘ndx), 𝐼〉} ⇒ ⊢ (𝐷 ∈ 𝑉 → 𝐷 = (dist‘𝑊)) | ||
Theorem | trkgitv 27097 | The congruence relation in a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017.) |
⊢ 𝑊 = {〈(Base‘ndx), 𝑈〉, 〈(dist‘ndx), 𝐷〉, 〈(Itv‘ndx), 𝐼〉} ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐼 = (Itv‘𝑊)) | ||
Definition | df-trkgc 27098* | Define the class of geometries fulfilling the congruence axioms of reflexivity, identity and transitivity. These are axioms A1 to A3 of [Schwabhauser] p. 10. With our distance based notation for congruence, transitivity of congruence boils down to transitivity of equality and is already given by eqtr 2759, so it is not listed in this definition. (Contributed by Thierry Arnoux, 24-Aug-2017.) |
⊢ TarskiGC = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))} | ||
Definition | df-trkgb 27099* | Define the class of geometries fulfilling the 3 betweenness axioms in Tarski's Axiomatization of Geometry: identity, Axiom A6 of [Schwabhauser] p. 11, axiom of Pasch, Axiom A7 of [Schwabhauser] p. 12, and continuity, Axiom A11 of [Schwabhauser] p. 13. (Contributed by Thierry Arnoux, 24-Aug-2017.) |
⊢ TarskiGB = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((𝑢 ∈ (𝑥𝑖𝑧) ∧ 𝑣 ∈ (𝑦𝑖𝑧)) → ∃𝑎 ∈ 𝑝 (𝑎 ∈ (𝑢𝑖𝑦) ∧ 𝑎 ∈ (𝑣𝑖𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑝∀𝑡 ∈ 𝒫 𝑝(∃𝑎 ∈ 𝑝 ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 ∈ (𝑎𝑖𝑦) → ∃𝑏 ∈ 𝑝 ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑏 ∈ (𝑥𝑖𝑦)))} | ||
Definition | df-trkgcb 27100* | Define the class of geometries fulfilling the five segment axiom, Axiom A5 of [Schwabhauser] p. 11, and segment construction axiom, Axiom A4 of [Schwabhauser] p. 11. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
⊢ TarskiGCB = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏)))} |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |