Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hmeoclda Structured version   Visualization version   GIF version

Theorem hmeoclda 34449
Description: Homeomorphisms preserve closedness. (Contributed by Jeff Hankins, 3-Jul-2009.) (Revised by Mario Carneiro, 3-Jun-2014.)
Assertion
Ref Expression
hmeoclda (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽Homeo𝐾)) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐹𝑆) ∈ (Clsd‘𝐾))

Proof of Theorem hmeoclda
StepHypRef Expression
1 hmeocnvcn 22820 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
213ad2ant3 1133 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽Homeo𝐾)) → 𝐹 ∈ (𝐾 Cn 𝐽))
3 imacnvcnv 6098 . . 3 (𝐹𝑆) = (𝐹𝑆)
4 cnclima 22327 . . 3 ((𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐹𝑆) ∈ (Clsd‘𝐾))
53, 4eqeltrrid 2844 . 2 ((𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐹𝑆) ∈ (Clsd‘𝐾))
62, 5sylan 579 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽Homeo𝐾)) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐹𝑆) ∈ (Clsd‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2108  ccnv 5579  cima 5583  cfv 6418  (class class class)co 7255  Topctop 21950  Clsdccld 22075   Cn ccn 22283  Homeochmeo 22812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-top 21951  df-topon 21968  df-cld 22078  df-cn 22286  df-hmeo 22814
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator