MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasf1obl Structured version   Visualization version   GIF version

Theorem imasf1obl 23844
Description: The image of a metric space ball. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
imasf1obl.u (𝜑𝑈 = (𝐹s 𝑅))
imasf1obl.v (𝜑𝑉 = (Base‘𝑅))
imasf1obl.f (𝜑𝐹:𝑉1-1-onto𝐵)
imasf1obl.r (𝜑𝑅𝑍)
imasf1obl.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
imasf1obl.d 𝐷 = (dist‘𝑈)
imasf1obl.m (𝜑𝐸 ∈ (∞Met‘𝑉))
imasf1obl.x (𝜑𝑃𝑉)
imasf1obl.s (𝜑𝑆 ∈ ℝ*)
Assertion
Ref Expression
imasf1obl (𝜑 → ((𝐹𝑃)(ball‘𝐷)𝑆) = (𝐹 “ (𝑃(ball‘𝐸)𝑆)))

Proof of Theorem imasf1obl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imasf1obl.f . . . . . . . . . 10 (𝜑𝐹:𝑉1-1-onto𝐵)
2 f1ocnvfv2 7223 . . . . . . . . . 10 ((𝐹:𝑉1-1-onto𝐵𝑥𝐵) → (𝐹‘(𝐹𝑥)) = 𝑥)
31, 2sylan 580 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝐹‘(𝐹𝑥)) = 𝑥)
43oveq2d 7373 . . . . . . . 8 ((𝜑𝑥𝐵) → ((𝐹𝑃)𝐷(𝐹‘(𝐹𝑥))) = ((𝐹𝑃)𝐷𝑥))
5 imasf1obl.u . . . . . . . . . 10 (𝜑𝑈 = (𝐹s 𝑅))
65adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑈 = (𝐹s 𝑅))
7 imasf1obl.v . . . . . . . . . 10 (𝜑𝑉 = (Base‘𝑅))
87adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑉 = (Base‘𝑅))
91adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝐹:𝑉1-1-onto𝐵)
10 imasf1obl.r . . . . . . . . . 10 (𝜑𝑅𝑍)
1110adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑅𝑍)
12 imasf1obl.e . . . . . . . . 9 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
13 imasf1obl.d . . . . . . . . 9 𝐷 = (dist‘𝑈)
14 imasf1obl.m . . . . . . . . . 10 (𝜑𝐸 ∈ (∞Met‘𝑉))
1514adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝐸 ∈ (∞Met‘𝑉))
16 imasf1obl.x . . . . . . . . . 10 (𝜑𝑃𝑉)
1716adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑃𝑉)
18 f1ocnv 6796 . . . . . . . . . . . 12 (𝐹:𝑉1-1-onto𝐵𝐹:𝐵1-1-onto𝑉)
191, 18syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝐵1-1-onto𝑉)
20 f1of 6784 . . . . . . . . . . 11 (𝐹:𝐵1-1-onto𝑉𝐹:𝐵𝑉)
2119, 20syl 17 . . . . . . . . . 10 (𝜑𝐹:𝐵𝑉)
2221ffvelcdmda 7035 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝐹𝑥) ∈ 𝑉)
236, 8, 9, 11, 12, 13, 15, 17, 22imasdsf1o 23727 . . . . . . . 8 ((𝜑𝑥𝐵) → ((𝐹𝑃)𝐷(𝐹‘(𝐹𝑥))) = (𝑃𝐸(𝐹𝑥)))
244, 23eqtr3d 2778 . . . . . . 7 ((𝜑𝑥𝐵) → ((𝐹𝑃)𝐷𝑥) = (𝑃𝐸(𝐹𝑥)))
2524breq1d 5115 . . . . . 6 ((𝜑𝑥𝐵) → (((𝐹𝑃)𝐷𝑥) < 𝑆 ↔ (𝑃𝐸(𝐹𝑥)) < 𝑆))
26 imasf1obl.s . . . . . . . 8 (𝜑𝑆 ∈ ℝ*)
2726adantr 481 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑆 ∈ ℝ*)
28 elbl2 23743 . . . . . . 7 (((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑆 ∈ ℝ*) ∧ (𝑃𝑉 ∧ (𝐹𝑥) ∈ 𝑉)) → ((𝐹𝑥) ∈ (𝑃(ball‘𝐸)𝑆) ↔ (𝑃𝐸(𝐹𝑥)) < 𝑆))
2915, 27, 17, 22, 28syl22anc 837 . . . . . 6 ((𝜑𝑥𝐵) → ((𝐹𝑥) ∈ (𝑃(ball‘𝐸)𝑆) ↔ (𝑃𝐸(𝐹𝑥)) < 𝑆))
3025, 29bitr4d 281 . . . . 5 ((𝜑𝑥𝐵) → (((𝐹𝑃)𝐷𝑥) < 𝑆 ↔ (𝐹𝑥) ∈ (𝑃(ball‘𝐸)𝑆)))
3130pm5.32da 579 . . . 4 (𝜑 → ((𝑥𝐵 ∧ ((𝐹𝑃)𝐷𝑥) < 𝑆) ↔ (𝑥𝐵 ∧ (𝐹𝑥) ∈ (𝑃(ball‘𝐸)𝑆))))
325, 7, 1, 10, 12, 13, 14imasf1oxmet 23728 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝐵))
33 f1of 6784 . . . . . . 7 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉𝐵)
341, 33syl 17 . . . . . 6 (𝜑𝐹:𝑉𝐵)
3534, 16ffvelcdmd 7036 . . . . 5 (𝜑 → (𝐹𝑃) ∈ 𝐵)
36 elbl 23741 . . . . 5 ((𝐷 ∈ (∞Met‘𝐵) ∧ (𝐹𝑃) ∈ 𝐵𝑆 ∈ ℝ*) → (𝑥 ∈ ((𝐹𝑃)(ball‘𝐷)𝑆) ↔ (𝑥𝐵 ∧ ((𝐹𝑃)𝐷𝑥) < 𝑆)))
3732, 35, 26, 36syl3anc 1371 . . . 4 (𝜑 → (𝑥 ∈ ((𝐹𝑃)(ball‘𝐷)𝑆) ↔ (𝑥𝐵 ∧ ((𝐹𝑃)𝐷𝑥) < 𝑆)))
38 f1ofn 6785 . . . . 5 (𝐹:𝐵1-1-onto𝑉𝐹 Fn 𝐵)
39 elpreima 7008 . . . . 5 (𝐹 Fn 𝐵 → (𝑥 ∈ (𝐹 “ (𝑃(ball‘𝐸)𝑆)) ↔ (𝑥𝐵 ∧ (𝐹𝑥) ∈ (𝑃(ball‘𝐸)𝑆))))
4019, 38, 393syl 18 . . . 4 (𝜑 → (𝑥 ∈ (𝐹 “ (𝑃(ball‘𝐸)𝑆)) ↔ (𝑥𝐵 ∧ (𝐹𝑥) ∈ (𝑃(ball‘𝐸)𝑆))))
4131, 37, 403bitr4d 310 . . 3 (𝜑 → (𝑥 ∈ ((𝐹𝑃)(ball‘𝐷)𝑆) ↔ 𝑥 ∈ (𝐹 “ (𝑃(ball‘𝐸)𝑆))))
4241eqrdv 2734 . 2 (𝜑 → ((𝐹𝑃)(ball‘𝐷)𝑆) = (𝐹 “ (𝑃(ball‘𝐸)𝑆)))
43 imacnvcnv 6158 . 2 (𝐹 “ (𝑃(ball‘𝐸)𝑆)) = (𝐹 “ (𝑃(ball‘𝐸)𝑆))
4442, 43eqtrdi 2792 1 (𝜑 → ((𝐹𝑃)(ball‘𝐷)𝑆) = (𝐹 “ (𝑃(ball‘𝐸)𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106   class class class wbr 5105   × cxp 5631  ccnv 5632  cres 5635  cima 5636   Fn wfn 6491  wf 6492  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  *cxr 11188   < clt 11189  Basecbs 17083  distcds 17142  s cimas 17386  ∞Metcxmet 20781  ballcbl 20783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-0g 17323  df-gsum 17324  df-xrs 17384  df-imas 17390  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-bl 20791
This theorem is referenced by:  imasf1oxms  23845
  Copyright terms: Public domain W3C validator