Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imasf1obl | Structured version Visualization version GIF version |
Description: The image of a metric space ball. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
imasf1obl.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imasf1obl.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imasf1obl.f | ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) |
imasf1obl.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
imasf1obl.e | ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) |
imasf1obl.d | ⊢ 𝐷 = (dist‘𝑈) |
imasf1obl.m | ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) |
imasf1obl.x | ⊢ (𝜑 → 𝑃 ∈ 𝑉) |
imasf1obl.s | ⊢ (𝜑 → 𝑆 ∈ ℝ*) |
Ref | Expression |
---|---|
imasf1obl | ⊢ (𝜑 → ((𝐹‘𝑃)(ball‘𝐷)𝑆) = (𝐹 “ (𝑃(ball‘𝐸)𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasf1obl.f | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) | |
2 | f1ocnvfv2 7149 | . . . . . . . . . 10 ⊢ ((𝐹:𝑉–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) | |
3 | 1, 2 | sylan 580 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) |
4 | 3 | oveq2d 7291 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝐹‘𝑃)𝐷(𝐹‘(◡𝐹‘𝑥))) = ((𝐹‘𝑃)𝐷𝑥)) |
5 | imasf1obl.u | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
6 | 5 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑈 = (𝐹 “s 𝑅)) |
7 | imasf1obl.v | . . . . . . . . . 10 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
8 | 7 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑉 = (Base‘𝑅)) |
9 | 1 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐹:𝑉–1-1-onto→𝐵) |
10 | imasf1obl.r | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
11 | 10 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑅 ∈ 𝑍) |
12 | imasf1obl.e | . . . . . . . . 9 ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) | |
13 | imasf1obl.d | . . . . . . . . 9 ⊢ 𝐷 = (dist‘𝑈) | |
14 | imasf1obl.m | . . . . . . . . . 10 ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) | |
15 | 14 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐸 ∈ (∞Met‘𝑉)) |
16 | imasf1obl.x | . . . . . . . . . 10 ⊢ (𝜑 → 𝑃 ∈ 𝑉) | |
17 | 16 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑃 ∈ 𝑉) |
18 | f1ocnv 6728 | . . . . . . . . . . . 12 ⊢ (𝐹:𝑉–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝑉) | |
19 | 1, 18 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → ◡𝐹:𝐵–1-1-onto→𝑉) |
20 | f1of 6716 | . . . . . . . . . . 11 ⊢ (◡𝐹:𝐵–1-1-onto→𝑉 → ◡𝐹:𝐵⟶𝑉) | |
21 | 19, 20 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → ◡𝐹:𝐵⟶𝑉) |
22 | 21 | ffvelrnda 6961 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (◡𝐹‘𝑥) ∈ 𝑉) |
23 | 6, 8, 9, 11, 12, 13, 15, 17, 22 | imasdsf1o 23527 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝐹‘𝑃)𝐷(𝐹‘(◡𝐹‘𝑥))) = (𝑃𝐸(◡𝐹‘𝑥))) |
24 | 4, 23 | eqtr3d 2780 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝐹‘𝑃)𝐷𝑥) = (𝑃𝐸(◡𝐹‘𝑥))) |
25 | 24 | breq1d 5084 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((𝐹‘𝑃)𝐷𝑥) < 𝑆 ↔ (𝑃𝐸(◡𝐹‘𝑥)) < 𝑆)) |
26 | imasf1obl.s | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ ℝ*) | |
27 | 26 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑆 ∈ ℝ*) |
28 | elbl2 23543 | . . . . . . 7 ⊢ (((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑆 ∈ ℝ*) ∧ (𝑃 ∈ 𝑉 ∧ (◡𝐹‘𝑥) ∈ 𝑉)) → ((◡𝐹‘𝑥) ∈ (𝑃(ball‘𝐸)𝑆) ↔ (𝑃𝐸(◡𝐹‘𝑥)) < 𝑆)) | |
29 | 15, 27, 17, 22, 28 | syl22anc 836 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((◡𝐹‘𝑥) ∈ (𝑃(ball‘𝐸)𝑆) ↔ (𝑃𝐸(◡𝐹‘𝑥)) < 𝑆)) |
30 | 25, 29 | bitr4d 281 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((𝐹‘𝑃)𝐷𝑥) < 𝑆 ↔ (◡𝐹‘𝑥) ∈ (𝑃(ball‘𝐸)𝑆))) |
31 | 30 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ ((𝐹‘𝑃)𝐷𝑥) < 𝑆) ↔ (𝑥 ∈ 𝐵 ∧ (◡𝐹‘𝑥) ∈ (𝑃(ball‘𝐸)𝑆)))) |
32 | 5, 7, 1, 10, 12, 13, 14 | imasf1oxmet 23528 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |
33 | f1of 6716 | . . . . . . 7 ⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉⟶𝐵) | |
34 | 1, 33 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑉⟶𝐵) |
35 | 34, 16 | ffvelrnd 6962 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑃) ∈ 𝐵) |
36 | elbl 23541 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝐵) ∧ (𝐹‘𝑃) ∈ 𝐵 ∧ 𝑆 ∈ ℝ*) → (𝑥 ∈ ((𝐹‘𝑃)(ball‘𝐷)𝑆) ↔ (𝑥 ∈ 𝐵 ∧ ((𝐹‘𝑃)𝐷𝑥) < 𝑆))) | |
37 | 32, 35, 26, 36 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ((𝐹‘𝑃)(ball‘𝐷)𝑆) ↔ (𝑥 ∈ 𝐵 ∧ ((𝐹‘𝑃)𝐷𝑥) < 𝑆))) |
38 | f1ofn 6717 | . . . . 5 ⊢ (◡𝐹:𝐵–1-1-onto→𝑉 → ◡𝐹 Fn 𝐵) | |
39 | elpreima 6935 | . . . . 5 ⊢ (◡𝐹 Fn 𝐵 → (𝑥 ∈ (◡◡𝐹 “ (𝑃(ball‘𝐸)𝑆)) ↔ (𝑥 ∈ 𝐵 ∧ (◡𝐹‘𝑥) ∈ (𝑃(ball‘𝐸)𝑆)))) | |
40 | 19, 38, 39 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (◡◡𝐹 “ (𝑃(ball‘𝐸)𝑆)) ↔ (𝑥 ∈ 𝐵 ∧ (◡𝐹‘𝑥) ∈ (𝑃(ball‘𝐸)𝑆)))) |
41 | 31, 37, 40 | 3bitr4d 311 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ((𝐹‘𝑃)(ball‘𝐷)𝑆) ↔ 𝑥 ∈ (◡◡𝐹 “ (𝑃(ball‘𝐸)𝑆)))) |
42 | 41 | eqrdv 2736 | . 2 ⊢ (𝜑 → ((𝐹‘𝑃)(ball‘𝐷)𝑆) = (◡◡𝐹 “ (𝑃(ball‘𝐸)𝑆))) |
43 | imacnvcnv 6109 | . 2 ⊢ (◡◡𝐹 “ (𝑃(ball‘𝐸)𝑆)) = (𝐹 “ (𝑃(ball‘𝐸)𝑆)) | |
44 | 42, 43 | eqtrdi 2794 | 1 ⊢ (𝜑 → ((𝐹‘𝑃)(ball‘𝐷)𝑆) = (𝐹 “ (𝑃(ball‘𝐸)𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 × cxp 5587 ◡ccnv 5588 ↾ cres 5591 “ cima 5592 Fn wfn 6428 ⟶wf 6429 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 ℝ*cxr 11008 < clt 11009 Basecbs 16912 distcds 16971 “s cimas 17215 ∞Metcxmet 20582 ballcbl 20584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-0g 17152 df-gsum 17153 df-xrs 17213 df-imas 17219 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 df-psmet 20589 df-xmet 20590 df-bl 20592 |
This theorem is referenced by: imasf1oxms 23645 |
Copyright terms: Public domain | W3C validator |