Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imasf1obl | Structured version Visualization version GIF version |
Description: The image of a metric space ball. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
imasf1obl.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imasf1obl.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imasf1obl.f | ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) |
imasf1obl.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
imasf1obl.e | ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) |
imasf1obl.d | ⊢ 𝐷 = (dist‘𝑈) |
imasf1obl.m | ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) |
imasf1obl.x | ⊢ (𝜑 → 𝑃 ∈ 𝑉) |
imasf1obl.s | ⊢ (𝜑 → 𝑆 ∈ ℝ*) |
Ref | Expression |
---|---|
imasf1obl | ⊢ (𝜑 → ((𝐹‘𝑃)(ball‘𝐷)𝑆) = (𝐹 “ (𝑃(ball‘𝐸)𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasf1obl.f | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) | |
2 | f1ocnvfv2 7130 | . . . . . . . . . 10 ⊢ ((𝐹:𝑉–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) | |
3 | 1, 2 | sylan 579 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) |
4 | 3 | oveq2d 7271 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝐹‘𝑃)𝐷(𝐹‘(◡𝐹‘𝑥))) = ((𝐹‘𝑃)𝐷𝑥)) |
5 | imasf1obl.u | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑈 = (𝐹 “s 𝑅)) |
7 | imasf1obl.v | . . . . . . . . . 10 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
8 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑉 = (Base‘𝑅)) |
9 | 1 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐹:𝑉–1-1-onto→𝐵) |
10 | imasf1obl.r | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
11 | 10 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑅 ∈ 𝑍) |
12 | imasf1obl.e | . . . . . . . . 9 ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) | |
13 | imasf1obl.d | . . . . . . . . 9 ⊢ 𝐷 = (dist‘𝑈) | |
14 | imasf1obl.m | . . . . . . . . . 10 ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) | |
15 | 14 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐸 ∈ (∞Met‘𝑉)) |
16 | imasf1obl.x | . . . . . . . . . 10 ⊢ (𝜑 → 𝑃 ∈ 𝑉) | |
17 | 16 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑃 ∈ 𝑉) |
18 | f1ocnv 6712 | . . . . . . . . . . . 12 ⊢ (𝐹:𝑉–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝑉) | |
19 | 1, 18 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → ◡𝐹:𝐵–1-1-onto→𝑉) |
20 | f1of 6700 | . . . . . . . . . . 11 ⊢ (◡𝐹:𝐵–1-1-onto→𝑉 → ◡𝐹:𝐵⟶𝑉) | |
21 | 19, 20 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → ◡𝐹:𝐵⟶𝑉) |
22 | 21 | ffvelrnda 6943 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (◡𝐹‘𝑥) ∈ 𝑉) |
23 | 6, 8, 9, 11, 12, 13, 15, 17, 22 | imasdsf1o 23435 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝐹‘𝑃)𝐷(𝐹‘(◡𝐹‘𝑥))) = (𝑃𝐸(◡𝐹‘𝑥))) |
24 | 4, 23 | eqtr3d 2780 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝐹‘𝑃)𝐷𝑥) = (𝑃𝐸(◡𝐹‘𝑥))) |
25 | 24 | breq1d 5080 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((𝐹‘𝑃)𝐷𝑥) < 𝑆 ↔ (𝑃𝐸(◡𝐹‘𝑥)) < 𝑆)) |
26 | imasf1obl.s | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ ℝ*) | |
27 | 26 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑆 ∈ ℝ*) |
28 | elbl2 23451 | . . . . . . 7 ⊢ (((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑆 ∈ ℝ*) ∧ (𝑃 ∈ 𝑉 ∧ (◡𝐹‘𝑥) ∈ 𝑉)) → ((◡𝐹‘𝑥) ∈ (𝑃(ball‘𝐸)𝑆) ↔ (𝑃𝐸(◡𝐹‘𝑥)) < 𝑆)) | |
29 | 15, 27, 17, 22, 28 | syl22anc 835 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((◡𝐹‘𝑥) ∈ (𝑃(ball‘𝐸)𝑆) ↔ (𝑃𝐸(◡𝐹‘𝑥)) < 𝑆)) |
30 | 25, 29 | bitr4d 281 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((𝐹‘𝑃)𝐷𝑥) < 𝑆 ↔ (◡𝐹‘𝑥) ∈ (𝑃(ball‘𝐸)𝑆))) |
31 | 30 | pm5.32da 578 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ ((𝐹‘𝑃)𝐷𝑥) < 𝑆) ↔ (𝑥 ∈ 𝐵 ∧ (◡𝐹‘𝑥) ∈ (𝑃(ball‘𝐸)𝑆)))) |
32 | 5, 7, 1, 10, 12, 13, 14 | imasf1oxmet 23436 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |
33 | f1of 6700 | . . . . . . 7 ⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉⟶𝐵) | |
34 | 1, 33 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑉⟶𝐵) |
35 | 34, 16 | ffvelrnd 6944 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑃) ∈ 𝐵) |
36 | elbl 23449 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝐵) ∧ (𝐹‘𝑃) ∈ 𝐵 ∧ 𝑆 ∈ ℝ*) → (𝑥 ∈ ((𝐹‘𝑃)(ball‘𝐷)𝑆) ↔ (𝑥 ∈ 𝐵 ∧ ((𝐹‘𝑃)𝐷𝑥) < 𝑆))) | |
37 | 32, 35, 26, 36 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ((𝐹‘𝑃)(ball‘𝐷)𝑆) ↔ (𝑥 ∈ 𝐵 ∧ ((𝐹‘𝑃)𝐷𝑥) < 𝑆))) |
38 | f1ofn 6701 | . . . . 5 ⊢ (◡𝐹:𝐵–1-1-onto→𝑉 → ◡𝐹 Fn 𝐵) | |
39 | elpreima 6917 | . . . . 5 ⊢ (◡𝐹 Fn 𝐵 → (𝑥 ∈ (◡◡𝐹 “ (𝑃(ball‘𝐸)𝑆)) ↔ (𝑥 ∈ 𝐵 ∧ (◡𝐹‘𝑥) ∈ (𝑃(ball‘𝐸)𝑆)))) | |
40 | 19, 38, 39 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (◡◡𝐹 “ (𝑃(ball‘𝐸)𝑆)) ↔ (𝑥 ∈ 𝐵 ∧ (◡𝐹‘𝑥) ∈ (𝑃(ball‘𝐸)𝑆)))) |
41 | 31, 37, 40 | 3bitr4d 310 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ((𝐹‘𝑃)(ball‘𝐷)𝑆) ↔ 𝑥 ∈ (◡◡𝐹 “ (𝑃(ball‘𝐸)𝑆)))) |
42 | 41 | eqrdv 2736 | . 2 ⊢ (𝜑 → ((𝐹‘𝑃)(ball‘𝐷)𝑆) = (◡◡𝐹 “ (𝑃(ball‘𝐸)𝑆))) |
43 | imacnvcnv 6098 | . 2 ⊢ (◡◡𝐹 “ (𝑃(ball‘𝐸)𝑆)) = (𝐹 “ (𝑃(ball‘𝐸)𝑆)) | |
44 | 42, 43 | eqtrdi 2795 | 1 ⊢ (𝜑 → ((𝐹‘𝑃)(ball‘𝐷)𝑆) = (𝐹 “ (𝑃(ball‘𝐸)𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 × cxp 5578 ◡ccnv 5579 ↾ cres 5582 “ cima 5583 Fn wfn 6413 ⟶wf 6414 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 ℝ*cxr 10939 < clt 10940 Basecbs 16840 distcds 16897 “s cimas 17132 ∞Metcxmet 20495 ballcbl 20497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-0g 17069 df-gsum 17070 df-xrs 17130 df-imas 17136 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-bl 20505 |
This theorem is referenced by: imasf1oxms 23551 |
Copyright terms: Public domain | W3C validator |