![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hmeoclda | Structured version Visualization version GIF version |
Description: Homeomorphisms preserve closedness. (Contributed by Jeff Hankins, 3-Jul-2009.) (Revised by Mario Carneiro, 3-Jun-2014.) |
Ref | Expression |
---|---|
hmeoclda | ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽Homeo𝐾)) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑆) ∈ (Clsd‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocnvcn 23264 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) | |
2 | 1 | 3ad2ant3 1135 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽Homeo𝐾)) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) |
3 | imacnvcnv 6205 | . . 3 ⊢ (◡◡𝐹 “ 𝑆) = (𝐹 “ 𝑆) | |
4 | cnclima 22771 | . . 3 ⊢ ((◡𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (◡◡𝐹 “ 𝑆) ∈ (Clsd‘𝐾)) | |
5 | 3, 4 | eqeltrrid 2838 | . 2 ⊢ ((◡𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑆) ∈ (Clsd‘𝐾)) |
6 | 2, 5 | sylan 580 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽Homeo𝐾)) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑆) ∈ (Clsd‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 ◡ccnv 5675 “ cima 5679 ‘cfv 6543 (class class class)co 7408 Topctop 22394 Clsdccld 22519 Cn ccn 22727 Homeochmeo 23256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-map 8821 df-top 22395 df-topon 22412 df-cld 22522 df-cn 22730 df-hmeo 23258 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |