Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hmeoclda | Structured version Visualization version GIF version |
Description: Homeomorphisms preserve closedness. (Contributed by Jeff Hankins, 3-Jul-2009.) (Revised by Mario Carneiro, 3-Jun-2014.) |
Ref | Expression |
---|---|
hmeoclda | ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽Homeo𝐾)) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑆) ∈ (Clsd‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocnvcn 22461 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) | |
2 | 1 | 3ad2ant3 1132 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽Homeo𝐾)) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) |
3 | imacnvcnv 6035 | . . 3 ⊢ (◡◡𝐹 “ 𝑆) = (𝐹 “ 𝑆) | |
4 | cnclima 21968 | . . 3 ⊢ ((◡𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (◡◡𝐹 “ 𝑆) ∈ (Clsd‘𝐾)) | |
5 | 3, 4 | eqeltrrid 2857 | . 2 ⊢ ((◡𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑆) ∈ (Clsd‘𝐾)) |
6 | 2, 5 | sylan 583 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽Homeo𝐾)) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑆) ∈ (Clsd‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 ∈ wcel 2111 ◡ccnv 5523 “ cima 5527 ‘cfv 6335 (class class class)co 7150 Topctop 21593 Clsdccld 21716 Cn ccn 21924 Homeochmeo 22453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-map 8418 df-top 21594 df-topon 21611 df-cld 21719 df-cn 21927 df-hmeo 22455 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |