Step | Hyp | Ref
| Expression |
1 | | imasf1obl.f |
. . . . . . . . . 10
β’ (π β πΉ:πβ1-1-ontoβπ΅) |
2 | | f1ocnvfv2 7271 |
. . . . . . . . . 10
β’ ((πΉ:πβ1-1-ontoβπ΅ β§ π₯ β π΅) β (πΉβ(β‘πΉβπ₯)) = π₯) |
3 | 1, 2 | sylan 580 |
. . . . . . . . 9
β’ ((π β§ π₯ β π΅) β (πΉβ(β‘πΉβπ₯)) = π₯) |
4 | 3 | oveq2d 7421 |
. . . . . . . 8
β’ ((π β§ π₯ β π΅) β ((πΉβπ)π·(πΉβ(β‘πΉβπ₯))) = ((πΉβπ)π·π₯)) |
5 | | imasf1obl.u |
. . . . . . . . . 10
β’ (π β π = (πΉ βs π
)) |
6 | 5 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π₯ β π΅) β π = (πΉ βs π
)) |
7 | | imasf1obl.v |
. . . . . . . . . 10
β’ (π β π = (Baseβπ
)) |
8 | 7 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π₯ β π΅) β π = (Baseβπ
)) |
9 | 1 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π₯ β π΅) β πΉ:πβ1-1-ontoβπ΅) |
10 | | imasf1obl.r |
. . . . . . . . . 10
β’ (π β π
β π) |
11 | 10 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π₯ β π΅) β π
β π) |
12 | | imasf1obl.e |
. . . . . . . . 9
β’ πΈ = ((distβπ
) βΎ (π Γ π)) |
13 | | imasf1obl.d |
. . . . . . . . 9
β’ π· = (distβπ) |
14 | | imasf1obl.m |
. . . . . . . . . 10
β’ (π β πΈ β (βMetβπ)) |
15 | 14 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π₯ β π΅) β πΈ β (βMetβπ)) |
16 | | imasf1obl.x |
. . . . . . . . . 10
β’ (π β π β π) |
17 | 16 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π₯ β π΅) β π β π) |
18 | | f1ocnv 6842 |
. . . . . . . . . . . 12
β’ (πΉ:πβ1-1-ontoβπ΅ β β‘πΉ:π΅β1-1-ontoβπ) |
19 | 1, 18 | syl 17 |
. . . . . . . . . . 11
β’ (π β β‘πΉ:π΅β1-1-ontoβπ) |
20 | | f1of 6830 |
. . . . . . . . . . 11
β’ (β‘πΉ:π΅β1-1-ontoβπ β β‘πΉ:π΅βΆπ) |
21 | 19, 20 | syl 17 |
. . . . . . . . . 10
β’ (π β β‘πΉ:π΅βΆπ) |
22 | 21 | ffvelcdmda 7083 |
. . . . . . . . 9
β’ ((π β§ π₯ β π΅) β (β‘πΉβπ₯) β π) |
23 | 6, 8, 9, 11, 12, 13, 15, 17, 22 | imasdsf1o 23871 |
. . . . . . . 8
β’ ((π β§ π₯ β π΅) β ((πΉβπ)π·(πΉβ(β‘πΉβπ₯))) = (ππΈ(β‘πΉβπ₯))) |
24 | 4, 23 | eqtr3d 2774 |
. . . . . . 7
β’ ((π β§ π₯ β π΅) β ((πΉβπ)π·π₯) = (ππΈ(β‘πΉβπ₯))) |
25 | 24 | breq1d 5157 |
. . . . . 6
β’ ((π β§ π₯ β π΅) β (((πΉβπ)π·π₯) < π β (ππΈ(β‘πΉβπ₯)) < π)) |
26 | | imasf1obl.s |
. . . . . . . 8
β’ (π β π β
β*) |
27 | 26 | adantr 481 |
. . . . . . 7
β’ ((π β§ π₯ β π΅) β π β
β*) |
28 | | elbl2 23887 |
. . . . . . 7
β’ (((πΈ β (βMetβπ) β§ π β β*) β§ (π β π β§ (β‘πΉβπ₯) β π)) β ((β‘πΉβπ₯) β (π(ballβπΈ)π) β (ππΈ(β‘πΉβπ₯)) < π)) |
29 | 15, 27, 17, 22, 28 | syl22anc 837 |
. . . . . 6
β’ ((π β§ π₯ β π΅) β ((β‘πΉβπ₯) β (π(ballβπΈ)π) β (ππΈ(β‘πΉβπ₯)) < π)) |
30 | 25, 29 | bitr4d 281 |
. . . . 5
β’ ((π β§ π₯ β π΅) β (((πΉβπ)π·π₯) < π β (β‘πΉβπ₯) β (π(ballβπΈ)π))) |
31 | 30 | pm5.32da 579 |
. . . 4
β’ (π β ((π₯ β π΅ β§ ((πΉβπ)π·π₯) < π) β (π₯ β π΅ β§ (β‘πΉβπ₯) β (π(ballβπΈ)π)))) |
32 | 5, 7, 1, 10, 12, 13, 14 | imasf1oxmet 23872 |
. . . . 5
β’ (π β π· β (βMetβπ΅)) |
33 | | f1of 6830 |
. . . . . . 7
β’ (πΉ:πβ1-1-ontoβπ΅ β πΉ:πβΆπ΅) |
34 | 1, 33 | syl 17 |
. . . . . 6
β’ (π β πΉ:πβΆπ΅) |
35 | 34, 16 | ffvelcdmd 7084 |
. . . . 5
β’ (π β (πΉβπ) β π΅) |
36 | | elbl 23885 |
. . . . 5
β’ ((π· β (βMetβπ΅) β§ (πΉβπ) β π΅ β§ π β β*) β (π₯ β ((πΉβπ)(ballβπ·)π) β (π₯ β π΅ β§ ((πΉβπ)π·π₯) < π))) |
37 | 32, 35, 26, 36 | syl3anc 1371 |
. . . 4
β’ (π β (π₯ β ((πΉβπ)(ballβπ·)π) β (π₯ β π΅ β§ ((πΉβπ)π·π₯) < π))) |
38 | | f1ofn 6831 |
. . . . 5
β’ (β‘πΉ:π΅β1-1-ontoβπ β β‘πΉ Fn π΅) |
39 | | elpreima 7056 |
. . . . 5
β’ (β‘πΉ Fn π΅ β (π₯ β (β‘β‘πΉ β (π(ballβπΈ)π)) β (π₯ β π΅ β§ (β‘πΉβπ₯) β (π(ballβπΈ)π)))) |
40 | 19, 38, 39 | 3syl 18 |
. . . 4
β’ (π β (π₯ β (β‘β‘πΉ β (π(ballβπΈ)π)) β (π₯ β π΅ β§ (β‘πΉβπ₯) β (π(ballβπΈ)π)))) |
41 | 31, 37, 40 | 3bitr4d 310 |
. . 3
β’ (π β (π₯ β ((πΉβπ)(ballβπ·)π) β π₯ β (β‘β‘πΉ β (π(ballβπΈ)π)))) |
42 | 41 | eqrdv 2730 |
. 2
β’ (π β ((πΉβπ)(ballβπ·)π) = (β‘β‘πΉ β (π(ballβπΈ)π))) |
43 | | imacnvcnv 6202 |
. 2
β’ (β‘β‘πΉ β (π(ballβπΈ)π)) = (πΉ β (π(ballβπΈ)π)) |
44 | 42, 43 | eqtrdi 2788 |
1
β’ (π β ((πΉβπ)(ballβπ·)π) = (πΉ β (π(ballβπΈ)π))) |