| Metamath
Proof Explorer Theorem List (p. 271 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Syntax | ccht 27001 | Extend class notation with the first Chebyshev function. |
| class θ | ||
| Syntax | cvma 27002 | Extend class notation with the von Mangoldt function. |
| class Λ | ||
| Syntax | cchp 27003 | Extend class notation with the second Chebyshev function. |
| class ψ | ||
| Syntax | cppi 27004 | Extend class notation with the prime-counting function pi. |
| class π | ||
| Syntax | cmu 27005 | Extend class notation with the Möbius function. |
| class μ | ||
| Syntax | csgm 27006 | Extend class notation with the divisor function. |
| class σ | ||
| Definition | df-cht 27007* | Define the first Chebyshev function, which adds up the logarithms of all primes less than 𝑥, see definition in [ApostolNT] p. 75. The symbol used to represent this function is sometimes the variant greek letter theta shown here and sometimes the greek letter psi, ψ; however, this notation can also refer to the second Chebyshev function, which adds up the logarithms of prime powers instead, see df-chp 27009. See https://en.wikipedia.org/wiki/Chebyshev_function 27009 for a discussion of the two functions. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ θ = (𝑥 ∈ ℝ ↦ Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝)) | ||
| Definition | df-vma 27008* | Define the von Mangoldt function, which gives the logarithm of the prime at a prime power, and is zero elsewhere, see definition in [ApostolNT] p. 32. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ Λ = (𝑥 ∈ ℕ ↦ ⦋{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} / 𝑠⦌if((♯‘𝑠) = 1, (log‘∪ 𝑠), 0)) | ||
| Definition | df-chp 27009* | Define the second Chebyshev function, which adds up the logarithms of the primes corresponding to the prime powers less than 𝑥, see definition in [ApostolNT] p. 75. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ ψ = (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛)) | ||
| Definition | df-ppi 27010 | Define the prime π function, which counts the number of primes less than or equal to 𝑥, see definition in [ApostolNT] p. 8. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ π = (𝑥 ∈ ℝ ↦ (♯‘((0[,]𝑥) ∩ ℙ))) | ||
| Definition | df-mu 27011* | Define the Möbius function, which is zero for non-squarefree numbers and is -1 or 1 for squarefree numbers according as to the number of prime divisors of the number is even or odd, see definition in [ApostolNT] p. 24. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ μ = (𝑥 ∈ ℕ ↦ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥})))) | ||
| Definition | df-sgm 27012* | Define the sum of positive divisors function (𝑥 σ 𝑛), which is the sum of the xth powers of the positive integer divisors of n, see definition in [ApostolNT] p. 38. For 𝑥 = 0, (𝑥 σ 𝑛) counts the number of divisors of 𝑛, i.e. (0 σ 𝑛) is the divisor function, see remark in [ApostolNT] p. 38. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ σ = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛} (𝑘↑𝑐𝑥)) | ||
| Theorem | efnnfsumcl 27013* | Finite sum closure in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (exp‘𝐵) ∈ ℕ) ⇒ ⊢ (𝜑 → (exp‘Σ𝑘 ∈ 𝐴 𝐵) ∈ ℕ) | ||
| Theorem | ppisval 27014 | The set of primes less than 𝐴 expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ)) | ||
| Theorem | ppisval2 27015 | The set of primes less than 𝐴 expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) → ((0[,]𝐴) ∩ ℙ) = ((𝑀...(⌊‘𝐴)) ∩ ℙ)) | ||
| Theorem | ppifi 27016 | The set of primes less than 𝐴 is a finite set. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ∈ Fin) | ||
| Theorem | prmdvdsfi 27017* | The set of prime divisors of a number is a finite set. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝐴 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin) | ||
| Theorem | chtf 27018 | Domain and codoamin of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ θ:ℝ⟶ℝ | ||
| Theorem | chtcl 27019 | Real closure of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ → (θ‘𝐴) ∈ ℝ) | ||
| Theorem | chtval 27020* | Value of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)) | ||
| Theorem | efchtcl 27021 | The Chebyshev function is closed in the log-integers. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝐴 ∈ ℝ → (exp‘(θ‘𝐴)) ∈ ℕ) | ||
| Theorem | chtge0 27022 | The Chebyshev function is always positive. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ → 0 ≤ (θ‘𝐴)) | ||
| Theorem | vmaval 27023* | Value of the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ 𝑆 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ⇒ ⊢ (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0)) | ||
| Theorem | isppw 27024* | Two ways to say that 𝐴 is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃!𝑝 ∈ ℙ 𝑝 ∥ 𝐴)) | ||
| Theorem | isppw2 27025* | Two ways to say that 𝐴 is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝐴 = (𝑝↑𝑘))) | ||
| Theorem | vmappw 27026 | Value of the von Mangoldt function at a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃↑𝐾)) = (log‘𝑃)) | ||
| Theorem | vmaprm 27027 | Value of the von Mangoldt function at a prime. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝑃 ∈ ℙ → (Λ‘𝑃) = (log‘𝑃)) | ||
| Theorem | vmacl 27028 | Closure for the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝐴 ∈ ℕ → (Λ‘𝐴) ∈ ℝ) | ||
| Theorem | vmaf 27029 | Functionality of the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ Λ:ℕ⟶ℝ | ||
| Theorem | efvmacl 27030 | The von Mangoldt is closed in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝐴 ∈ ℕ → (exp‘(Λ‘𝐴)) ∈ ℕ) | ||
| Theorem | vmage0 27031 | The von Mangoldt function is nonnegative. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝐴 ∈ ℕ → 0 ≤ (Λ‘𝐴)) | ||
| Theorem | chpval 27032* | Value of the second Chebyshev function, or summary von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛)) | ||
| Theorem | chpf 27033 | Functionality of the second Chebyshev function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ ψ:ℝ⟶ℝ | ||
| Theorem | chpcl 27034 | Closure for the second Chebyshev function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝐴 ∈ ℝ → (ψ‘𝐴) ∈ ℝ) | ||
| Theorem | efchpcl 27035 | The second Chebyshev function is closed in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝐴 ∈ ℝ → (exp‘(ψ‘𝐴)) ∈ ℕ) | ||
| Theorem | chpge0 27036 | The second Chebyshev function is nonnegative. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| ⊢ (𝐴 ∈ ℝ → 0 ≤ (ψ‘𝐴)) | ||
| Theorem | ppival 27037 | Value of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ → (π‘𝐴) = (♯‘((0[,]𝐴) ∩ ℙ))) | ||
| Theorem | ppival2 27038 | Value of the prime-counting function pi. (Contributed by Mario Carneiro, 18-Sep-2014.) |
| ⊢ (𝐴 ∈ ℤ → (π‘𝐴) = (♯‘((2...𝐴) ∩ ℙ))) | ||
| Theorem | ppival2g 27039 | Value of the prime-counting function pi. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 2 ∈ (ℤ≥‘𝑀)) → (π‘𝐴) = (♯‘((𝑀...𝐴) ∩ ℙ))) | ||
| Theorem | ppif 27040 | Domain and codomain of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ π:ℝ⟶ℕ0 | ||
| Theorem | ppicl 27041 | Real closure of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ → (π‘𝐴) ∈ ℕ0) | ||
| Theorem | muval 27042* | The value of the Möbius function. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) | ||
| Theorem | muval1 27043 | The value of the Möbius function at a non-squarefree number. (Contributed by Mario Carneiro, 21-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = 0) | ||
| Theorem | muval2 27044* | The value of the Möbius function at a squarefree number. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) | ||
| Theorem | isnsqf 27045* | Two ways to say that a number is not squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) | ||
| Theorem | issqf 27046* | Two ways to say that a number is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1)) | ||
| Theorem | sqfpc 27047 | The prime count of a squarefree number is at most 1. (Contributed by Mario Carneiro, 1-Jul-2015.) |
| ⊢ ((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0 ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt 𝐴) ≤ 1) | ||
| Theorem | dvdssqf 27048 | A divisor of a squarefree number is squarefree. (Contributed by Mario Carneiro, 1-Jul-2015.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) → ((μ‘𝐴) ≠ 0 → (μ‘𝐵) ≠ 0)) | ||
| Theorem | sqf11 27049* | A squarefree number is completely determined by the set of its prime divisors. (Contributed by Mario Carneiro, 1-Jul-2015.) |
| ⊢ (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 ∥ 𝐴 ↔ 𝑝 ∥ 𝐵))) | ||
| Theorem | muf 27050 | The Möbius function is a function into the integers. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ μ:ℕ⟶ℤ | ||
| Theorem | mucl 27051 | Closure of the Möbius function. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) ∈ ℤ) | ||
| Theorem | sgmval 27052* | The value of the divisor function. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 21-Jun-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) = Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝑐𝐴)) | ||
| Theorem | sgmval2 27053* | The value of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) = Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴)) | ||
| Theorem | 0sgm 27054* | The value of the sum-of-divisors function, usually denoted σ<SUB>0</SUB>(<i>n</i>). (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ (𝐴 ∈ ℕ → (0 σ 𝐴) = (♯‘{𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴})) | ||
| Theorem | sgmf 27055 | The divisor function is a function into the complex numbers. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 21-Jun-2015.) |
| ⊢ σ :(ℂ × ℕ)⟶ℂ | ||
| Theorem | sgmcl 27056 | Closure of the divisor function. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) ∈ ℂ) | ||
| Theorem | sgmnncl 27057 | Closure of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) ∈ ℕ) | ||
| Theorem | mule1 27058 | The Möbius function takes on values in magnitude at most 1. (Together with mucl 27051, this implies that it takes a value in {-1, 0, 1} for every positive integer.) (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ ℕ → (abs‘(μ‘𝐴)) ≤ 1) | ||
| Theorem | chtfl 27059 | The Chebyshev function does not change off the integers. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ → (θ‘(⌊‘𝐴)) = (θ‘𝐴)) | ||
| Theorem | chpfl 27060 | The second Chebyshev function does not change off the integers. (Contributed by Mario Carneiro, 9-Apr-2016.) |
| ⊢ (𝐴 ∈ ℝ → (ψ‘(⌊‘𝐴)) = (ψ‘𝐴)) | ||
| Theorem | ppiprm 27061 | The prime-counting function π at a prime. (Contributed by Mario Carneiro, 19-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = ((π‘𝐴) + 1)) | ||
| Theorem | ppinprm 27062 | The prime-counting function π at a non-prime. (Contributed by Mario Carneiro, 19-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = (π‘𝐴)) | ||
| Theorem | chtprm 27063 | The Chebyshev function at a prime. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = ((θ‘𝐴) + (log‘(𝐴 + 1)))) | ||
| Theorem | chtnprm 27064 | The Chebyshev function at a non-prime. (Contributed by Mario Carneiro, 19-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = (θ‘𝐴)) | ||
| Theorem | chpp1 27065 | The second Chebyshev function at a successor. (Contributed by Mario Carneiro, 11-Apr-2016.) |
| ⊢ (𝐴 ∈ ℕ0 → (ψ‘(𝐴 + 1)) = ((ψ‘𝐴) + (Λ‘(𝐴 + 1)))) | ||
| Theorem | chtwordi 27066 | The Chebyshev function is weakly increasing. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (θ‘𝐴) ≤ (θ‘𝐵)) | ||
| Theorem | chpwordi 27067 | The second Chebyshev function is weakly increasing. (Contributed by Mario Carneiro, 9-Apr-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (ψ‘𝐴) ≤ (ψ‘𝐵)) | ||
| Theorem | chtdif 27068* | The difference of the Chebyshev function at two points sums the logarithms of the primes in an interval. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((θ‘𝑁) − (θ‘𝑀)) = Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝)) | ||
| Theorem | efchtdvds 27069 | The exponentiated Chebyshev function forms a divisibility chain between any two points. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (exp‘(θ‘𝐴)) ∥ (exp‘(θ‘𝐵))) | ||
| Theorem | ppifl 27070 | The prime-counting function π does not change off the integers. (Contributed by Mario Carneiro, 18-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ → (π‘(⌊‘𝐴)) = (π‘𝐴)) | ||
| Theorem | ppip1le 27071 | The prime-counting function π cannot locally increase faster than the identity function. (Contributed by Mario Carneiro, 21-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ → (π‘(𝐴 + 1)) ≤ ((π‘𝐴) + 1)) | ||
| Theorem | ppiwordi 27072 | The prime-counting function π is weakly increasing. (Contributed by Mario Carneiro, 19-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (π‘𝐴) ≤ (π‘𝐵)) | ||
| Theorem | ppidif 27073 | The difference of the prime-counting function π at two points counts the number of primes in an interval. (Contributed by Mario Carneiro, 21-Sep-2014.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((π‘𝑁) − (π‘𝑀)) = (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))) | ||
| Theorem | ppi1 27074 | The prime-counting function π at 1. (Contributed by Mario Carneiro, 21-Sep-2014.) |
| ⊢ (π‘1) = 0 | ||
| Theorem | cht1 27075 | The Chebyshev function at 1. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (θ‘1) = 0 | ||
| Theorem | vma1 27076 | The von Mangoldt function at 1. (Contributed by Mario Carneiro, 9-Apr-2016.) |
| ⊢ (Λ‘1) = 0 | ||
| Theorem | chp1 27077 | The second Chebyshev function at 1. (Contributed by Mario Carneiro, 9-Apr-2016.) |
| ⊢ (ψ‘1) = 0 | ||
| Theorem | ppi1i 27078 | Inference form of ppiprm 27061. (Contributed by Mario Carneiro, 21-Sep-2014.) |
| ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝑁 = (𝑀 + 1) & ⊢ (π‘𝑀) = 𝐾 & ⊢ 𝑁 ∈ ℙ ⇒ ⊢ (π‘𝑁) = (𝐾 + 1) | ||
| Theorem | ppi2i 27079 | Inference form of ppinprm 27062. (Contributed by Mario Carneiro, 21-Sep-2014.) |
| ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝑁 = (𝑀 + 1) & ⊢ (π‘𝑀) = 𝐾 & ⊢ ¬ 𝑁 ∈ ℙ ⇒ ⊢ (π‘𝑁) = 𝐾 | ||
| Theorem | ppi2 27080 | The prime-counting function π at 2. (Contributed by Mario Carneiro, 21-Sep-2014.) |
| ⊢ (π‘2) = 1 | ||
| Theorem | ppi3 27081 | The prime-counting function π at 3. (Contributed by Mario Carneiro, 21-Sep-2014.) |
| ⊢ (π‘3) = 2 | ||
| Theorem | cht2 27082 | The Chebyshev function at 2. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (θ‘2) = (log‘2) | ||
| Theorem | cht3 27083 | The Chebyshev function at 3. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (θ‘3) = (log‘6) | ||
| Theorem | ppinncl 27084 | Closure of the prime-counting function π in the positive integers. (Contributed by Mario Carneiro, 21-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (π‘𝐴) ∈ ℕ) | ||
| Theorem | chtrpcl 27085 | Closure of the Chebyshev function in the positive reals. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (θ‘𝐴) ∈ ℝ+) | ||
| Theorem | ppieq0 27086 | The prime-counting function π is zero iff its argument is less than 2. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ → ((π‘𝐴) = 0 ↔ 𝐴 < 2)) | ||
| Theorem | ppiltx 27087 | The prime-counting function π is strictly less than the identity. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ+ → (π‘𝐴) < 𝐴) | ||
| Theorem | prmorcht 27088 | Relate the primorial (product of the first 𝑛 primes) to the Chebyshev function. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)) ⇒ ⊢ (𝐴 ∈ ℕ → (exp‘(θ‘𝐴)) = (seq1( · , 𝐹)‘𝐴)) | ||
| Theorem | mumullem1 27089 | Lemma for mumul 27091. A multiple of a non-squarefree number is non-squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (μ‘𝐴) = 0) → (μ‘(𝐴 · 𝐵)) = 0) | ||
| Theorem | mumullem2 27090 | Lemma for mumul 27091. The product of two coprime squarefree numbers is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) ≠ 0) | ||
| Theorem | mumul 27091 | The Möbius function is a multiplicative function. This is one of the primary interests of the Möbius function as an arithmetic function. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵))) | ||
| Theorem | sqff1o 27092* | There is a bijection from the squarefree divisors of a number 𝑁 to the powerset of the prime divisors of 𝑁. Among other things, this implies that a number has 2↑𝑘 squarefree divisors where 𝑘 is the number of prime divisors, and a squarefree number has 2↑𝑘 divisors (because all divisors of a squarefree number are squarefree). The inverse function to 𝐹 takes the product of all the primes in some subset of prime divisors of 𝑁. (Contributed by Mario Carneiro, 1-Jul-2015.) |
| ⊢ 𝑆 = {𝑥 ∈ ℕ ∣ ((μ‘𝑥) ≠ 0 ∧ 𝑥 ∥ 𝑁)} & ⊢ 𝐹 = (𝑛 ∈ 𝑆 ↦ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛}) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ → 𝐹:𝑆–1-1-onto→𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) | ||
| Theorem | fsumdvdsdiaglem 27093* | A "diagonal commutation" of divisor sums analogous to fsum0diag 15743. (Contributed by Mario Carneiro, 2-Jul-2015.) (Revised by Mario Carneiro, 8-Apr-2016.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)}) → (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}))) | ||
| Theorem | fsumdvdsdiag 27094* | A "diagonal commutation" of divisor sums analogous to fsum0diag 15743. (Contributed by Mario Carneiro, 2-Jul-2015.) (Revised by Mario Carneiro, 8-Apr-2016.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)}𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐴) | ||
| Theorem | fsumdvdscom 27095* | A double commutation of divisor sums based on fsumdvdsdiag 27094. Note that 𝐴 depends on both 𝑗 and 𝑘. (Contributed by Mario Carneiro, 13-May-2016.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝑗 = (𝑘 · 𝑚) → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗})) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗}𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵) | ||
| Theorem | dvdsppwf1o 27096* | A bijection between the divisors of a prime power and the integers less than or equal to the exponent. (Contributed by Mario Carneiro, 5-May-2016.) |
| ⊢ 𝐹 = (𝑛 ∈ (0...𝐴) ↦ (𝑃↑𝑛)) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐹:(0...𝐴)–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)}) | ||
| Theorem | dvdsflf1o 27097* | A bijection from the numbers less than 𝑁 / 𝐴 to the multiples of 𝐴 less than 𝑁. Useful for some sum manipulations. (Contributed by Mario Carneiro, 3-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐹 = (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↦ (𝑁 · 𝑛)) ⇒ ⊢ (𝜑 → 𝐹:(1...(⌊‘(𝐴 / 𝑁)))–1-1-onto→{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥}) | ||
| Theorem | dvdsflsumcom 27098* | A sum commutation from Σ𝑛 ≤ 𝐴, Σ𝑑 ∥ 𝑛, 𝐵(𝑛, 𝑑) to Σ𝑑 ≤ 𝐴, Σ𝑚 ≤ 𝐴 / 𝑑, 𝐵(𝑛, 𝑑𝑚). (Contributed by Mario Carneiro, 4-May-2016.) |
| ⊢ (𝑛 = (𝑑 · 𝑚) → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}𝐵 = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))𝐶) | ||
| Theorem | fsumfldivdiaglem 27099* | Lemma for fsumfldivdiag 27100. (Contributed by Mario Carneiro, 10-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛)))) → (𝑚 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑚)))))) | ||
| Theorem | fsumfldivdiag 27100* | The right-hand side of dvdsflsumcom 27098 is commutative in the variables, because it can be written as the manifestly symmetric sum over those 〈𝑚, 𝑛〉 such that 𝑚 · 𝑛 ≤ 𝐴. (Contributed by Mario Carneiro, 4-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛)))𝐵 = Σ𝑚 ∈ (1...(⌊‘𝐴))Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑚)))𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |