| Metamath
Proof Explorer Theorem List (p. 271 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | basellem4 27001* | Lemma for basel 27007. By basellem3 27000, the expression 𝑃((cot𝑥)↑2) = sin(𝑁𝑥) / (sin𝑥)↑𝑁 goes to zero whenever 𝑥 = 𝑛π / 𝑁 for some 𝑛 ∈ (1...𝑀), so this function enumerates 𝑀 distinct roots of a degree- 𝑀 polynomial, which must therefore be all the roots by fta1 26223. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| ⊢ 𝑁 = ((2 · 𝑀) + 1) & ⊢ 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (𝑡↑𝑗))) & ⊢ 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2)) ⇒ ⊢ (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1-onto→(◡𝑃 “ {0})) | ||
| Theorem | basellem5 27002* | Lemma for basel 27007. Using vieta1 26227, we can calculate the sum of the roots of 𝑃 as the quotient of the top two coefficients, and since the function 𝑇 enumerates the roots, we are left with an equation that sums the cot↑2 function at the 𝑀 different roots. (Contributed by Mario Carneiro, 29-Jul-2014.) |
| ⊢ 𝑁 = ((2 · 𝑀) + 1) & ⊢ 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (𝑡↑𝑗))) & ⊢ 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2)) ⇒ ⊢ (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)) | ||
| Theorem | basellem6 27003 | Lemma for basel 27007. The function 𝐺 goes to zero because it is bounded by 1 / 𝑛. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) ⇒ ⊢ 𝐺 ⇝ 0 | ||
| Theorem | basellem7 27004 | Lemma for basel 27007. The function 1 + 𝐴 · 𝐺 for any fixed 𝐴 goes to 1. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) & ⊢ 𝐴 ∈ ℂ ⇒ ⊢ ((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺)) ⇝ 1 | ||
| Theorem | basellem8 27005* | Lemma for basel 27007. The function 𝐹 of partial sums of the inverse squares is bounded below by 𝐽 and above by 𝐾, obtained by summing the inequality cot↑2𝑥 ≤ 1 / 𝑥↑2 ≤ csc↑2𝑥 = cot↑2𝑥 + 1 over the 𝑀 roots of the polynomial 𝑃, and applying the identity basellem5 27002. (Contributed by Mario Carneiro, 29-Jul-2014.) |
| ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) & ⊢ 𝐹 = seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2))) & ⊢ 𝐻 = ((ℕ × {((π↑2) / 6)}) ∘f · ((ℕ × {1}) ∘f − 𝐺)) & ⊢ 𝐽 = (𝐻 ∘f · ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺))) & ⊢ 𝐾 = (𝐻 ∘f · ((ℕ × {1}) ∘f + 𝐺)) & ⊢ 𝑁 = ((2 · 𝑀) + 1) ⇒ ⊢ (𝑀 ∈ ℕ → ((𝐽‘𝑀) ≤ (𝐹‘𝑀) ∧ (𝐹‘𝑀) ≤ (𝐾‘𝑀))) | ||
| Theorem | basellem9 27006* | Lemma for basel 27007. Since by basellem8 27005 𝐹 is bounded by two expressions that tend to π↑2 / 6, 𝐹 must also go to π↑2 / 6 by the squeeze theorem climsqz 15614. But the series 𝐹 is exactly the partial sums of 𝑘↑-2, so it follows that this is also the value of the infinite sum Σ𝑘 ∈ ℕ(𝑘↑-2). (Contributed by Mario Carneiro, 28-Jul-2014.) |
| ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) & ⊢ 𝐹 = seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2))) & ⊢ 𝐻 = ((ℕ × {((π↑2) / 6)}) ∘f · ((ℕ × {1}) ∘f − 𝐺)) & ⊢ 𝐽 = (𝐻 ∘f · ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺))) & ⊢ 𝐾 = (𝐻 ∘f · ((ℕ × {1}) ∘f + 𝐺)) ⇒ ⊢ Σ𝑘 ∈ ℕ (𝑘↑-2) = ((π↑2) / 6) | ||
| Theorem | basel 27007 | The sum of the inverse squares is π↑2 / 6. This is commonly known as the Basel problem, with the first known proof attributed to Euler. See http://en.wikipedia.org/wiki/Basel_problem. This particular proof approach is due to Cauchy (1821). This is Metamath 100 proof #14. (Contributed by Mario Carneiro, 30-Jul-2014.) |
| ⊢ Σ𝑘 ∈ ℕ (𝑘↑-2) = ((π↑2) / 6) | ||
| Syntax | ccht 27008 | Extend class notation with the first Chebyshev function. |
| class θ | ||
| Syntax | cvma 27009 | Extend class notation with the von Mangoldt function. |
| class Λ | ||
| Syntax | cchp 27010 | Extend class notation with the second Chebyshev function. |
| class ψ | ||
| Syntax | cppi 27011 | Extend class notation with the prime-counting function pi. |
| class π | ||
| Syntax | cmu 27012 | Extend class notation with the Möbius function. |
| class μ | ||
| Syntax | csgm 27013 | Extend class notation with the divisor function. |
| class σ | ||
| Definition | df-cht 27014* | Define the first Chebyshev function, which adds up the logarithms of all primes less than 𝑥, see definition in [ApostolNT] p. 75. The symbol used to represent this function is sometimes the variant greek letter theta shown here and sometimes the greek letter psi, ψ; however, this notation can also refer to the second Chebyshev function, which adds up the logarithms of prime powers instead, see df-chp 27016. See https://en.wikipedia.org/wiki/Chebyshev_function 27016 for a discussion of the two functions. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ θ = (𝑥 ∈ ℝ ↦ Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝)) | ||
| Definition | df-vma 27015* | Define the von Mangoldt function, which gives the logarithm of the prime at a prime power, and is zero elsewhere, see definition in [ApostolNT] p. 32. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ Λ = (𝑥 ∈ ℕ ↦ ⦋{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} / 𝑠⦌if((♯‘𝑠) = 1, (log‘∪ 𝑠), 0)) | ||
| Definition | df-chp 27016* | Define the second Chebyshev function, which adds up the logarithms of the primes corresponding to the prime powers less than 𝑥, see definition in [ApostolNT] p. 75. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ ψ = (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛)) | ||
| Definition | df-ppi 27017 | Define the prime π function, which counts the number of primes less than or equal to 𝑥, see definition in [ApostolNT] p. 8. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ π = (𝑥 ∈ ℝ ↦ (♯‘((0[,]𝑥) ∩ ℙ))) | ||
| Definition | df-mu 27018* | Define the Möbius function, which is zero for non-squarefree numbers and is -1 or 1 for squarefree numbers according as to the number of prime divisors of the number is even or odd, see definition in [ApostolNT] p. 24. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ μ = (𝑥 ∈ ℕ ↦ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥})))) | ||
| Definition | df-sgm 27019* | Define the sum of positive divisors function (𝑥 σ 𝑛), which is the sum of the xth powers of the positive integer divisors of n, see definition in [ApostolNT] p. 38. For 𝑥 = 0, (𝑥 σ 𝑛) counts the number of divisors of 𝑛, i.e. (0 σ 𝑛) is the divisor function, see remark in [ApostolNT] p. 38. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ σ = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛} (𝑘↑𝑐𝑥)) | ||
| Theorem | efnnfsumcl 27020* | Finite sum closure in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (exp‘𝐵) ∈ ℕ) ⇒ ⊢ (𝜑 → (exp‘Σ𝑘 ∈ 𝐴 𝐵) ∈ ℕ) | ||
| Theorem | ppisval 27021 | The set of primes less than 𝐴 expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ)) | ||
| Theorem | ppisval2 27022 | The set of primes less than 𝐴 expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) → ((0[,]𝐴) ∩ ℙ) = ((𝑀...(⌊‘𝐴)) ∩ ℙ)) | ||
| Theorem | ppifi 27023 | The set of primes less than 𝐴 is a finite set. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ∈ Fin) | ||
| Theorem | prmdvdsfi 27024* | The set of prime divisors of a number is a finite set. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝐴 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin) | ||
| Theorem | chtf 27025 | Domain and codoamin of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ θ:ℝ⟶ℝ | ||
| Theorem | chtcl 27026 | Real closure of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ → (θ‘𝐴) ∈ ℝ) | ||
| Theorem | chtval 27027* | Value of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)) | ||
| Theorem | efchtcl 27028 | The Chebyshev function is closed in the log-integers. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝐴 ∈ ℝ → (exp‘(θ‘𝐴)) ∈ ℕ) | ||
| Theorem | chtge0 27029 | The Chebyshev function is always positive. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ → 0 ≤ (θ‘𝐴)) | ||
| Theorem | vmaval 27030* | Value of the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ 𝑆 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ⇒ ⊢ (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0)) | ||
| Theorem | isppw 27031* | Two ways to say that 𝐴 is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃!𝑝 ∈ ℙ 𝑝 ∥ 𝐴)) | ||
| Theorem | isppw2 27032* | Two ways to say that 𝐴 is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝐴 = (𝑝↑𝑘))) | ||
| Theorem | vmappw 27033 | Value of the von Mangoldt function at a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃↑𝐾)) = (log‘𝑃)) | ||
| Theorem | vmaprm 27034 | Value of the von Mangoldt function at a prime. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝑃 ∈ ℙ → (Λ‘𝑃) = (log‘𝑃)) | ||
| Theorem | vmacl 27035 | Closure for the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝐴 ∈ ℕ → (Λ‘𝐴) ∈ ℝ) | ||
| Theorem | vmaf 27036 | Functionality of the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ Λ:ℕ⟶ℝ | ||
| Theorem | efvmacl 27037 | The von Mangoldt is closed in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝐴 ∈ ℕ → (exp‘(Λ‘𝐴)) ∈ ℕ) | ||
| Theorem | vmage0 27038 | The von Mangoldt function is nonnegative. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝐴 ∈ ℕ → 0 ≤ (Λ‘𝐴)) | ||
| Theorem | chpval 27039* | Value of the second Chebyshev function, or summary von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛)) | ||
| Theorem | chpf 27040 | Functionality of the second Chebyshev function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ ψ:ℝ⟶ℝ | ||
| Theorem | chpcl 27041 | Closure for the second Chebyshev function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝐴 ∈ ℝ → (ψ‘𝐴) ∈ ℝ) | ||
| Theorem | efchpcl 27042 | The second Chebyshev function is closed in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝐴 ∈ ℝ → (exp‘(ψ‘𝐴)) ∈ ℕ) | ||
| Theorem | chpge0 27043 | The second Chebyshev function is nonnegative. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝐴 ∈ ℝ → 0 ≤ (ψ‘𝐴)) | ||
| Theorem | ppival 27044 | Value of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ → (π‘𝐴) = (♯‘((0[,]𝐴) ∩ ℙ))) | ||
| Theorem | ppival2 27045 | Value of the prime-counting function pi. (Contributed by Mario Carneiro, 18-Sep-2014.) |
| ⊢ (𝐴 ∈ ℤ → (π‘𝐴) = (♯‘((2...𝐴) ∩ ℙ))) | ||
| Theorem | ppival2g 27046 | Value of the prime-counting function pi. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 2 ∈ (ℤ≥‘𝑀)) → (π‘𝐴) = (♯‘((𝑀...𝐴) ∩ ℙ))) | ||
| Theorem | ppif 27047 | Domain and codomain of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ π:ℝ⟶ℕ0 | ||
| Theorem | ppicl 27048 | Real closure of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ → (π‘𝐴) ∈ ℕ0) | ||
| Theorem | muval 27049* | The value of the Möbius function. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) | ||
| Theorem | muval1 27050 | The value of the Möbius function at a non-squarefree number. (Contributed by Mario Carneiro, 21-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = 0) | ||
| Theorem | muval2 27051* | The value of the Möbius function at a squarefree number. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) | ||
| Theorem | isnsqf 27052* | Two ways to say that a number is not squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) | ||
| Theorem | issqf 27053* | Two ways to say that a number is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1)) | ||
| Theorem | sqfpc 27054 | The prime count of a squarefree number is at most 1. (Contributed by Mario Carneiro, 1-Jul-2015.) |
| ⊢ ((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0 ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt 𝐴) ≤ 1) | ||
| Theorem | dvdssqf 27055 | A divisor of a squarefree number is squarefree. (Contributed by Mario Carneiro, 1-Jul-2015.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) → ((μ‘𝐴) ≠ 0 → (μ‘𝐵) ≠ 0)) | ||
| Theorem | sqf11 27056* | A squarefree number is completely determined by the set of its prime divisors. (Contributed by Mario Carneiro, 1-Jul-2015.) |
| ⊢ (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 ∥ 𝐴 ↔ 𝑝 ∥ 𝐵))) | ||
| Theorem | muf 27057 | The Möbius function is a function into the integers. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ μ:ℕ⟶ℤ | ||
| Theorem | mucl 27058 | Closure of the Möbius function. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) ∈ ℤ) | ||
| Theorem | sgmval 27059* | The value of the divisor function. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 21-Jun-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) = Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝑐𝐴)) | ||
| Theorem | sgmval2 27060* | The value of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) = Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴)) | ||
| Theorem | 0sgm 27061* | The value of the sum-of-divisors function, usually denoted σ<SUB>0</SUB>(<i>n</i>). (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ (𝐴 ∈ ℕ → (0 σ 𝐴) = (♯‘{𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴})) | ||
| Theorem | sgmf 27062 | The divisor function is a function into the complex numbers. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 21-Jun-2015.) |
| ⊢ σ :(ℂ × ℕ)⟶ℂ | ||
| Theorem | sgmcl 27063 | Closure of the divisor function. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) ∈ ℂ) | ||
| Theorem | sgmnncl 27064 | Closure of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) ∈ ℕ) | ||
| Theorem | mule1 27065 | The Möbius function takes on values in magnitude at most 1. (Together with mucl 27058, this implies that it takes a value in {-1, 0, 1} for every positive integer.) (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ ℕ → (abs‘(μ‘𝐴)) ≤ 1) | ||
| Theorem | chtfl 27066 | The Chebyshev function does not change off the integers. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ → (θ‘(⌊‘𝐴)) = (θ‘𝐴)) | ||
| Theorem | chpfl 27067 | The second Chebyshev function does not change off the integers. (Contributed by Mario Carneiro, 9-Apr-2016.) |
| ⊢ (𝐴 ∈ ℝ → (ψ‘(⌊‘𝐴)) = (ψ‘𝐴)) | ||
| Theorem | ppiprm 27068 | The prime-counting function π at a prime. (Contributed by Mario Carneiro, 19-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = ((π‘𝐴) + 1)) | ||
| Theorem | ppinprm 27069 | The prime-counting function π at a non-prime. (Contributed by Mario Carneiro, 19-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = (π‘𝐴)) | ||
| Theorem | chtprm 27070 | The Chebyshev function at a prime. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = ((θ‘𝐴) + (log‘(𝐴 + 1)))) | ||
| Theorem | chtnprm 27071 | The Chebyshev function at a non-prime. (Contributed by Mario Carneiro, 19-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = (θ‘𝐴)) | ||
| Theorem | chpp1 27072 | The second Chebyshev function at a successor. (Contributed by Mario Carneiro, 11-Apr-2016.) |
| ⊢ (𝐴 ∈ ℕ0 → (ψ‘(𝐴 + 1)) = ((ψ‘𝐴) + (Λ‘(𝐴 + 1)))) | ||
| Theorem | chtwordi 27073 | The Chebyshev function is weakly increasing. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (θ‘𝐴) ≤ (θ‘𝐵)) | ||
| Theorem | chpwordi 27074 | The second Chebyshev function is weakly increasing. (Contributed by Mario Carneiro, 9-Apr-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (ψ‘𝐴) ≤ (ψ‘𝐵)) | ||
| Theorem | chtdif 27075* | The difference of the Chebyshev function at two points sums the logarithms of the primes in an interval. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((θ‘𝑁) − (θ‘𝑀)) = Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝)) | ||
| Theorem | efchtdvds 27076 | The exponentiated Chebyshev function forms a divisibility chain between any two points. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (exp‘(θ‘𝐴)) ∥ (exp‘(θ‘𝐵))) | ||
| Theorem | ppifl 27077 | The prime-counting function π does not change off the integers. (Contributed by Mario Carneiro, 18-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ → (π‘(⌊‘𝐴)) = (π‘𝐴)) | ||
| Theorem | ppip1le 27078 | The prime-counting function π cannot locally increase faster than the identity function. (Contributed by Mario Carneiro, 21-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ → (π‘(𝐴 + 1)) ≤ ((π‘𝐴) + 1)) | ||
| Theorem | ppiwordi 27079 | The prime-counting function π is weakly increasing. (Contributed by Mario Carneiro, 19-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (π‘𝐴) ≤ (π‘𝐵)) | ||
| Theorem | ppidif 27080 | The difference of the prime-counting function π at two points counts the number of primes in an interval. (Contributed by Mario Carneiro, 21-Sep-2014.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((π‘𝑁) − (π‘𝑀)) = (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))) | ||
| Theorem | ppi1 27081 | The prime-counting function π at 1. (Contributed by Mario Carneiro, 21-Sep-2014.) |
| ⊢ (π‘1) = 0 | ||
| Theorem | cht1 27082 | The Chebyshev function at 1. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (θ‘1) = 0 | ||
| Theorem | vma1 27083 | The von Mangoldt function at 1. (Contributed by Mario Carneiro, 9-Apr-2016.) |
| ⊢ (Λ‘1) = 0 | ||
| Theorem | chp1 27084 | The second Chebyshev function at 1. (Contributed by Mario Carneiro, 9-Apr-2016.) |
| ⊢ (ψ‘1) = 0 | ||
| Theorem | ppi1i 27085 | Inference form of ppiprm 27068. (Contributed by Mario Carneiro, 21-Sep-2014.) |
| ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝑁 = (𝑀 + 1) & ⊢ (π‘𝑀) = 𝐾 & ⊢ 𝑁 ∈ ℙ ⇒ ⊢ (π‘𝑁) = (𝐾 + 1) | ||
| Theorem | ppi2i 27086 | Inference form of ppinprm 27069. (Contributed by Mario Carneiro, 21-Sep-2014.) |
| ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝑁 = (𝑀 + 1) & ⊢ (π‘𝑀) = 𝐾 & ⊢ ¬ 𝑁 ∈ ℙ ⇒ ⊢ (π‘𝑁) = 𝐾 | ||
| Theorem | ppi2 27087 | The prime-counting function π at 2. (Contributed by Mario Carneiro, 21-Sep-2014.) |
| ⊢ (π‘2) = 1 | ||
| Theorem | ppi3 27088 | The prime-counting function π at 3. (Contributed by Mario Carneiro, 21-Sep-2014.) |
| ⊢ (π‘3) = 2 | ||
| Theorem | cht2 27089 | The Chebyshev function at 2. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (θ‘2) = (log‘2) | ||
| Theorem | cht3 27090 | The Chebyshev function at 3. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (θ‘3) = (log‘6) | ||
| Theorem | ppinncl 27091 | Closure of the prime-counting function π in the positive integers. (Contributed by Mario Carneiro, 21-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (π‘𝐴) ∈ ℕ) | ||
| Theorem | chtrpcl 27092 | Closure of the Chebyshev function in the positive reals. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (θ‘𝐴) ∈ ℝ+) | ||
| Theorem | ppieq0 27093 | The prime-counting function π is zero iff its argument is less than 2. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ → ((π‘𝐴) = 0 ↔ 𝐴 < 2)) | ||
| Theorem | ppiltx 27094 | The prime-counting function π is strictly less than the identity. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ+ → (π‘𝐴) < 𝐴) | ||
| Theorem | prmorcht 27095 | Relate the primorial (product of the first 𝑛 primes) to the Chebyshev function. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)) ⇒ ⊢ (𝐴 ∈ ℕ → (exp‘(θ‘𝐴)) = (seq1( · , 𝐹)‘𝐴)) | ||
| Theorem | mumullem1 27096 | Lemma for mumul 27098. A multiple of a non-squarefree number is non-squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (μ‘𝐴) = 0) → (μ‘(𝐴 · 𝐵)) = 0) | ||
| Theorem | mumullem2 27097 | Lemma for mumul 27098. The product of two coprime squarefree numbers is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) ≠ 0) | ||
| Theorem | mumul 27098 | The Möbius function is a multiplicative function. This is one of the primary interests of the Möbius function as an arithmetic function. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵))) | ||
| Theorem | sqff1o 27099* | There is a bijection from the squarefree divisors of a number 𝑁 to the powerset of the prime divisors of 𝑁. Among other things, this implies that a number has 2↑𝑘 squarefree divisors where 𝑘 is the number of prime divisors, and a squarefree number has 2↑𝑘 divisors (because all divisors of a squarefree number are squarefree). The inverse function to 𝐹 takes the product of all the primes in some subset of prime divisors of 𝑁. (Contributed by Mario Carneiro, 1-Jul-2015.) |
| ⊢ 𝑆 = {𝑥 ∈ ℕ ∣ ((μ‘𝑥) ≠ 0 ∧ 𝑥 ∥ 𝑁)} & ⊢ 𝐹 = (𝑛 ∈ 𝑆 ↦ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛}) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ → 𝐹:𝑆–1-1-onto→𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) | ||
| Theorem | fsumdvdsdiaglem 27100* | A "diagonal commutation" of divisor sums analogous to fsum0diag 15750. (Contributed by Mario Carneiro, 2-Jul-2015.) (Revised by Mario Carneiro, 8-Apr-2016.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)}) → (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |