HomeHome Metamath Proof Explorer
Theorem List (p. 271 of 481)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30640)
  Hilbert Space Explorer  Hilbert Space Explorer
(30641-32163)
  Users' Mathboxes  Users' Mathboxes
(32164-48040)
 

Theorem List for Metamath Proof Explorer - 27001-27100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremchtprm 27001 The Chebyshev function at a prime. (Contributed by Mario Carneiro, 22-Sep-2014.)
((𝐴 ∈ β„€ ∧ (𝐴 + 1) ∈ β„™) β†’ (ΞΈβ€˜(𝐴 + 1)) = ((ΞΈβ€˜π΄) + (logβ€˜(𝐴 + 1))))
 
Theoremchtnprm 27002 The Chebyshev function at a non-prime. (Contributed by Mario Carneiro, 19-Sep-2014.)
((𝐴 ∈ β„€ ∧ Β¬ (𝐴 + 1) ∈ β„™) β†’ (ΞΈβ€˜(𝐴 + 1)) = (ΞΈβ€˜π΄))
 
Theoremchpp1 27003 The second Chebyshev function at a successor. (Contributed by Mario Carneiro, 11-Apr-2016.)
(𝐴 ∈ β„•0 β†’ (Οˆβ€˜(𝐴 + 1)) = ((Οˆβ€˜π΄) + (Ξ›β€˜(𝐴 + 1))))
 
Theoremchtwordi 27004 The Chebyshev function is weakly increasing. (Contributed by Mario Carneiro, 22-Sep-2014.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐴 ≀ 𝐡) β†’ (ΞΈβ€˜π΄) ≀ (ΞΈβ€˜π΅))
 
Theoremchpwordi 27005 The second Chebyshev function is weakly increasing. (Contributed by Mario Carneiro, 9-Apr-2016.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐴 ≀ 𝐡) β†’ (Οˆβ€˜π΄) ≀ (Οˆβ€˜π΅))
 
Theoremchtdif 27006* The difference of the Chebyshev function at two points sums the logarithms of the primes in an interval. (Contributed by Mario Carneiro, 22-Sep-2014.)
(𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ ((ΞΈβ€˜π‘) βˆ’ (ΞΈβ€˜π‘€)) = Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ β„™)(logβ€˜π‘))
 
Theoremefchtdvds 27007 The exponentiated Chebyshev function forms a divisibility chain between any two points. (Contributed by Mario Carneiro, 22-Sep-2014.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐴 ≀ 𝐡) β†’ (expβ€˜(ΞΈβ€˜π΄)) βˆ₯ (expβ€˜(ΞΈβ€˜π΅)))
 
Theoremppifl 27008 The prime-counting function Ο€ does not change off the integers. (Contributed by Mario Carneiro, 18-Sep-2014.)
(𝐴 ∈ ℝ β†’ (Ο€β€˜(βŒŠβ€˜π΄)) = (Ο€β€˜π΄))
 
Theoremppip1le 27009 The prime-counting function Ο€ cannot locally increase faster than the identity function. (Contributed by Mario Carneiro, 21-Sep-2014.)
(𝐴 ∈ ℝ β†’ (Ο€β€˜(𝐴 + 1)) ≀ ((Ο€β€˜π΄) + 1))
 
Theoremppiwordi 27010 The prime-counting function Ο€ is weakly increasing. (Contributed by Mario Carneiro, 19-Sep-2014.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐴 ≀ 𝐡) β†’ (Ο€β€˜π΄) ≀ (Ο€β€˜π΅))
 
Theoremppidif 27011 The difference of the prime-counting function Ο€ at two points counts the number of primes in an interval. (Contributed by Mario Carneiro, 21-Sep-2014.)
(𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ ((Ο€β€˜π‘) βˆ’ (Ο€β€˜π‘€)) = (β™―β€˜(((𝑀 + 1)...𝑁) ∩ β„™)))
 
Theoremppi1 27012 The prime-counting function Ο€ at 1. (Contributed by Mario Carneiro, 21-Sep-2014.)
(Ο€β€˜1) = 0
 
Theoremcht1 27013 The Chebyshev function at 1. (Contributed by Mario Carneiro, 22-Sep-2014.)
(ΞΈβ€˜1) = 0
 
Theoremvma1 27014 The von Mangoldt function at 1. (Contributed by Mario Carneiro, 9-Apr-2016.)
(Ξ›β€˜1) = 0
 
Theoremchp1 27015 The second Chebyshev function at 1. (Contributed by Mario Carneiro, 9-Apr-2016.)
(Οˆβ€˜1) = 0
 
Theoremppi1i 27016 Inference form of ppiprm 26999. (Contributed by Mario Carneiro, 21-Sep-2014.)
𝑀 ∈ β„•0    &   π‘ = (𝑀 + 1)    &   (Ο€β€˜π‘€) = 𝐾    &   π‘ ∈ β„™    β‡’   (Ο€β€˜π‘) = (𝐾 + 1)
 
Theoremppi2i 27017 Inference form of ppinprm 27000. (Contributed by Mario Carneiro, 21-Sep-2014.)
𝑀 ∈ β„•0    &   π‘ = (𝑀 + 1)    &   (Ο€β€˜π‘€) = 𝐾    &    Β¬ 𝑁 ∈ β„™    β‡’   (Ο€β€˜π‘) = 𝐾
 
Theoremppi2 27018 The prime-counting function Ο€ at 2. (Contributed by Mario Carneiro, 21-Sep-2014.)
(Ο€β€˜2) = 1
 
Theoremppi3 27019 The prime-counting function Ο€ at 3. (Contributed by Mario Carneiro, 21-Sep-2014.)
(Ο€β€˜3) = 2
 
Theoremcht2 27020 The Chebyshev function at 2. (Contributed by Mario Carneiro, 22-Sep-2014.)
(ΞΈβ€˜2) = (logβ€˜2)
 
Theoremcht3 27021 The Chebyshev function at 3. (Contributed by Mario Carneiro, 22-Sep-2014.)
(ΞΈβ€˜3) = (logβ€˜6)
 
Theoremppinncl 27022 Closure of the prime-counting function Ο€ in the positive integers. (Contributed by Mario Carneiro, 21-Sep-2014.)
((𝐴 ∈ ℝ ∧ 2 ≀ 𝐴) β†’ (Ο€β€˜π΄) ∈ β„•)
 
Theoremchtrpcl 27023 Closure of the Chebyshev function in the positive reals. (Contributed by Mario Carneiro, 22-Sep-2014.)
((𝐴 ∈ ℝ ∧ 2 ≀ 𝐴) β†’ (ΞΈβ€˜π΄) ∈ ℝ+)
 
Theoremppieq0 27024 The prime-counting function Ο€ is zero iff its argument is less than 2. (Contributed by Mario Carneiro, 22-Sep-2014.)
(𝐴 ∈ ℝ β†’ ((Ο€β€˜π΄) = 0 ↔ 𝐴 < 2))
 
Theoremppiltx 27025 The prime-counting function Ο€ is strictly less than the identity. (Contributed by Mario Carneiro, 22-Sep-2014.)
(𝐴 ∈ ℝ+ β†’ (Ο€β€˜π΄) < 𝐴)
 
Theoremprmorcht 27026 Relate the primorial (product of the first 𝑛 primes) to the Chebyshev function. (Contributed by Mario Carneiro, 22-Sep-2014.)
𝐹 = (𝑛 ∈ β„• ↦ if(𝑛 ∈ β„™, 𝑛, 1))    β‡’   (𝐴 ∈ β„• β†’ (expβ€˜(ΞΈβ€˜π΄)) = (seq1( Β· , 𝐹)β€˜π΄))
 
Theoremmumullem1 27027 Lemma for mumul 27029. A multiple of a non-squarefree number is non-squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.)
(((𝐴 ∈ β„• ∧ 𝐡 ∈ β„•) ∧ (ΞΌβ€˜π΄) = 0) β†’ (ΞΌβ€˜(𝐴 Β· 𝐡)) = 0)
 
Theoremmumullem2 27028 Lemma for mumul 27029. The product of two coprime squarefree numbers is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.)
(((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ (ΞΌβ€˜(𝐴 Β· 𝐡)) β‰  0)
 
Theoremmumul 27029 The MΓΆbius function is a multiplicative function. This is one of the primary interests of the MΓΆbius function as an arithmetic function. (Contributed by Mario Carneiro, 3-Oct-2014.)
((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) β†’ (ΞΌβ€˜(𝐴 Β· 𝐡)) = ((ΞΌβ€˜π΄) Β· (ΞΌβ€˜π΅)))
 
Theoremsqff1o 27030* There is a bijection from the squarefree divisors of a number 𝑁 to the powerset of the prime divisors of 𝑁. Among other things, this implies that a number has 2β†‘π‘˜ squarefree divisors where π‘˜ is the number of prime divisors, and a squarefree number has 2β†‘π‘˜ divisors (because all divisors of a squarefree number are squarefree). The inverse function to 𝐹 takes the product of all the primes in some subset of prime divisors of 𝑁. (Contributed by Mario Carneiro, 1-Jul-2015.)
𝑆 = {π‘₯ ∈ β„• ∣ ((ΞΌβ€˜π‘₯) β‰  0 ∧ π‘₯ βˆ₯ 𝑁)}    &   πΉ = (𝑛 ∈ 𝑆 ↦ {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝑛})    &   πΊ = (𝑛 ∈ β„• ↦ (𝑝 ∈ β„™ ↦ (𝑝 pCnt 𝑛)))    β‡’   (𝑁 ∈ β„• β†’ 𝐹:𝑆–1-1-onto→𝒫 {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝑁})
 
Theoremfsumdvdsdiaglem 27031* A "diagonal commutation" of divisor sums analogous to fsum0diag 15720. (Contributed by Mario Carneiro, 2-Jul-2015.) (Revised by Mario Carneiro, 8-Apr-2016.)
(πœ‘ β†’ 𝑁 ∈ β„•)    β‡’   (πœ‘ β†’ ((𝑗 ∈ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑁} ∧ π‘˜ ∈ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ (𝑁 / 𝑗)}) β†’ (π‘˜ ∈ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑁} ∧ 𝑗 ∈ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ (𝑁 / π‘˜)})))
 
Theoremfsumdvdsdiag 27032* A "diagonal commutation" of divisor sums analogous to fsum0diag 15720. (Contributed by Mario Carneiro, 2-Jul-2015.) (Revised by Mario Carneiro, 8-Apr-2016.)
(πœ‘ β†’ 𝑁 ∈ β„•)    &   ((πœ‘ ∧ (𝑗 ∈ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑁} ∧ π‘˜ ∈ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ (𝑁 / 𝑗)})) β†’ 𝐴 ∈ β„‚)    β‡’   (πœ‘ β†’ Σ𝑗 ∈ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑁}Ξ£π‘˜ ∈ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ (𝑁 / 𝑗)}𝐴 = Ξ£π‘˜ ∈ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑁}Σ𝑗 ∈ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ (𝑁 / π‘˜)}𝐴)
 
Theoremfsumdvdscom 27033* A double commutation of divisor sums based on fsumdvdsdiag 27032. Note that 𝐴 depends on both 𝑗 and π‘˜. (Contributed by Mario Carneiro, 13-May-2016.)
(πœ‘ β†’ 𝑁 ∈ β„•)    &   (𝑗 = (π‘˜ Β· π‘š) β†’ 𝐴 = 𝐡)    &   ((πœ‘ ∧ (𝑗 ∈ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑁} ∧ π‘˜ ∈ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑗})) β†’ 𝐴 ∈ β„‚)    β‡’   (πœ‘ β†’ Σ𝑗 ∈ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑁}Ξ£π‘˜ ∈ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑗}𝐴 = Ξ£π‘˜ ∈ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑁}Ξ£π‘š ∈ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ (𝑁 / π‘˜)}𝐡)
 
Theoremdvdsppwf1o 27034* A bijection from the divisors of a prime power to the integers less than the prime count. (Contributed by Mario Carneiro, 5-May-2016.)
𝐹 = (𝑛 ∈ (0...𝐴) ↦ (𝑃↑𝑛))    β‡’   ((𝑃 ∈ β„™ ∧ 𝐴 ∈ β„•0) β†’ 𝐹:(0...𝐴)–1-1-ontoβ†’{π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ (𝑃↑𝐴)})
 
Theoremdvdsflf1o 27035* A bijection from the numbers less than 𝑁 / 𝐴 to the multiples of 𝐴 less than 𝑁. Useful for some sum manipulations. (Contributed by Mario Carneiro, 3-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝑁 ∈ β„•)    &   πΉ = (𝑛 ∈ (1...(βŒŠβ€˜(𝐴 / 𝑁))) ↦ (𝑁 Β· 𝑛))    β‡’   (πœ‘ β†’ 𝐹:(1...(βŒŠβ€˜(𝐴 / 𝑁)))–1-1-ontoβ†’{π‘₯ ∈ (1...(βŒŠβ€˜π΄)) ∣ 𝑁 βˆ₯ π‘₯})
 
Theoremdvdsflsumcom 27036* A sum commutation from Σ𝑛 ≀ 𝐴, Σ𝑑 βˆ₯ 𝑛, 𝐡(𝑛, 𝑑) to Σ𝑑 ≀ 𝐴, Ξ£π‘š ≀ 𝐴 / 𝑑, 𝐡(𝑛, π‘‘π‘š). (Contributed by Mario Carneiro, 4-May-2016.)
(𝑛 = (𝑑 Β· π‘š) β†’ 𝐡 = 𝐢)    &   (πœ‘ β†’ 𝐴 ∈ ℝ)    &   ((πœ‘ ∧ (𝑛 ∈ (1...(βŒŠβ€˜π΄)) ∧ 𝑑 ∈ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑛})) β†’ 𝐡 ∈ β„‚)    β‡’   (πœ‘ β†’ Σ𝑛 ∈ (1...(βŒŠβ€˜π΄))Σ𝑑 ∈ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑛}𝐡 = Σ𝑑 ∈ (1...(βŒŠβ€˜π΄))Ξ£π‘š ∈ (1...(βŒŠβ€˜(𝐴 / 𝑑)))𝐢)
 
Theoremfsumfldivdiaglem 27037* Lemma for fsumfldivdiag 27038. (Contributed by Mario Carneiro, 10-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    β‡’   (πœ‘ β†’ ((𝑛 ∈ (1...(βŒŠβ€˜π΄)) ∧ π‘š ∈ (1...(βŒŠβ€˜(𝐴 / 𝑛)))) β†’ (π‘š ∈ (1...(βŒŠβ€˜π΄)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜(𝐴 / π‘š))))))
 
Theoremfsumfldivdiag 27038* The right-hand side of dvdsflsumcom 27036 is commutative in the variables, because it can be written as the manifestly symmetric sum over those βŸ¨π‘š, π‘›βŸ© such that π‘š Β· 𝑛 ≀ 𝐴. (Contributed by Mario Carneiro, 4-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   ((πœ‘ ∧ (𝑛 ∈ (1...(βŒŠβ€˜π΄)) ∧ π‘š ∈ (1...(βŒŠβ€˜(𝐴 / 𝑛))))) β†’ 𝐡 ∈ β„‚)    β‡’   (πœ‘ β†’ Σ𝑛 ∈ (1...(βŒŠβ€˜π΄))Ξ£π‘š ∈ (1...(βŒŠβ€˜(𝐴 / 𝑛)))𝐡 = Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))Σ𝑛 ∈ (1...(βŒŠβ€˜(𝐴 / π‘š)))𝐡)
 
Theoremmusum 27039* The sum of the MΓΆbius function over the divisors of 𝑁 gives one if 𝑁 = 1, but otherwise always sums to zero. Theorem 2.1 in [ApostolNT] p. 25. This makes the MΓΆbius function useful for inverting divisor sums; see also muinv 27041. (Contributed by Mario Carneiro, 2-Jul-2015.)
(𝑁 ∈ β„• β†’ Ξ£π‘˜ ∈ {𝑛 ∈ β„• ∣ 𝑛 βˆ₯ 𝑁} (ΞΌβ€˜π‘˜) = if(𝑁 = 1, 1, 0))
 
Theoremmusumsum 27040* Evaluate a collapsing sum over the MΓΆbius function. (Contributed by Mario Carneiro, 4-May-2016.)
(π‘š = 1 β†’ 𝐡 = 𝐢)    &   (πœ‘ β†’ 𝐴 ∈ Fin)    &   (πœ‘ β†’ 𝐴 βŠ† β„•)    &   (πœ‘ β†’ 1 ∈ 𝐴)    &   ((πœ‘ ∧ π‘š ∈ 𝐴) β†’ 𝐡 ∈ β„‚)    β‡’   (πœ‘ β†’ Ξ£π‘š ∈ 𝐴 Ξ£π‘˜ ∈ {𝑛 ∈ β„• ∣ 𝑛 βˆ₯ π‘š} ((ΞΌβ€˜π‘˜) Β· 𝐡) = 𝐢)
 
Theoremmuinv 27041* The MΓΆbius inversion formula. If 𝐺(𝑛) = Ξ£π‘˜ βˆ₯ 𝑛𝐹(π‘˜) for every 𝑛 ∈ β„•, then 𝐹(𝑛) = Ξ£π‘˜ βˆ₯ 𝑛 ΞΌ(π‘˜)𝐺(𝑛 / π‘˜) = Ξ£π‘˜ βˆ₯ 𝑛μ(𝑛 / π‘˜)𝐺(π‘˜), i.e. the MΓΆbius function is the Dirichlet convolution inverse of the constant function 1. Theorem 2.9 in [ApostolNT] p. 32. (Contributed by Mario Carneiro, 2-Jul-2015.)
(πœ‘ β†’ 𝐹:β„•βŸΆβ„‚)    &   (πœ‘ β†’ 𝐺 = (𝑛 ∈ β„• ↦ Ξ£π‘˜ ∈ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑛} (πΉβ€˜π‘˜)))    β‡’   (πœ‘ β†’ 𝐹 = (π‘š ∈ β„• ↦ Σ𝑗 ∈ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ π‘š} ((ΞΌβ€˜π‘—) Β· (πΊβ€˜(π‘š / 𝑗)))))
 
Theoremmpodvdsmulf1o 27042* If 𝑀 and 𝑁 are two coprime integers, multiplication forms a bijection from the set of pairs βŸ¨π‘—, π‘˜βŸ© where 𝑗 βˆ₯ 𝑀 and π‘˜ βˆ₯ 𝑁, to the set of divisors of 𝑀 Β· 𝑁. Version of dvdsmulf1o 27044 using maps-to notation, which does not require ax-mulf 11186. (Contributed by GG, 18-Apr-2025.)
(πœ‘ β†’ 𝑀 ∈ β„•)    &   (πœ‘ β†’ 𝑁 ∈ β„•)    &   (πœ‘ β†’ (𝑀 gcd 𝑁) = 1)    &   π‘‹ = {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑀}    &   π‘Œ = {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑁}    &   π‘ = {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ (𝑀 Β· 𝑁)}    β‡’   (πœ‘ β†’ ((π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ Β· 𝑦)) β†Ύ (𝑋 Γ— π‘Œ)):(𝑋 Γ— π‘Œ)–1-1-onto→𝑍)
 
Theoremfsumdvdsmul 27043* Product of two divisor sums. (This is also the main part of the proof that "Ξ£π‘˜ βˆ₯ 𝑁𝐹(π‘˜) is a multiplicative function if 𝐹 is".) (Contributed by Mario Carneiro, 2-Jul-2015.) Avoid ax-mulf 11186. (Revised by GG, 18-Apr-2025.)
(πœ‘ β†’ 𝑀 ∈ β„•)    &   (πœ‘ β†’ 𝑁 ∈ β„•)    &   (πœ‘ β†’ (𝑀 gcd 𝑁) = 1)    &   π‘‹ = {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑀}    &   π‘Œ = {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑁}    &   π‘ = {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ (𝑀 Β· 𝑁)}    &   ((πœ‘ ∧ 𝑗 ∈ 𝑋) β†’ 𝐴 ∈ β„‚)    &   ((πœ‘ ∧ π‘˜ ∈ π‘Œ) β†’ 𝐡 ∈ β„‚)    &   ((πœ‘ ∧ (𝑗 ∈ 𝑋 ∧ π‘˜ ∈ π‘Œ)) β†’ (𝐴 Β· 𝐡) = 𝐷)    &   (𝑖 = (𝑗 Β· π‘˜) β†’ 𝐢 = 𝐷)    β‡’   (πœ‘ β†’ (Σ𝑗 ∈ 𝑋 𝐴 Β· Ξ£π‘˜ ∈ π‘Œ 𝐡) = Σ𝑖 ∈ 𝑍 𝐢)
 
Theoremdvdsmulf1o 27044* If 𝑀 and 𝑁 are two coprime integers, multiplication forms a bijection from the set of pairs βŸ¨π‘—, π‘˜βŸ© where 𝑗 βˆ₯ 𝑀 and π‘˜ βˆ₯ 𝑁, to the set of divisors of 𝑀 Β· 𝑁. (Contributed by Mario Carneiro, 2-Jul-2015.)
(πœ‘ β†’ 𝑀 ∈ β„•)    &   (πœ‘ β†’ 𝑁 ∈ β„•)    &   (πœ‘ β†’ (𝑀 gcd 𝑁) = 1)    &   π‘‹ = {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑀}    &   π‘Œ = {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑁}    &   π‘ = {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ (𝑀 Β· 𝑁)}    β‡’   (πœ‘ β†’ ( Β· β†Ύ (𝑋 Γ— π‘Œ)):(𝑋 Γ— π‘Œ)–1-1-onto→𝑍)
 
TheoremfsumdvdsmulOLD 27045* Obsolete version of fsumdvdsmul 27043 as of 18-Apr-2025. (Contributed by Mario Carneiro, 2-Jul-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(πœ‘ β†’ 𝑀 ∈ β„•)    &   (πœ‘ β†’ 𝑁 ∈ β„•)    &   (πœ‘ β†’ (𝑀 gcd 𝑁) = 1)    &   π‘‹ = {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑀}    &   π‘Œ = {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝑁}    &   π‘ = {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ (𝑀 Β· 𝑁)}    &   ((πœ‘ ∧ 𝑗 ∈ 𝑋) β†’ 𝐴 ∈ β„‚)    &   ((πœ‘ ∧ π‘˜ ∈ π‘Œ) β†’ 𝐡 ∈ β„‚)    &   ((πœ‘ ∧ (𝑗 ∈ 𝑋 ∧ π‘˜ ∈ π‘Œ)) β†’ (𝐴 Β· 𝐡) = 𝐷)    &   (𝑖 = (𝑗 Β· π‘˜) β†’ 𝐢 = 𝐷)    β‡’   (πœ‘ β†’ (Σ𝑗 ∈ 𝑋 𝐴 Β· Ξ£π‘˜ ∈ π‘Œ 𝐡) = Σ𝑖 ∈ 𝑍 𝐢)
 
Theoremsgmppw 27046* The value of the divisor function at a prime power. (Contributed by Mario Carneiro, 17-May-2016.)
((𝐴 ∈ β„‚ ∧ 𝑃 ∈ β„™ ∧ 𝑁 ∈ β„•0) β†’ (𝐴 Οƒ (𝑃↑𝑁)) = Ξ£π‘˜ ∈ (0...𝑁)((𝑃↑𝑐𝐴)β†‘π‘˜))
 
Theorem0sgmppw 27047 A prime power 𝑃↑𝐾 has 𝐾 + 1 divisors. (Contributed by Mario Carneiro, 17-May-2016.)
((𝑃 ∈ β„™ ∧ 𝐾 ∈ β„•0) β†’ (0 Οƒ (𝑃↑𝐾)) = (𝐾 + 1))
 
Theorem1sgmprm 27048 The sum of divisors for a prime is 𝑃 + 1 because the only divisors are 1 and 𝑃. (Contributed by Mario Carneiro, 17-May-2016.)
(𝑃 ∈ β„™ β†’ (1 Οƒ 𝑃) = (𝑃 + 1))
 
Theorem1sgm2ppw 27049 The sum of the divisors of 2↑(𝑁 βˆ’ 1). (Contributed by Mario Carneiro, 17-May-2016.)
(𝑁 ∈ β„• β†’ (1 Οƒ (2↑(𝑁 βˆ’ 1))) = ((2↑𝑁) βˆ’ 1))
 
Theoremsgmmul 27050 The divisor function for fixed parameter 𝐴 is a multiplicative function. (Contributed by Mario Carneiro, 2-Jul-2015.)
((𝐴 ∈ β„‚ ∧ (𝑀 ∈ β„• ∧ 𝑁 ∈ β„• ∧ (𝑀 gcd 𝑁) = 1)) β†’ (𝐴 Οƒ (𝑀 Β· 𝑁)) = ((𝐴 Οƒ 𝑀) Β· (𝐴 Οƒ 𝑁)))
 
Theoremppiublem1 27051 Lemma for ppiub 27053. (Contributed by Mario Carneiro, 12-Mar-2014.)
(𝑁 ≀ 6 ∧ ((𝑃 ∈ β„™ ∧ 4 ≀ 𝑃) β†’ ((𝑃 mod 6) ∈ (𝑁...5) β†’ (𝑃 mod 6) ∈ {1, 5})))    &   π‘€ ∈ β„•0    &   π‘ = (𝑀 + 1)    &   (2 βˆ₯ 𝑀 ∨ 3 βˆ₯ 𝑀 ∨ 𝑀 ∈ {1, 5})    β‡’   (𝑀 ≀ 6 ∧ ((𝑃 ∈ β„™ ∧ 4 ≀ 𝑃) β†’ ((𝑃 mod 6) ∈ (𝑀...5) β†’ (𝑃 mod 6) ∈ {1, 5})))
 
Theoremppiublem2 27052 A prime greater than 3 does not divide 2 or 3, so its residue mod 6 is 1 or 5. (Contributed by Mario Carneiro, 12-Mar-2014.)
((𝑃 ∈ β„™ ∧ 4 ≀ 𝑃) β†’ (𝑃 mod 6) ∈ {1, 5})
 
Theoremppiub 27053 An upper bound on the prime-counting function Ο€, which counts the number of primes less than 𝑁. (Contributed by Mario Carneiro, 13-Mar-2014.)
((𝑁 ∈ ℝ ∧ 0 ≀ 𝑁) β†’ (Ο€β€˜π‘) ≀ ((𝑁 / 3) + 2))
 
Theoremvmalelog 27054 The von Mangoldt function is less than the natural log. (Contributed by Mario Carneiro, 7-Apr-2016.)
(𝐴 ∈ β„• β†’ (Ξ›β€˜π΄) ≀ (logβ€˜π΄))
 
Theoremchtlepsi 27055 The first Chebyshev function is less than the second. (Contributed by Mario Carneiro, 7-Apr-2016.)
(𝐴 ∈ ℝ β†’ (ΞΈβ€˜π΄) ≀ (Οˆβ€˜π΄))
 
Theoremchprpcl 27056 Closure of the second Chebyshev function in the positive reals. (Contributed by Mario Carneiro, 8-Apr-2016.)
((𝐴 ∈ ℝ ∧ 2 ≀ 𝐴) β†’ (Οˆβ€˜π΄) ∈ ℝ+)
 
Theoremchpeq0 27057 The second Chebyshev function is zero iff its argument is less than 2. (Contributed by Mario Carneiro, 9-Apr-2016.)
(𝐴 ∈ ℝ β†’ ((Οˆβ€˜π΄) = 0 ↔ 𝐴 < 2))
 
Theoremchteq0 27058 The first Chebyshev function is zero iff its argument is less than 2. (Contributed by Mario Carneiro, 9-Apr-2016.)
(𝐴 ∈ ℝ β†’ ((ΞΈβ€˜π΄) = 0 ↔ 𝐴 < 2))
 
Theoremchtleppi 27059 Upper bound on the ΞΈ function. (Contributed by Mario Carneiro, 22-Sep-2014.)
(𝐴 ∈ ℝ+ β†’ (ΞΈβ€˜π΄) ≀ ((Ο€β€˜π΄) Β· (logβ€˜π΄)))
 
Theoremchtublem 27060 Lemma for chtub 27061. (Contributed by Mario Carneiro, 13-Mar-2014.)
(𝑁 ∈ β„• β†’ (ΞΈβ€˜((2 Β· 𝑁) βˆ’ 1)) ≀ ((ΞΈβ€˜π‘) + ((logβ€˜4) Β· (𝑁 βˆ’ 1))))
 
Theoremchtub 27061 An upper bound on the Chebyshev function. (Contributed by Mario Carneiro, 13-Mar-2014.) (Revised 22-Sep-2014.)
((𝑁 ∈ ℝ ∧ 2 < 𝑁) β†’ (ΞΈβ€˜π‘) < ((logβ€˜2) Β· ((2 Β· 𝑁) βˆ’ 3)))
 
Theoremfsumvma 27062* Rewrite a sum over the von Mangoldt function as a sum over prime powers. (Contributed by Mario Carneiro, 15-Apr-2016.)
(π‘₯ = (π‘β†‘π‘˜) β†’ 𝐡 = 𝐢)    &   (πœ‘ β†’ 𝐴 ∈ Fin)    &   (πœ‘ β†’ 𝐴 βŠ† β„•)    &   (πœ‘ β†’ 𝑃 ∈ Fin)    &   (πœ‘ β†’ ((𝑝 ∈ 𝑃 ∧ π‘˜ ∈ 𝐾) ↔ ((𝑝 ∈ β„™ ∧ π‘˜ ∈ β„•) ∧ (π‘β†‘π‘˜) ∈ 𝐴)))    &   ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ (Ξ›β€˜π‘₯) = 0)) β†’ 𝐡 = 0)    β‡’   (πœ‘ β†’ Ξ£π‘₯ ∈ 𝐴 𝐡 = Σ𝑝 ∈ 𝑃 Ξ£π‘˜ ∈ 𝐾 𝐢)
 
Theoremfsumvma2 27063* Apply fsumvma 27062 for the common case of all numbers less than a real number 𝐴. (Contributed by Mario Carneiro, 30-Apr-2016.)
(π‘₯ = (π‘β†‘π‘˜) β†’ 𝐡 = 𝐢)    &   (πœ‘ β†’ 𝐴 ∈ ℝ)    &   ((πœ‘ ∧ π‘₯ ∈ (1...(βŒŠβ€˜π΄))) β†’ 𝐡 ∈ β„‚)    &   ((πœ‘ ∧ (π‘₯ ∈ (1...(βŒŠβ€˜π΄)) ∧ (Ξ›β€˜π‘₯) = 0)) β†’ 𝐡 = 0)    β‡’   (πœ‘ β†’ Ξ£π‘₯ ∈ (1...(βŒŠβ€˜π΄))𝐡 = Σ𝑝 ∈ ((0[,]𝐴) ∩ β„™)Ξ£π‘˜ ∈ (1...(βŒŠβ€˜((logβ€˜π΄) / (logβ€˜π‘))))𝐢)
 
Theorempclogsum 27064* The logarithmic analogue of pcprod 16827. The sum of the logarithms of the primes dividing 𝐴 multiplied by their powers yields the logarithm of 𝐴. (Contributed by Mario Carneiro, 15-Apr-2016.)
(𝐴 ∈ β„• β†’ Σ𝑝 ∈ ((1...𝐴) ∩ β„™)((𝑝 pCnt 𝐴) Β· (logβ€˜π‘)) = (logβ€˜π΄))
 
Theoremvmasum 27065* The sum of the von Mangoldt function over the divisors of 𝑛. Equation 9.2.4 of [Shapiro], p. 328 and theorem 2.10 in [ApostolNT] p. 32. (Contributed by Mario Carneiro, 15-Apr-2016.)
(𝐴 ∈ β„• β†’ Σ𝑛 ∈ {π‘₯ ∈ β„• ∣ π‘₯ βˆ₯ 𝐴} (Ξ›β€˜π‘›) = (logβ€˜π΄))
 
Theoremlogfac2 27066* Another expression for the logarithm of a factorial, in terms of the von Mangoldt function. Equation 9.2.7 of [Shapiro], p. 329. (Contributed by Mario Carneiro, 15-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
((𝐴 ∈ ℝ ∧ 0 ≀ 𝐴) β†’ (logβ€˜(!β€˜(βŒŠβ€˜π΄))) = Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π΄))((Ξ›β€˜π‘˜) Β· (βŒŠβ€˜(𝐴 / π‘˜))))
 
Theoremchpval2 27067* Express the second Chebyshev function directly as a sum over the primes less than 𝐴 (instead of indirectly through the von Mangoldt function). (Contributed by Mario Carneiro, 8-Apr-2016.)
(𝐴 ∈ ℝ β†’ (Οˆβ€˜π΄) = Σ𝑝 ∈ ((0[,]𝐴) ∩ β„™)((logβ€˜π‘) Β· (βŒŠβ€˜((logβ€˜π΄) / (logβ€˜π‘)))))
 
Theoremchpchtsum 27068* The second Chebyshev function is the sum of the theta function at arguments quickly approaching zero. (This is usually stated as an infinite sum, but after a certain point, the terms are all zero, and it is easier for us to use an explicit finite sum.) (Contributed by Mario Carneiro, 7-Apr-2016.)
(𝐴 ∈ ℝ β†’ (Οˆβ€˜π΄) = Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π΄))(ΞΈβ€˜(𝐴↑𝑐(1 / π‘˜))))
 
Theoremchpub 27069 An upper bound on the second Chebyshev function. (Contributed by Mario Carneiro, 8-Apr-2016.)
((𝐴 ∈ ℝ ∧ 1 ≀ 𝐴) β†’ (Οˆβ€˜π΄) ≀ ((ΞΈβ€˜π΄) + ((βˆšβ€˜π΄) Β· (logβ€˜π΄))))
 
Theoremlogfacubnd 27070 A simple upper bound on the logarithm of a factorial. (Contributed by Mario Carneiro, 16-Apr-2016.)
((𝐴 ∈ ℝ+ ∧ 1 ≀ 𝐴) β†’ (logβ€˜(!β€˜(βŒŠβ€˜π΄))) ≀ (𝐴 Β· (logβ€˜π΄)))
 
Theoremlogfaclbnd 27071 A lower bound on the logarithm of a factorial. (Contributed by Mario Carneiro, 16-Apr-2016.)
(𝐴 ∈ ℝ+ β†’ (𝐴 Β· ((logβ€˜π΄) βˆ’ 2)) ≀ (logβ€˜(!β€˜(βŒŠβ€˜π΄))))
 
Theoremlogfacbnd3 27072 Show the stronger statement log(π‘₯!) = π‘₯logπ‘₯ βˆ’ π‘₯ + 𝑂(logπ‘₯) alluded to in logfacrlim 27073. (Contributed by Mario Carneiro, 20-May-2016.)
((𝐴 ∈ ℝ+ ∧ 1 ≀ 𝐴) β†’ (absβ€˜((logβ€˜(!β€˜(βŒŠβ€˜π΄))) βˆ’ (𝐴 Β· ((logβ€˜π΄) βˆ’ 1)))) ≀ ((logβ€˜π΄) + 1))
 
Theoremlogfacrlim 27073 Combine the estimates logfacubnd 27070 and logfaclbnd 27071, to get log(π‘₯!) = π‘₯logπ‘₯ + 𝑂(π‘₯). Equation 9.2.9 of [Shapiro], p. 329. This is a weak form of the even stronger statement, log(π‘₯!) = π‘₯logπ‘₯ βˆ’ π‘₯ + 𝑂(logπ‘₯). (Contributed by Mario Carneiro, 16-Apr-2016.) (Revised by Mario Carneiro, 21-May-2016.)
(π‘₯ ∈ ℝ+ ↦ ((logβ€˜π‘₯) βˆ’ ((logβ€˜(!β€˜(βŒŠβ€˜π‘₯))) / π‘₯))) β‡π‘Ÿ 1
 
Theoremlogexprlim 27074* The sum Σ𝑛 ≀ π‘₯, log↑𝑁(π‘₯ / 𝑛) has the asymptotic expansion (𝑁!)π‘₯ + π‘œ(π‘₯). (More precisely, the omitted term has order 𝑂(log↑𝑁(π‘₯) / π‘₯).) (Contributed by Mario Carneiro, 22-May-2016.)
(𝑁 ∈ β„•0 β†’ (π‘₯ ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜(π‘₯ / 𝑛))↑𝑁) / π‘₯)) β‡π‘Ÿ (!β€˜π‘))
 
Theoremlogfacrlim2 27075* Write out logfacrlim 27073 as a sum of logs. (Contributed by Mario Carneiro, 18-May-2016.) (Revised by Mario Carneiro, 22-May-2016.)
(π‘₯ ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜(π‘₯ / 𝑛)) / π‘₯)) β‡π‘Ÿ 1
 
14.4.5  Perfect Number Theorem
 
Theoremmersenne 27076 A Mersenne prime is a prime number of the form 2↑𝑃 βˆ’ 1. This theorem shows that the 𝑃 in this expression is necessarily also prime. (Contributed by Mario Carneiro, 17-May-2016.)
((𝑃 ∈ β„€ ∧ ((2↑𝑃) βˆ’ 1) ∈ β„™) β†’ 𝑃 ∈ β„™)
 
Theoremperfect1 27077 Euclid's contribution to the Euclid-Euler theorem. A number of the form 2↑(𝑝 βˆ’ 1) Β· (2↑𝑝 βˆ’ 1) is a perfect number. (Contributed by Mario Carneiro, 17-May-2016.)
((𝑃 ∈ β„€ ∧ ((2↑𝑃) βˆ’ 1) ∈ β„™) β†’ (1 Οƒ ((2↑(𝑃 βˆ’ 1)) Β· ((2↑𝑃) βˆ’ 1))) = ((2↑𝑃) Β· ((2↑𝑃) βˆ’ 1)))
 
Theoremperfectlem1 27078 Lemma for perfect 27080. (Contributed by Mario Carneiro, 7-Jun-2016.)
(πœ‘ β†’ 𝐴 ∈ β„•)    &   (πœ‘ β†’ 𝐡 ∈ β„•)    &   (πœ‘ β†’ Β¬ 2 βˆ₯ 𝐡)    &   (πœ‘ β†’ (1 Οƒ ((2↑𝐴) Β· 𝐡)) = (2 Β· ((2↑𝐴) Β· 𝐡)))    β‡’   (πœ‘ β†’ ((2↑(𝐴 + 1)) ∈ β„• ∧ ((2↑(𝐴 + 1)) βˆ’ 1) ∈ β„• ∧ (𝐡 / ((2↑(𝐴 + 1)) βˆ’ 1)) ∈ β„•))
 
Theoremperfectlem2 27079 Lemma for perfect 27080. (Contributed by Mario Carneiro, 17-May-2016.) Replace OLD theorem. (Revised by Wolf Lammen, 17-Sep-2020.)
(πœ‘ β†’ 𝐴 ∈ β„•)    &   (πœ‘ β†’ 𝐡 ∈ β„•)    &   (πœ‘ β†’ Β¬ 2 βˆ₯ 𝐡)    &   (πœ‘ β†’ (1 Οƒ ((2↑𝐴) Β· 𝐡)) = (2 Β· ((2↑𝐴) Β· 𝐡)))    β‡’   (πœ‘ β†’ (𝐡 ∈ β„™ ∧ 𝐡 = ((2↑(𝐴 + 1)) βˆ’ 1)))
 
Theoremperfect 27080* The Euclid-Euler theorem, or Perfect Number theorem. A positive even integer 𝑁 is a perfect number (that is, its divisor sum is 2𝑁) if and only if it is of the form 2↑(𝑝 βˆ’ 1) Β· (2↑𝑝 βˆ’ 1), where 2↑𝑝 βˆ’ 1 is prime (a Mersenne prime). (It follows from this that 𝑝 is also prime.) This is Metamath 100 proof #70. (Contributed by Mario Carneiro, 17-May-2016.)
((𝑁 ∈ β„• ∧ 2 βˆ₯ 𝑁) β†’ ((1 Οƒ 𝑁) = (2 Β· 𝑁) ↔ βˆƒπ‘ ∈ β„€ (((2↑𝑝) βˆ’ 1) ∈ β„™ ∧ 𝑁 = ((2↑(𝑝 βˆ’ 1)) Β· ((2↑𝑝) βˆ’ 1)))))
 
14.4.6  Characters of Z/nZ
 
Syntaxcdchr 27081 Extend class notation with the group of Dirichlet characters.
class DChr
 
Definitiondf-dchr 27082* The group of Dirichlet characters mod 𝑛 is the set of monoid homomorphisms from β„€ / 𝑛℀ to the multiplicative monoid of the complex numbers, equipped with the group operation of pointwise multiplication. (Contributed by Mario Carneiro, 18-Apr-2016.)
DChr = (𝑛 ∈ β„• ↦ ⦋(β„€/nβ„€β€˜π‘›) / π‘§β¦Œβ¦‹{π‘₯ ∈ ((mulGrpβ€˜π‘§) MndHom (mulGrpβ€˜β„‚fld)) ∣ (((Baseβ€˜π‘§) βˆ– (Unitβ€˜π‘§)) Γ— {0}) βŠ† π‘₯} / π‘β¦Œ{⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(+gβ€˜ndx), ( ∘f Β· β†Ύ (𝑏 Γ— 𝑏))⟩})
 
Theoremdchrval 27083* Value of the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016.)
𝐺 = (DChrβ€˜π‘)    &   π‘ = (β„€/nβ„€β€˜π‘)    &   π΅ = (Baseβ€˜π‘)    &   π‘ˆ = (Unitβ€˜π‘)    &   (πœ‘ β†’ 𝑁 ∈ β„•)    &   (πœ‘ β†’ 𝐷 = {π‘₯ ∈ ((mulGrpβ€˜π‘) MndHom (mulGrpβ€˜β„‚fld)) ∣ ((𝐡 βˆ– π‘ˆ) Γ— {0}) βŠ† π‘₯})    β‡’   (πœ‘ β†’ 𝐺 = {⟨(Baseβ€˜ndx), 𝐷⟩, ⟨(+gβ€˜ndx), ( ∘f Β· β†Ύ (𝐷 Γ— 𝐷))⟩})
 
Theoremdchrbas 27084* Base set of the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016.)
𝐺 = (DChrβ€˜π‘)    &   π‘ = (β„€/nβ„€β€˜π‘)    &   π΅ = (Baseβ€˜π‘)    &   π‘ˆ = (Unitβ€˜π‘)    &   (πœ‘ β†’ 𝑁 ∈ β„•)    &   π· = (Baseβ€˜πΊ)    β‡’   (πœ‘ β†’ 𝐷 = {π‘₯ ∈ ((mulGrpβ€˜π‘) MndHom (mulGrpβ€˜β„‚fld)) ∣ ((𝐡 βˆ– π‘ˆ) Γ— {0}) βŠ† π‘₯})
 
Theoremdchrelbas 27085 A Dirichlet character is a monoid homomorphism from the multiplicative monoid on β„€/nβ„€ to the multiplicative monoid of β„‚, which is zero off the group of units of β„€/nβ„€. (Contributed by Mario Carneiro, 18-Apr-2016.)
𝐺 = (DChrβ€˜π‘)    &   π‘ = (β„€/nβ„€β€˜π‘)    &   π΅ = (Baseβ€˜π‘)    &   π‘ˆ = (Unitβ€˜π‘)    &   (πœ‘ β†’ 𝑁 ∈ β„•)    &   π· = (Baseβ€˜πΊ)    β‡’   (πœ‘ β†’ (𝑋 ∈ 𝐷 ↔ (𝑋 ∈ ((mulGrpβ€˜π‘) MndHom (mulGrpβ€˜β„‚fld)) ∧ ((𝐡 βˆ– π‘ˆ) Γ— {0}) βŠ† 𝑋)))
 
Theoremdchrelbas2 27086* A Dirichlet character is a monoid homomorphism from the multiplicative monoid on β„€/nβ„€ to the multiplicative monoid of β„‚, which is zero off the group of units of β„€/nβ„€. (Contributed by Mario Carneiro, 18-Apr-2016.)
𝐺 = (DChrβ€˜π‘)    &   π‘ = (β„€/nβ„€β€˜π‘)    &   π΅ = (Baseβ€˜π‘)    &   π‘ˆ = (Unitβ€˜π‘)    &   (πœ‘ β†’ 𝑁 ∈ β„•)    &   π· = (Baseβ€˜πΊ)    β‡’   (πœ‘ β†’ (𝑋 ∈ 𝐷 ↔ (𝑋 ∈ ((mulGrpβ€˜π‘) MndHom (mulGrpβ€˜β„‚fld)) ∧ βˆ€π‘₯ ∈ 𝐡 ((π‘‹β€˜π‘₯) β‰  0 β†’ π‘₯ ∈ π‘ˆ))))
 
Theoremdchrelbas3 27087* A Dirichlet character is a monoid homomorphism from the multiplicative monoid on β„€/nβ„€ to the multiplicative monoid of β„‚, which is zero off the group of units of β„€/nβ„€. (Contributed by Mario Carneiro, 19-Apr-2016.)
𝐺 = (DChrβ€˜π‘)    &   π‘ = (β„€/nβ„€β€˜π‘)    &   π΅ = (Baseβ€˜π‘)    &   π‘ˆ = (Unitβ€˜π‘)    &   (πœ‘ β†’ 𝑁 ∈ β„•)    &   π· = (Baseβ€˜πΊ)    β‡’   (πœ‘ β†’ (𝑋 ∈ 𝐷 ↔ (𝑋:π΅βŸΆβ„‚ ∧ (βˆ€π‘₯ ∈ π‘ˆ βˆ€π‘¦ ∈ π‘ˆ (π‘‹β€˜(π‘₯(.rβ€˜π‘)𝑦)) = ((π‘‹β€˜π‘₯) Β· (π‘‹β€˜π‘¦)) ∧ (π‘‹β€˜(1rβ€˜π‘)) = 1 ∧ βˆ€π‘₯ ∈ 𝐡 ((π‘‹β€˜π‘₯) β‰  0 β†’ π‘₯ ∈ π‘ˆ)))))
 
Theoremdchrelbasd 27088* A Dirichlet character is a monoid homomorphism from the multiplicative monoid on β„€/nβ„€ to the multiplicative monoid of β„‚, which is zero off the group of units of β„€/nβ„€. (Contributed by Mario Carneiro, 28-Apr-2016.)
𝐺 = (DChrβ€˜π‘)    &   π‘ = (β„€/nβ„€β€˜π‘)    &   π΅ = (Baseβ€˜π‘)    &   π‘ˆ = (Unitβ€˜π‘)    &   (πœ‘ β†’ 𝑁 ∈ β„•)    &   π· = (Baseβ€˜πΊ)    &   (π‘˜ = π‘₯ β†’ 𝑋 = 𝐴)    &   (π‘˜ = 𝑦 β†’ 𝑋 = 𝐢)    &   (π‘˜ = (π‘₯(.rβ€˜π‘)𝑦) β†’ 𝑋 = 𝐸)    &   (π‘˜ = (1rβ€˜π‘) β†’ 𝑋 = π‘Œ)    &   ((πœ‘ ∧ π‘˜ ∈ π‘ˆ) β†’ 𝑋 ∈ β„‚)    &   ((πœ‘ ∧ (π‘₯ ∈ π‘ˆ ∧ 𝑦 ∈ π‘ˆ)) β†’ 𝐸 = (𝐴 Β· 𝐢))    &   (πœ‘ β†’ π‘Œ = 1)    β‡’   (πœ‘ β†’ (π‘˜ ∈ 𝐡 ↦ if(π‘˜ ∈ π‘ˆ, 𝑋, 0)) ∈ 𝐷)
 
Theoremdchrrcl 27089 Reverse closure for a Dirichlet character. (Contributed by Mario Carneiro, 12-May-2016.)
𝐺 = (DChrβ€˜π‘)    &   π· = (Baseβ€˜πΊ)    β‡’   (𝑋 ∈ 𝐷 β†’ 𝑁 ∈ β„•)
 
Theoremdchrmhm 27090 A Dirichlet character is a monoid homomorphism. (Contributed by Mario Carneiro, 19-Apr-2016.)
𝐺 = (DChrβ€˜π‘)    &   π‘ = (β„€/nβ„€β€˜π‘)    &   π· = (Baseβ€˜πΊ)    β‡’   π· βŠ† ((mulGrpβ€˜π‘) MndHom (mulGrpβ€˜β„‚fld))
 
Theoremdchrf 27091 A Dirichlet character is a function. (Contributed by Mario Carneiro, 18-Apr-2016.)
𝐺 = (DChrβ€˜π‘)    &   π‘ = (β„€/nβ„€β€˜π‘)    &   π· = (Baseβ€˜πΊ)    &   π΅ = (Baseβ€˜π‘)    &   (πœ‘ β†’ 𝑋 ∈ 𝐷)    β‡’   (πœ‘ β†’ 𝑋:π΅βŸΆβ„‚)
 
Theoremdchrelbas4 27092* A Dirichlet character is a monoid homomorphism from the multiplicative monoid on β„€/nβ„€ to the multiplicative monoid of β„‚, which is zero off the group of units of β„€/nβ„€. (Contributed by Mario Carneiro, 18-Apr-2016.)
𝐺 = (DChrβ€˜π‘)    &   π‘ = (β„€/nβ„€β€˜π‘)    &   π· = (Baseβ€˜πΊ)    &   πΏ = (β„€RHomβ€˜π‘)    β‡’   (𝑋 ∈ 𝐷 ↔ (𝑁 ∈ β„• ∧ 𝑋 ∈ ((mulGrpβ€˜π‘) MndHom (mulGrpβ€˜β„‚fld)) ∧ βˆ€π‘₯ ∈ β„€ (1 < (π‘₯ gcd 𝑁) β†’ (π‘‹β€˜(πΏβ€˜π‘₯)) = 0)))
 
Theoremdchrzrh1 27093 Value of a Dirichlet character at one. (Contributed by Mario Carneiro, 4-May-2016.)
𝐺 = (DChrβ€˜π‘)    &   π‘ = (β„€/nβ„€β€˜π‘)    &   π· = (Baseβ€˜πΊ)    &   πΏ = (β„€RHomβ€˜π‘)    &   (πœ‘ β†’ 𝑋 ∈ 𝐷)    β‡’   (πœ‘ β†’ (π‘‹β€˜(πΏβ€˜1)) = 1)
 
Theoremdchrzrhcl 27094 A Dirichlet character takes values in the complex numbers. (Contributed by Mario Carneiro, 12-May-2016.)
𝐺 = (DChrβ€˜π‘)    &   π‘ = (β„€/nβ„€β€˜π‘)    &   π· = (Baseβ€˜πΊ)    &   πΏ = (β„€RHomβ€˜π‘)    &   (πœ‘ β†’ 𝑋 ∈ 𝐷)    &   (πœ‘ β†’ 𝐴 ∈ β„€)    β‡’   (πœ‘ β†’ (π‘‹β€˜(πΏβ€˜π΄)) ∈ β„‚)
 
Theoremdchrzrhmul 27095 A Dirichlet character is completely multiplicative. (Contributed by Mario Carneiro, 4-May-2016.)
𝐺 = (DChrβ€˜π‘)    &   π‘ = (β„€/nβ„€β€˜π‘)    &   π· = (Baseβ€˜πΊ)    &   πΏ = (β„€RHomβ€˜π‘)    &   (πœ‘ β†’ 𝑋 ∈ 𝐷)    &   (πœ‘ β†’ 𝐴 ∈ β„€)    &   (πœ‘ β†’ 𝐢 ∈ β„€)    β‡’   (πœ‘ β†’ (π‘‹β€˜(πΏβ€˜(𝐴 Β· 𝐢))) = ((π‘‹β€˜(πΏβ€˜π΄)) Β· (π‘‹β€˜(πΏβ€˜πΆ))))
 
Theoremdchrplusg 27096 Group operation on the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016.)
𝐺 = (DChrβ€˜π‘)    &   π‘ = (β„€/nβ„€β€˜π‘)    &   π· = (Baseβ€˜πΊ)    &    Β· = (+gβ€˜πΊ)    &   (πœ‘ β†’ 𝑁 ∈ β„•)    β‡’   (πœ‘ β†’ Β· = ( ∘f Β· β†Ύ (𝐷 Γ— 𝐷)))
 
Theoremdchrmul 27097 Group operation on the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016.)
𝐺 = (DChrβ€˜π‘)    &   π‘ = (β„€/nβ„€β€˜π‘)    &   π· = (Baseβ€˜πΊ)    &    Β· = (+gβ€˜πΊ)    &   (πœ‘ β†’ 𝑋 ∈ 𝐷)    &   (πœ‘ β†’ π‘Œ ∈ 𝐷)    β‡’   (πœ‘ β†’ (𝑋 Β· π‘Œ) = (𝑋 ∘f Β· π‘Œ))
 
Theoremdchrmulcl 27098 Closure of the group operation on Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016.)
𝐺 = (DChrβ€˜π‘)    &   π‘ = (β„€/nβ„€β€˜π‘)    &   π· = (Baseβ€˜πΊ)    &    Β· = (+gβ€˜πΊ)    &   (πœ‘ β†’ 𝑋 ∈ 𝐷)    &   (πœ‘ β†’ π‘Œ ∈ 𝐷)    β‡’   (πœ‘ β†’ (𝑋 Β· π‘Œ) ∈ 𝐷)
 
Theoremdchrn0 27099 A Dirichlet character is nonzero on the units of β„€/nβ„€. (Contributed by Mario Carneiro, 18-Apr-2016.)
𝐺 = (DChrβ€˜π‘)    &   π‘ = (β„€/nβ„€β€˜π‘)    &   π· = (Baseβ€˜πΊ)    &   π΅ = (Baseβ€˜π‘)    &   π‘ˆ = (Unitβ€˜π‘)    &   (πœ‘ β†’ 𝑋 ∈ 𝐷)    &   (πœ‘ β†’ 𝐴 ∈ 𝐡)    β‡’   (πœ‘ β†’ ((π‘‹β€˜π΄) β‰  0 ↔ 𝐴 ∈ π‘ˆ))
 
Theoremdchr1cl 27100* Closure of the principal Dirichlet character. (Contributed by Mario Carneiro, 18-Apr-2016.)
𝐺 = (DChrβ€˜π‘)    &   π‘ = (β„€/nβ„€β€˜π‘)    &   π· = (Baseβ€˜πΊ)    &   π΅ = (Baseβ€˜π‘)    &   π‘ˆ = (Unitβ€˜π‘)    &    1 = (π‘˜ ∈ 𝐡 ↦ if(π‘˜ ∈ π‘ˆ, 1, 0))    &   (πœ‘ β†’ 𝑁 ∈ β„•)    β‡’   (πœ‘ β†’ 1 ∈ 𝐷)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48040
  Copyright terms: Public domain < Previous  Next >