![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hmeoclda | Structured version Visualization version GIF version |
Description: Homeomorphisms preserve closedness. (Contributed by Jeff Hankins, 3-Jul-2009.) (Revised by Mario Carneiro, 3-Jun-2014.) |
Ref | Expression |
---|---|
hmeoclda | ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽Homeo𝐾)) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑆) ∈ (Clsd‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocnvcn 23135 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) | |
2 | 1 | 3ad2ant3 1136 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽Homeo𝐾)) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) |
3 | imacnvcnv 6162 | . . 3 ⊢ (◡◡𝐹 “ 𝑆) = (𝐹 “ 𝑆) | |
4 | cnclima 22642 | . . 3 ⊢ ((◡𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (◡◡𝐹 “ 𝑆) ∈ (Clsd‘𝐾)) | |
5 | 3, 4 | eqeltrrid 2839 | . 2 ⊢ ((◡𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑆) ∈ (Clsd‘𝐾)) |
6 | 2, 5 | sylan 581 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽Homeo𝐾)) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑆) ∈ (Clsd‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 ◡ccnv 5636 “ cima 5640 ‘cfv 6500 (class class class)co 7361 Topctop 22265 Clsdccld 22390 Cn ccn 22598 Homeochmeo 23127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-sbc 3744 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-fv 6508 df-ov 7364 df-oprab 7365 df-mpo 7366 df-map 8773 df-top 22266 df-topon 22283 df-cld 22393 df-cn 22601 df-hmeo 23129 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |