| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imasf1obl | Structured version Visualization version GIF version | ||
| Description: The image of a metric space ball. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| imasf1obl.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| imasf1obl.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| imasf1obl.f | ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) |
| imasf1obl.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| imasf1obl.e | ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) |
| imasf1obl.d | ⊢ 𝐷 = (dist‘𝑈) |
| imasf1obl.m | ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) |
| imasf1obl.x | ⊢ (𝜑 → 𝑃 ∈ 𝑉) |
| imasf1obl.s | ⊢ (𝜑 → 𝑆 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| imasf1obl | ⊢ (𝜑 → ((𝐹‘𝑃)(ball‘𝐷)𝑆) = (𝐹 “ (𝑃(ball‘𝐸)𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasf1obl.f | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) | |
| 2 | f1ocnvfv2 7214 | . . . . . . . . . 10 ⊢ ((𝐹:𝑉–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) | |
| 3 | 1, 2 | sylan 580 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) |
| 4 | 3 | oveq2d 7365 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝐹‘𝑃)𝐷(𝐹‘(◡𝐹‘𝑥))) = ((𝐹‘𝑃)𝐷𝑥)) |
| 5 | imasf1obl.u | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
| 6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑈 = (𝐹 “s 𝑅)) |
| 7 | imasf1obl.v | . . . . . . . . . 10 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 8 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑉 = (Base‘𝑅)) |
| 9 | 1 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐹:𝑉–1-1-onto→𝐵) |
| 10 | imasf1obl.r | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
| 11 | 10 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑅 ∈ 𝑍) |
| 12 | imasf1obl.e | . . . . . . . . 9 ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) | |
| 13 | imasf1obl.d | . . . . . . . . 9 ⊢ 𝐷 = (dist‘𝑈) | |
| 14 | imasf1obl.m | . . . . . . . . . 10 ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) | |
| 15 | 14 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐸 ∈ (∞Met‘𝑉)) |
| 16 | imasf1obl.x | . . . . . . . . . 10 ⊢ (𝜑 → 𝑃 ∈ 𝑉) | |
| 17 | 16 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑃 ∈ 𝑉) |
| 18 | f1ocnv 6776 | . . . . . . . . . . . 12 ⊢ (𝐹:𝑉–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝑉) | |
| 19 | 1, 18 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → ◡𝐹:𝐵–1-1-onto→𝑉) |
| 20 | f1of 6764 | . . . . . . . . . . 11 ⊢ (◡𝐹:𝐵–1-1-onto→𝑉 → ◡𝐹:𝐵⟶𝑉) | |
| 21 | 19, 20 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → ◡𝐹:𝐵⟶𝑉) |
| 22 | 21 | ffvelcdmda 7018 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (◡𝐹‘𝑥) ∈ 𝑉) |
| 23 | 6, 8, 9, 11, 12, 13, 15, 17, 22 | imasdsf1o 24260 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝐹‘𝑃)𝐷(𝐹‘(◡𝐹‘𝑥))) = (𝑃𝐸(◡𝐹‘𝑥))) |
| 24 | 4, 23 | eqtr3d 2766 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝐹‘𝑃)𝐷𝑥) = (𝑃𝐸(◡𝐹‘𝑥))) |
| 25 | 24 | breq1d 5102 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((𝐹‘𝑃)𝐷𝑥) < 𝑆 ↔ (𝑃𝐸(◡𝐹‘𝑥)) < 𝑆)) |
| 26 | imasf1obl.s | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ ℝ*) | |
| 27 | 26 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑆 ∈ ℝ*) |
| 28 | elbl2 24276 | . . . . . . 7 ⊢ (((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑆 ∈ ℝ*) ∧ (𝑃 ∈ 𝑉 ∧ (◡𝐹‘𝑥) ∈ 𝑉)) → ((◡𝐹‘𝑥) ∈ (𝑃(ball‘𝐸)𝑆) ↔ (𝑃𝐸(◡𝐹‘𝑥)) < 𝑆)) | |
| 29 | 15, 27, 17, 22, 28 | syl22anc 838 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((◡𝐹‘𝑥) ∈ (𝑃(ball‘𝐸)𝑆) ↔ (𝑃𝐸(◡𝐹‘𝑥)) < 𝑆)) |
| 30 | 25, 29 | bitr4d 282 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((𝐹‘𝑃)𝐷𝑥) < 𝑆 ↔ (◡𝐹‘𝑥) ∈ (𝑃(ball‘𝐸)𝑆))) |
| 31 | 30 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ ((𝐹‘𝑃)𝐷𝑥) < 𝑆) ↔ (𝑥 ∈ 𝐵 ∧ (◡𝐹‘𝑥) ∈ (𝑃(ball‘𝐸)𝑆)))) |
| 32 | 5, 7, 1, 10, 12, 13, 14 | imasf1oxmet 24261 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |
| 33 | f1of 6764 | . . . . . . 7 ⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉⟶𝐵) | |
| 34 | 1, 33 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑉⟶𝐵) |
| 35 | 34, 16 | ffvelcdmd 7019 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑃) ∈ 𝐵) |
| 36 | elbl 24274 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝐵) ∧ (𝐹‘𝑃) ∈ 𝐵 ∧ 𝑆 ∈ ℝ*) → (𝑥 ∈ ((𝐹‘𝑃)(ball‘𝐷)𝑆) ↔ (𝑥 ∈ 𝐵 ∧ ((𝐹‘𝑃)𝐷𝑥) < 𝑆))) | |
| 37 | 32, 35, 26, 36 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ((𝐹‘𝑃)(ball‘𝐷)𝑆) ↔ (𝑥 ∈ 𝐵 ∧ ((𝐹‘𝑃)𝐷𝑥) < 𝑆))) |
| 38 | f1ofn 6765 | . . . . 5 ⊢ (◡𝐹:𝐵–1-1-onto→𝑉 → ◡𝐹 Fn 𝐵) | |
| 39 | elpreima 6992 | . . . . 5 ⊢ (◡𝐹 Fn 𝐵 → (𝑥 ∈ (◡◡𝐹 “ (𝑃(ball‘𝐸)𝑆)) ↔ (𝑥 ∈ 𝐵 ∧ (◡𝐹‘𝑥) ∈ (𝑃(ball‘𝐸)𝑆)))) | |
| 40 | 19, 38, 39 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (◡◡𝐹 “ (𝑃(ball‘𝐸)𝑆)) ↔ (𝑥 ∈ 𝐵 ∧ (◡𝐹‘𝑥) ∈ (𝑃(ball‘𝐸)𝑆)))) |
| 41 | 31, 37, 40 | 3bitr4d 311 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ((𝐹‘𝑃)(ball‘𝐷)𝑆) ↔ 𝑥 ∈ (◡◡𝐹 “ (𝑃(ball‘𝐸)𝑆)))) |
| 42 | 41 | eqrdv 2727 | . 2 ⊢ (𝜑 → ((𝐹‘𝑃)(ball‘𝐷)𝑆) = (◡◡𝐹 “ (𝑃(ball‘𝐸)𝑆))) |
| 43 | imacnvcnv 6155 | . 2 ⊢ (◡◡𝐹 “ (𝑃(ball‘𝐸)𝑆)) = (𝐹 “ (𝑃(ball‘𝐸)𝑆)) | |
| 44 | 42, 43 | eqtrdi 2780 | 1 ⊢ (𝜑 → ((𝐹‘𝑃)(ball‘𝐷)𝑆) = (𝐹 “ (𝑃(ball‘𝐸)𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 × cxp 5617 ◡ccnv 5618 ↾ cres 5621 “ cima 5622 Fn wfn 6477 ⟶wf 6478 –1-1-onto→wf1o 6481 ‘cfv 6482 (class class class)co 7349 ℝ*cxr 11148 < clt 11149 Basecbs 17120 distcds 17170 “s cimas 17408 ∞Metcxmet 21246 ballcbl 21248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-0g 17345 df-gsum 17346 df-xrs 17406 df-imas 17412 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-bl 21256 |
| This theorem is referenced by: imasf1oxms 24375 |
| Copyright terms: Public domain | W3C validator |