Home | Metamath
Proof Explorer Theorem List (p. 271 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | mideulem 27001* | Lemma for mideu 27003. We can assume mideulem.9 "without loss of generality". (Contributed by Thierry Arnoux, 25-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝑂 ∈ 𝑃) & ⊢ (𝜑 → 𝑇 ∈ 𝑃) & ⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵)) & ⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂)) & ⊢ (𝜑 → 𝑇 ∈ (𝐴𝐿𝐵)) & ⊢ (𝜑 → 𝑇 ∈ (𝑄𝐼𝑂)) & ⊢ (𝜑 → (𝐴 − 𝑂)(≤G‘𝐺)(𝐵 − 𝑄)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) | ||
Theorem | midex 27002* | Existence of the midpoint, part Theorem 8.22 of [Schwabhauser] p. 64. Note that this proof requires a construction in 2 dimensions or more, i.e. it does not prove the existence of a midpoint in dimension 1, for a geometry restricted to a line. (Contributed by Thierry Arnoux, 25-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) | ||
Theorem | mideu 27003* | Existence and uniqueness of the midpoint, Theorem 8.22 of [Schwabhauser] p. 64. (Contributed by Thierry Arnoux, 25-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) | ||
Theorem | islnopp 27004* | The property for two points 𝐴 and 𝐵 to lie on the opposite sides of a set 𝐷 Definition 9.1 of [Schwabhauser] p. 67. (Contributed by Thierry Arnoux, 19-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) | ||
Theorem | islnoppd 27005* | Deduce that 𝐴 and 𝐵 lie on opposite sides of line 𝐿. (Contributed by Thierry Arnoux, 16-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) & ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) & ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐵)) ⇒ ⊢ (𝜑 → 𝐴𝑂𝐵) | ||
Theorem | oppne1 27006* | Points lying on opposite sides of a line cannot be on the line. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴𝑂𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) | ||
Theorem | oppne2 27007* | Points lying on opposite sides of a line cannot be on the line. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴𝑂𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) | ||
Theorem | oppne3 27008* | Points lying on opposite sides of a line cannot be equal. (Contributed by Thierry Arnoux, 3-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴𝑂𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) | ||
Theorem | oppcom 27009* | Commutativity rule for "opposite" Theorem 9.2 of [Schwabhauser] p. 67. (Contributed by Thierry Arnoux, 19-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴𝑂𝐵) ⇒ ⊢ (𝜑 → 𝐵𝑂𝐴) | ||
Theorem | opptgdim2 27010* | If two points opposite to a line exist, dimension must be 2 or more. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴𝑂𝐵) ⇒ ⊢ (𝜑 → 𝐺DimTarskiG≥2) | ||
Theorem | oppnid 27011* | The "opposite to a line" relation is irreflexive. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) ⇒ ⊢ (𝜑 → ¬ 𝐴𝑂𝐴) | ||
Theorem | opphllem1 27012* | Lemma for opphl 27019. (Contributed by Thierry Arnoux, 20-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑆 = ((pInvG‘𝐺)‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ 𝐷) & ⊢ (𝜑 → 𝐴𝑂𝐶) & ⊢ (𝜑 → 𝑀 ∈ 𝐷) & ⊢ (𝜑 → 𝐴 = (𝑆‘𝐶)) & ⊢ (𝜑 → 𝐴 ≠ 𝑅) & ⊢ (𝜑 → 𝐵 ≠ 𝑅) & ⊢ (𝜑 → 𝐵 ∈ (𝑅𝐼𝐴)) ⇒ ⊢ (𝜑 → 𝐵𝑂𝐶) | ||
Theorem | opphllem2 27013* | Lemma for opphl 27019. Lemma 9.3 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 21-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑆 = ((pInvG‘𝐺)‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ 𝐷) & ⊢ (𝜑 → 𝐴𝑂𝐶) & ⊢ (𝜑 → 𝑀 ∈ 𝐷) & ⊢ (𝜑 → 𝐴 = (𝑆‘𝐶)) & ⊢ (𝜑 → 𝐴 ≠ 𝑅) & ⊢ (𝜑 → 𝐵 ≠ 𝑅) & ⊢ (𝜑 → (𝐴 ∈ (𝑅𝐼𝐵) ∨ 𝐵 ∈ (𝑅𝐼𝐴))) ⇒ ⊢ (𝜑 → 𝐵𝑂𝐶) | ||
Theorem | opphllem3 27014* | Lemma for opphl 27019: We assume opphllem3.l "without loss of generality". (Contributed by Thierry Arnoux, 21-Feb-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ 𝑁 = ((pInvG‘𝐺)‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ 𝐷) & ⊢ (𝜑 → 𝑆 ∈ 𝐷) & ⊢ (𝜑 → 𝑀 ∈ 𝑃) & ⊢ (𝜑 → 𝐴𝑂𝐶) & ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑅)) & ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐶𝐿𝑆)) & ⊢ (𝜑 → 𝑅 ≠ 𝑆) & ⊢ (𝜑 → (𝑆 − 𝐶)(≤G‘𝐺)(𝑅 − 𝐴)) & ⊢ (𝜑 → 𝑈 ∈ 𝑃) & ⊢ (𝜑 → (𝑁‘𝑅) = 𝑆) ⇒ ⊢ (𝜑 → (𝑈(𝐾‘𝑅)𝐴 ↔ (𝑁‘𝑈)(𝐾‘𝑆)𝐶)) | ||
Theorem | opphllem4 27015* | Lemma for opphl 27019. (Contributed by Thierry Arnoux, 22-Feb-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ 𝑁 = ((pInvG‘𝐺)‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ 𝐷) & ⊢ (𝜑 → 𝑆 ∈ 𝐷) & ⊢ (𝜑 → 𝑀 ∈ 𝑃) & ⊢ (𝜑 → 𝐴𝑂𝐶) & ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑅)) & ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐶𝐿𝑆)) & ⊢ (𝜑 → 𝑅 ≠ 𝑆) & ⊢ (𝜑 → (𝑆 − 𝐶)(≤G‘𝐺)(𝑅 − 𝐴)) & ⊢ (𝜑 → 𝑈 ∈ 𝑃) & ⊢ (𝜑 → (𝑁‘𝑅) = 𝑆) & ⊢ (𝜑 → 𝑉 ∈ 𝑃) & ⊢ (𝜑 → 𝑈(𝐾‘𝑅)𝐴) & ⊢ (𝜑 → 𝑉(𝐾‘𝑆)𝐶) ⇒ ⊢ (𝜑 → 𝑈𝑂𝑉) | ||
Theorem | opphllem5 27016* | Second part of Lemma 9.4 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 2-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ 𝑁 = ((pInvG‘𝐺)‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ 𝐷) & ⊢ (𝜑 → 𝑆 ∈ 𝐷) & ⊢ (𝜑 → 𝑀 ∈ 𝑃) & ⊢ (𝜑 → 𝐴𝑂𝐶) & ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑅)) & ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐶𝐿𝑆)) & ⊢ (𝜑 → 𝑈 ∈ 𝑃) & ⊢ (𝜑 → 𝑉 ∈ 𝑃) & ⊢ (𝜑 → 𝑈(𝐾‘𝑅)𝐴) & ⊢ (𝜑 → 𝑉(𝐾‘𝑆)𝐶) ⇒ ⊢ (𝜑 → 𝑈𝑂𝑉) | ||
Theorem | opphllem6 27017* | First part of Lemma 9.4 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ 𝑁 = ((pInvG‘𝐺)‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ 𝐷) & ⊢ (𝜑 → 𝑆 ∈ 𝐷) & ⊢ (𝜑 → 𝑀 ∈ 𝑃) & ⊢ (𝜑 → 𝐴𝑂𝐶) & ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑅)) & ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐶𝐿𝑆)) & ⊢ (𝜑 → 𝑈 ∈ 𝑃) & ⊢ (𝜑 → (𝑁‘𝑅) = 𝑆) ⇒ ⊢ (𝜑 → (𝑈(𝐾‘𝑅)𝐴 ↔ (𝑁‘𝑈)(𝐾‘𝑆)𝐶)) | ||
Theorem | oppperpex 27018* | Restating colperpex 26998 using the "opposite side of a line" relation. (Contributed by Thierry Arnoux, 2-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐷) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ 𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷 ∧ 𝐶𝑂𝑝)) | ||
Theorem | opphl 27019* | If two points 𝐴 and 𝐶 lie on opposite sides of a line 𝐷, then any point of the half line (𝑅𝐴) also lies opposite to 𝐶. Theorem 9.5 of [Schwabhauser] p. 69. (Contributed by Thierry Arnoux, 3-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐴𝑂𝐶) & ⊢ (𝜑 → 𝑅 ∈ 𝐷) & ⊢ (𝜑 → 𝐴(𝐾‘𝑅)𝐵) ⇒ ⊢ (𝜑 → 𝐵𝑂𝐶) | ||
Theorem | outpasch 27020* | Axiom of Pasch, outer form. This was proven by Gupta from other axioms and is therefore presented as Theorem 9.6 in [Schwabhauser] p. 70. (Contributed by Thierry Arnoux, 16-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ 𝑃) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝑅)) & ⊢ (𝜑 → 𝑄 ∈ (𝐵𝐼𝐶)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥))) | ||
Theorem | hlpasch 27021* | An application of the axiom of Pasch for half-lines. (Contributed by Thierry Arnoux, 15-Sep-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐶(𝐾‘𝐵)𝐷) & ⊢ (𝜑 → 𝐴 ∈ (𝑋𝐼𝐶)) ⇒ ⊢ (𝜑 → ∃𝑒 ∈ 𝑃 (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷))) | ||
Syntax | chpg 27022 | "Belong to the same open half-plane" relation for points in a geometry. |
class hpG | ||
Definition | df-hpg 27023* | Define the open half plane relation for a geometry 𝐺. Definition 9.7 of [Schwabhauser] p. 71. See hpgbr 27025 to find the same formulation. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ hpG = (𝑔 ∈ V ↦ (𝑑 ∈ ran (LineG‘𝑔) ↦ {〈𝑎, 𝑏〉 ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]∃𝑐 ∈ 𝑝 (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐)))})) | ||
Theorem | ishpg 27024* | Value of the half-plane relation for a given line 𝐷. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) ⇒ ⊢ (𝜑 → ((hpG‘𝐺)‘𝐷) = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐)}) | ||
Theorem | hpgbr 27025* | Half-planes : property for points 𝐴 and 𝐵 to belong to the same open half plane delimited by line 𝐷. Definition 9.7 of [Schwabhauser] p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) | ||
Theorem | hpgne1 27026* | Points on the open half plane cannot lie on its border. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) | ||
Theorem | hpgne2 27027* | Points on the open half plane cannot lie on its border. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) | ||
Theorem | lnopp2hpgb 27028* | Theorem 9.8 of [Schwabhauser] p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐴𝑂𝐶) ⇒ ⊢ (𝜑 → (𝐵𝑂𝐶 ↔ 𝐴((hpG‘𝐺)‘𝐷)𝐵)) | ||
Theorem | lnoppnhpg 27029* | If two points lie on the opposite side of a line 𝐷, they are not on the same half-plane. Theorem 9.9 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴𝑂𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐴((hpG‘𝐺)‘𝐷)𝐵) | ||
Theorem | hpgerlem 27030* | Lemma for the proof that the half-plane relation is an equivalence relation. Lemma 9.10 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ 𝑃 𝐴𝑂𝑐) | ||
Theorem | hpgid 27031* | The half-plane relation is reflexive. Theorem 9.11 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) ⇒ ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐴) | ||
Theorem | hpgcom 27032* | The half-plane relation commutes. Theorem 9.12 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐵) ⇒ ⊢ (𝜑 → 𝐵((hpG‘𝐺)‘𝐷)𝐴) | ||
Theorem | hpgtr 27033* | The half-plane relation is transitive. Theorem 9.13 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐵((hpG‘𝐺)‘𝐷)𝐶) ⇒ ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐶) | ||
Theorem | colopp 27034* | Opposite sides of a line for colinear points. Theorem 9.18 of [Schwabhauser] p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) & ⊢ (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ⇒ ⊢ (𝜑 → (𝐴𝑂𝐵 ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷))) | ||
Theorem | colhp 27035* | Half-plane relation for colinear points. Theorem 9.19 of [Schwabhauser] p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) & ⊢ (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) & ⊢ 𝐾 = (hlG‘𝐺) ⇒ ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ (𝐴(𝐾‘𝐶)𝐵 ∧ ¬ 𝐴 ∈ 𝐷))) | ||
Theorem | hphl 27036* | If two points are on the same half-line with endpoint on a line, they are on the same half-plane defined by this line. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐵(𝐾‘𝐴)𝐶) ⇒ ⊢ (𝜑 → 𝐵((hpG‘𝐺)‘𝐷)𝐶) | ||
Syntax | cmid 27037 | Declare the constant for the midpoint operation. |
class midG | ||
Syntax | clmi 27038 | Declare the constant for the line mirroring function. |
class lInvG | ||
Definition | df-mid 27039* | Define the midpoint operation. Definition 10.1 of [Schwabhauser] p. 88. See ismidb 27043, midbtwn 27044, and midcgr 27045. (Contributed by Thierry Arnoux, 9-Jun-2019.) |
⊢ midG = (𝑔 ∈ V ↦ (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)))) | ||
Definition | df-lmi 27040* | Define the line mirroring function. Definition 10.3 of [Schwabhauser] p. 89. See islmib 27052. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
⊢ lInvG = (𝑔 ∈ V ↦ (𝑚 ∈ ran (LineG‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (℩𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑚 ∧ (𝑚(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏)))))) | ||
Theorem | midf 27041 | Midpoint as a function. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) ⇒ ⊢ (𝜑 → (midG‘𝐺):(𝑃 × 𝑃)⟶𝑃) | ||
Theorem | midcl 27042 | Closure of the midpoint. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ 𝑃) | ||
Theorem | ismidb 27043 | Property of the midpoint. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝑀 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐵 = ((𝑆‘𝑀)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = 𝑀)) | ||
Theorem | midbtwn 27044 | Betweenness of midpoint. (Contributed by Thierry Arnoux, 7-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ (𝐴𝐼𝐵)) | ||
Theorem | midcgr 27045 | Congruence of midpoint. (Contributed by Thierry Arnoux, 7-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) = 𝐶) ⇒ ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐶 − 𝐵)) | ||
Theorem | midid 27046 | Midpoint of a null segment. (Contributed by Thierry Arnoux, 7-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐴) = 𝐴) | ||
Theorem | midcom 27047 | Commutativity rule for the midpoint. (Contributed by Thierry Arnoux, 2-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) = (𝐵(midG‘𝐺)𝐴)) | ||
Theorem | mirmid 27048 | Point inversion preserves midpoints. (Contributed by Thierry Arnoux, 12-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ 𝑆 = ((pInvG‘𝐺)‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ 𝑃) ⇒ ⊢ (𝜑 → ((𝑆‘𝐴)(midG‘𝐺)(𝑆‘𝐵)) = (𝑆‘(𝐴(midG‘𝐺)𝐵))) | ||
Theorem | lmieu 27049* | Uniqueness of the line mirror point. Theorem 10.2 of [Schwabhauser] p. 88. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) ⇒ ⊢ (𝜑 → ∃!𝑏 ∈ 𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) | ||
Theorem | lmif 27050 | Line mirror as a function. (Contributed by Thierry Arnoux, 11-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) ⇒ ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) | ||
Theorem | lmicl 27051 | Closure of the line mirror. (Contributed by Thierry Arnoux, 11-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) | ||
Theorem | islmib 27052 | Property of the line mirror. (Contributed by Thierry Arnoux, 11-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐵 = (𝑀‘𝐴) ↔ ((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)))) | ||
Theorem | lmicom 27053 | The line mirroring function is an involution. Theorem 10.4 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → (𝑀‘𝐴) = 𝐵) ⇒ ⊢ (𝜑 → (𝑀‘𝐵) = 𝐴) | ||
Theorem | lmilmi 27054 | Line mirroring is an involution. Theorem 10.5 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝑀‘(𝑀‘𝐴)) = 𝐴) | ||
Theorem | lmireu 27055* | Any point has a unique antecedent through line mirroring. Theorem 10.6 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) ⇒ ⊢ (𝜑 → ∃!𝑏 ∈ 𝑃 (𝑀‘𝑏) = 𝐴) | ||
Theorem | lmieq 27056 | Equality deduction for line mirroring. Theorem 10.7 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → (𝑀‘𝐴) = (𝑀‘𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | lmiinv 27057 | The invariants of the line mirroring lie on the mirror line. Theorem 10.8 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) ⇒ ⊢ (𝜑 → ((𝑀‘𝐴) = 𝐴 ↔ 𝐴 ∈ 𝐷)) | ||
Theorem | lmicinv 27058 | The mirroring line is an invariant. (Contributed by Thierry Arnoux, 8-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) = 𝐴) | ||
Theorem | lmimid 27059 | If we have a right angle, then the mirror point is the point inversion. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑆 = ((pInvG‘𝐺)‘𝐵) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → (𝑀‘𝐶) = (𝑆‘𝐶)) | ||
Theorem | lmif1o 27060 | The line mirroring function 𝑀 is a bijection. Theorem 10.9 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) ⇒ ⊢ (𝜑 → 𝑀:𝑃–1-1-onto→𝑃) | ||
Theorem | lmiisolem 27061 | Lemma for lmiiso 27062. (Contributed by Thierry Arnoux, 14-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ 𝑆 = ((pInvG‘𝐺)‘𝑍) & ⊢ 𝑍 = ((𝐴(midG‘𝐺)(𝑀‘𝐴))(midG‘𝐺)(𝐵(midG‘𝐺)(𝑀‘𝐵))) ⇒ ⊢ (𝜑 → ((𝑀‘𝐴) − (𝑀‘𝐵)) = (𝐴 − 𝐵)) | ||
Theorem | lmiiso 27062 | The line mirroring function is an isometry, i.e. it is conserves congruence. Because it is also a bijection, it is also a motion. Theorem 10.10 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → ((𝑀‘𝐴) − (𝑀‘𝐵)) = (𝐴 − 𝐵)) | ||
Theorem | lmimot 27063 | Line mirroring is a motion of the geometric space. Theorem 10.11 of [Schwabhauser] p. 90. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) ⇒ ⊢ (𝜑 → 𝑀 ∈ (𝐺Ismt𝐺)) | ||
Theorem | hypcgrlem1 27064 | Lemma for hypcgr 27066, case where triangles share a cathetus. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) & ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) & ⊢ (𝜑 → 𝐵 = 𝐸) & ⊢ 𝑆 = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)) & ⊢ (𝜑 → 𝐶 = 𝐹) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐷 − 𝐹)) | ||
Theorem | hypcgrlem2 27065 | Lemma for hypcgr 27066, case where triangles share one vertex 𝐵. (Contributed by Thierry Arnoux, 16-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) & ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) & ⊢ (𝜑 → 𝐵 = 𝐸) & ⊢ 𝑆 = ((lInvG‘𝐺)‘((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵)) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐷 − 𝐹)) | ||
Theorem | hypcgr 27066 | If the catheti of two right-angled triangles are congruent, so is their hypothenuse. Theorem 10.12 of [Schwabhauser] p. 91. (Contributed by Thierry Arnoux, 16-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) & ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐷 − 𝐹)) | ||
Theorem | lmiopp 27067* | Line mirroring produces points on the opposite side of the mirroring line. Theorem 10.14 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 2-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) ⇒ ⊢ (𝜑 → 𝐴𝑂(𝑀‘𝐴)) | ||
Theorem | lnperpex 27068* | Existence of a perpendicular to a line 𝐿 at a given point 𝐴. Theorem 10.15 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 2-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → ¬ 𝑄 ∈ 𝐷) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ 𝑃 (𝐷(⟂G‘𝐺)(𝑝𝐿𝐴) ∧ 𝑝((hpG‘𝐺)‘𝐷)𝑄)) | ||
Theorem | trgcopy 27069* | Triangle construction: a copy of a given triangle can always be constructed in such a way that one side is lying on a half-line, and the third vertex is on a given half-plane: existence part. First part of Theorem 10.16 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 4-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) & ⊢ (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹)) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) | ||
Theorem | trgcopyeulem 27070* | Lemma for trgcopyeu 27071. (Contributed by Thierry Arnoux, 8-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) & ⊢ (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹)) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑋”〉) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑌”〉) & ⊢ (𝜑 → 𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) & ⊢ (𝜑 → 𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
Theorem | trgcopyeu 27071* | Triangle construction: a copy of a given triangle can always be constructed in such a way that one side is lying on a half-line, and the third vertex is on a given half-plane: uniqueness part. Second part of Theorem 10.16 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 8-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) & ⊢ (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹)) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) ⇒ ⊢ (𝜑 → ∃!𝑓 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) | ||
Syntax | ccgra 27072 | Declare the constant for the congruence between angles relation. |
class cgrA | ||
Definition | df-cgra 27073* | Define the congruence relation between angles. As for triangles we use "words of points". See iscgra 27074 for a more human readable version. (Contributed by Thierry Arnoux, 30-Jul-2020.) |
⊢ cgrA = (𝑔 ∈ V ↦ {〈𝑎, 𝑏〉 ∣ [(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝 ↑m (0..^3)) ∧ 𝑏 ∈ (𝑝 ↑m (0..^3))) ∧ ∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 (𝑎(cgrG‘𝑔)〈“𝑥(𝑏‘1)𝑦”〉 ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))}) | ||
Theorem | iscgra 27074* | Property for two angles ABC and DEF to be congruent. This is a modified version of the definition 11.3 of [Schwabhauser] p. 95. where the number of constructed points has been reduced to two. We chose this version rather than the textbook version because it is shorter and therefore simpler to work with. Theorem dfcgra2 27095 shows that those definitions are indeed equivalent. (Contributed by Thierry Arnoux, 31-Jul-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) ⇒ ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹))) | ||
Theorem | iscgra1 27075* | A special version of iscgra 27074 where one distance is known to be equal. In this case, angle congruence can be written with only one quantifier. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) ⇒ ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ∃𝑥 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝐹))) | ||
Theorem | iscgrad 27076 | Sufficient conditions for angle congruence, deduction version. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉) & ⊢ (𝜑 → 𝑋(𝐾‘𝐸)𝐷) & ⊢ (𝜑 → 𝑌(𝐾‘𝐸)𝐹) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) | ||
Theorem | cgrane1 27077 | Angles imply inequality. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) | ||
Theorem | cgrane2 27078 | Angles imply inequality. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) ⇒ ⊢ (𝜑 → 𝐵 ≠ 𝐶) | ||
Theorem | cgrane3 27079 | Angles imply inequality. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) ⇒ ⊢ (𝜑 → 𝐸 ≠ 𝐷) | ||
Theorem | cgrane4 27080 | Angles imply inequality. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) ⇒ ⊢ (𝜑 → 𝐸 ≠ 𝐹) | ||
Theorem | cgrahl1 27081 | Angle congruence is independent of the choice of points on the rays. Proposition 11.10 of [Schwabhauser] p. 95. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑋(𝐾‘𝐸)𝐷) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝑋𝐸𝐹”〉) | ||
Theorem | cgrahl2 27082 | Angle congruence is independent of the choice of points on the rays. Proposition 11.10 of [Schwabhauser] p. 95. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑋(𝐾‘𝐸)𝐹) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉) | ||
Theorem | cgracgr 27083 | First direction of proposition 11.4 of [Schwabhauser] p. 95. Again, this is "half" of the proposition, i.e. only two additional points are used, while Schwabhauser has four. (Contributed by Thierry Arnoux, 31-Jul-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑋(𝐾‘𝐵)𝐴) & ⊢ (𝜑 → 𝑌(𝐾‘𝐵)𝐶) & ⊢ (𝜑 → (𝐵 − 𝑋) = (𝐸 − 𝐷)) & ⊢ (𝜑 → (𝐵 − 𝑌) = (𝐸 − 𝐹)) ⇒ ⊢ (𝜑 → (𝑋 − 𝑌) = (𝐷 − 𝐹)) | ||
Theorem | cgraid 27084 | Angle congruence is reflexive. Theorem 11.6 of [Schwabhauser] p. 96. (Contributed by Thierry Arnoux, 31-Jul-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐴𝐵𝐶”〉) | ||
Theorem | cgraswap 27085 | Swap rays in a congruence relation. Theorem 11.9 of [Schwabhauser] p. 96. (Contributed by Thierry Arnoux, 5-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐶𝐵𝐴”〉) | ||
Theorem | cgrcgra 27086 | Triangle congruence implies angle congruence. This is a portion of CPCTC, focusing on a specific angle. (Contributed by Arnoux, 2-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) | ||
Theorem | cgracom 27087 | Angle congruence commutes. Theorem 11.7 of [Schwabhauser] p. 97. (Contributed by Thierry Arnoux, 5-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) ⇒ ⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉(cgrA‘𝐺)〈“𝐴𝐵𝐶”〉) | ||
Theorem | cgratr 27088 | Angle congruence is transitive. Theorem 11.8 of [Schwabhauser] p. 97. (Contributed by Thierry Arnoux, 5-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) & ⊢ (𝜑 → 𝐻 ∈ 𝑃) & ⊢ (𝜑 → 𝑈 ∈ 𝑃) & ⊢ (𝜑 → 𝐽 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉(cgrA‘𝐺)〈“𝐻𝑈𝐽”〉) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐻𝑈𝐽”〉) | ||
Theorem | flatcgra 27089 | Flat angles are congruent. (Contributed by Thierry Arnoux, 13-Feb-2023.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝐹)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐶 ≠ 𝐵) & ⊢ (𝜑 → 𝐷 ≠ 𝐸) & ⊢ (𝜑 → 𝐹 ≠ 𝐸) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) | ||
Theorem | cgraswaplr 27090 | Swap both side of angle congruence. (Contributed by Thierry Arnoux, 5-Oct-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) ⇒ ⊢ (𝜑 → 〈“𝐶𝐵𝐴”〉(cgrA‘𝐺)〈“𝐹𝐸𝐷”〉) | ||
Theorem | cgrabtwn 27091 | Angle congruence preserves flat angles. Part of Theorem 11.21 of [Schwabhauser] p. 97. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) ⇒ ⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝐹)) | ||
Theorem | cgrahl 27092 | Angle congruence preserves null angles. Part of Theorem 11.21 of [Schwabhauser] p. 97. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴(𝐾‘𝐵)𝐶) ⇒ ⊢ (𝜑 → 𝐷(𝐾‘𝐸)𝐹) | ||
Theorem | cgracol 27093 | Angle congruence preserves colinearity. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) | ||
Theorem | cgrancol 27094 | Angle congruence preserves non-colinearity. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ⇒ ⊢ (𝜑 → ¬ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) | ||
Theorem | dfcgra2 27095* | This is the full statement of definition 11.2 of [Schwabhauser] p. 95. This proof serves to confirm that the definition we have chosen, df-cgra 27073 is indeed equivalent to the textbook's definition. (Contributed by Thierry Arnoux, 2-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) ⇒ ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵) ∧ (𝐷 ≠ 𝐸 ∧ 𝐹 ≠ 𝐸) ∧ ∃𝑎 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∃𝑑 ∈ 𝑃 ∃𝑓 ∈ 𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 − 𝑎) = (𝐸 − 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 − 𝑐) = (𝐸 − 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 − 𝑑) = (𝐵 − 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 − 𝑓) = (𝐵 − 𝐶))) ∧ (𝑎 − 𝑐) = (𝑑 − 𝑓))))) | ||
Theorem | sacgr 27096 | Supplementary angles of congruent angles are themselves congruent. Theorem 11.13 of [Schwabhauser] p. 98. (Contributed by Thierry Arnoux, 30-Sep-2020.) (Proof shortened by Igor Ieskov, 16-Feb-2023.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝑋)) & ⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝑌)) & ⊢ (𝜑 → 𝐵 ≠ 𝑋) & ⊢ (𝜑 → 𝐸 ≠ 𝑌) ⇒ ⊢ (𝜑 → 〈“𝑋𝐵𝐶”〉(cgrA‘𝐺)〈“𝑌𝐸𝐹”〉) | ||
Theorem | oacgr 27097 | Vertical angle theorem. Vertical, or opposite angles are the facing pair of angles formed when two lines intersect. Eudemus of Rhodes attributed the proof to Thales of Miletus. The proposition showed that since both of a pair of vertical angles are supplementary to both of the adjacent angles, the vertical angles are equal in measure. We follow the same path. Theorem 11.14 of [Schwabhauser] p. 98. (Contributed by Thierry Arnoux, 27-Sep-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) & ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐹)) & ⊢ (𝜑 → 𝐵 ≠ 𝐴) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐵 ≠ 𝐷) & ⊢ (𝜑 → 𝐵 ≠ 𝐹) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐵𝐹”〉) | ||
Theorem | acopy 27098* | Angle construction. Theorem 11.15 of [Schwabhauser] p. 98. This is Hilbert's axiom III.4 for geometry. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) & ⊢ (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹)) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) | ||
Theorem | acopyeu 27099 | Angle construction. Theorem 11.15 of [Schwabhauser] p. 98. This is Hilbert's axiom III.4 for geometry. Akin to a uniqueness theorem, this states that if two points 𝑋 and 𝑌 both fulfill the conditions, then they are on the same half-line. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) & ⊢ (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹)) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑌”〉) & ⊢ (𝜑 → 𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) & ⊢ (𝜑 → 𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ⇒ ⊢ (𝜑 → 𝑋(𝐾‘𝐸)𝑌) | ||
Syntax | cinag 27100 | Extend class relation with the geometrical "point in angle" relation. |
class inA |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |