MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasf1obl Structured version   Visualization version   GIF version

Theorem imasf1obl 24383
Description: The image of a metric space ball. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
imasf1obl.u (𝜑𝑈 = (𝐹s 𝑅))
imasf1obl.v (𝜑𝑉 = (Base‘𝑅))
imasf1obl.f (𝜑𝐹:𝑉1-1-onto𝐵)
imasf1obl.r (𝜑𝑅𝑍)
imasf1obl.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
imasf1obl.d 𝐷 = (dist‘𝑈)
imasf1obl.m (𝜑𝐸 ∈ (∞Met‘𝑉))
imasf1obl.x (𝜑𝑃𝑉)
imasf1obl.s (𝜑𝑆 ∈ ℝ*)
Assertion
Ref Expression
imasf1obl (𝜑 → ((𝐹𝑃)(ball‘𝐷)𝑆) = (𝐹 “ (𝑃(ball‘𝐸)𝑆)))

Proof of Theorem imasf1obl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imasf1obl.f . . . . . . . . . 10 (𝜑𝐹:𝑉1-1-onto𝐵)
2 f1ocnvfv2 7255 . . . . . . . . . 10 ((𝐹:𝑉1-1-onto𝐵𝑥𝐵) → (𝐹‘(𝐹𝑥)) = 𝑥)
31, 2sylan 580 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝐹‘(𝐹𝑥)) = 𝑥)
43oveq2d 7406 . . . . . . . 8 ((𝜑𝑥𝐵) → ((𝐹𝑃)𝐷(𝐹‘(𝐹𝑥))) = ((𝐹𝑃)𝐷𝑥))
5 imasf1obl.u . . . . . . . . . 10 (𝜑𝑈 = (𝐹s 𝑅))
65adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑈 = (𝐹s 𝑅))
7 imasf1obl.v . . . . . . . . . 10 (𝜑𝑉 = (Base‘𝑅))
87adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑉 = (Base‘𝑅))
91adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝐹:𝑉1-1-onto𝐵)
10 imasf1obl.r . . . . . . . . . 10 (𝜑𝑅𝑍)
1110adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑅𝑍)
12 imasf1obl.e . . . . . . . . 9 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
13 imasf1obl.d . . . . . . . . 9 𝐷 = (dist‘𝑈)
14 imasf1obl.m . . . . . . . . . 10 (𝜑𝐸 ∈ (∞Met‘𝑉))
1514adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝐸 ∈ (∞Met‘𝑉))
16 imasf1obl.x . . . . . . . . . 10 (𝜑𝑃𝑉)
1716adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑃𝑉)
18 f1ocnv 6815 . . . . . . . . . . . 12 (𝐹:𝑉1-1-onto𝐵𝐹:𝐵1-1-onto𝑉)
191, 18syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝐵1-1-onto𝑉)
20 f1of 6803 . . . . . . . . . . 11 (𝐹:𝐵1-1-onto𝑉𝐹:𝐵𝑉)
2119, 20syl 17 . . . . . . . . . 10 (𝜑𝐹:𝐵𝑉)
2221ffvelcdmda 7059 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝐹𝑥) ∈ 𝑉)
236, 8, 9, 11, 12, 13, 15, 17, 22imasdsf1o 24269 . . . . . . . 8 ((𝜑𝑥𝐵) → ((𝐹𝑃)𝐷(𝐹‘(𝐹𝑥))) = (𝑃𝐸(𝐹𝑥)))
244, 23eqtr3d 2767 . . . . . . 7 ((𝜑𝑥𝐵) → ((𝐹𝑃)𝐷𝑥) = (𝑃𝐸(𝐹𝑥)))
2524breq1d 5120 . . . . . 6 ((𝜑𝑥𝐵) → (((𝐹𝑃)𝐷𝑥) < 𝑆 ↔ (𝑃𝐸(𝐹𝑥)) < 𝑆))
26 imasf1obl.s . . . . . . . 8 (𝜑𝑆 ∈ ℝ*)
2726adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑆 ∈ ℝ*)
28 elbl2 24285 . . . . . . 7 (((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑆 ∈ ℝ*) ∧ (𝑃𝑉 ∧ (𝐹𝑥) ∈ 𝑉)) → ((𝐹𝑥) ∈ (𝑃(ball‘𝐸)𝑆) ↔ (𝑃𝐸(𝐹𝑥)) < 𝑆))
2915, 27, 17, 22, 28syl22anc 838 . . . . . 6 ((𝜑𝑥𝐵) → ((𝐹𝑥) ∈ (𝑃(ball‘𝐸)𝑆) ↔ (𝑃𝐸(𝐹𝑥)) < 𝑆))
3025, 29bitr4d 282 . . . . 5 ((𝜑𝑥𝐵) → (((𝐹𝑃)𝐷𝑥) < 𝑆 ↔ (𝐹𝑥) ∈ (𝑃(ball‘𝐸)𝑆)))
3130pm5.32da 579 . . . 4 (𝜑 → ((𝑥𝐵 ∧ ((𝐹𝑃)𝐷𝑥) < 𝑆) ↔ (𝑥𝐵 ∧ (𝐹𝑥) ∈ (𝑃(ball‘𝐸)𝑆))))
325, 7, 1, 10, 12, 13, 14imasf1oxmet 24270 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝐵))
33 f1of 6803 . . . . . . 7 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉𝐵)
341, 33syl 17 . . . . . 6 (𝜑𝐹:𝑉𝐵)
3534, 16ffvelcdmd 7060 . . . . 5 (𝜑 → (𝐹𝑃) ∈ 𝐵)
36 elbl 24283 . . . . 5 ((𝐷 ∈ (∞Met‘𝐵) ∧ (𝐹𝑃) ∈ 𝐵𝑆 ∈ ℝ*) → (𝑥 ∈ ((𝐹𝑃)(ball‘𝐷)𝑆) ↔ (𝑥𝐵 ∧ ((𝐹𝑃)𝐷𝑥) < 𝑆)))
3732, 35, 26, 36syl3anc 1373 . . . 4 (𝜑 → (𝑥 ∈ ((𝐹𝑃)(ball‘𝐷)𝑆) ↔ (𝑥𝐵 ∧ ((𝐹𝑃)𝐷𝑥) < 𝑆)))
38 f1ofn 6804 . . . . 5 (𝐹:𝐵1-1-onto𝑉𝐹 Fn 𝐵)
39 elpreima 7033 . . . . 5 (𝐹 Fn 𝐵 → (𝑥 ∈ (𝐹 “ (𝑃(ball‘𝐸)𝑆)) ↔ (𝑥𝐵 ∧ (𝐹𝑥) ∈ (𝑃(ball‘𝐸)𝑆))))
4019, 38, 393syl 18 . . . 4 (𝜑 → (𝑥 ∈ (𝐹 “ (𝑃(ball‘𝐸)𝑆)) ↔ (𝑥𝐵 ∧ (𝐹𝑥) ∈ (𝑃(ball‘𝐸)𝑆))))
4131, 37, 403bitr4d 311 . . 3 (𝜑 → (𝑥 ∈ ((𝐹𝑃)(ball‘𝐷)𝑆) ↔ 𝑥 ∈ (𝐹 “ (𝑃(ball‘𝐸)𝑆))))
4241eqrdv 2728 . 2 (𝜑 → ((𝐹𝑃)(ball‘𝐷)𝑆) = (𝐹 “ (𝑃(ball‘𝐸)𝑆)))
43 imacnvcnv 6182 . 2 (𝐹 “ (𝑃(ball‘𝐸)𝑆)) = (𝐹 “ (𝑃(ball‘𝐸)𝑆))
4442, 43eqtrdi 2781 1 (𝜑 → ((𝐹𝑃)(ball‘𝐷)𝑆) = (𝐹 “ (𝑃(ball‘𝐸)𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110   × cxp 5639  ccnv 5640  cres 5643  cima 5644   Fn wfn 6509  wf 6510  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  *cxr 11214   < clt 11215  Basecbs 17186  distcds 17236  s cimas 17474  ∞Metcxmet 21256  ballcbl 21258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-0g 17411  df-gsum 17412  df-xrs 17472  df-imas 17478  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-bl 21266
This theorem is referenced by:  imasf1oxms  24384
  Copyright terms: Public domain W3C validator