![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmeocld | Structured version Visualization version GIF version |
Description: Homeomorphisms preserve closedness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
hmeoopn.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
hmeocld | ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (𝐹 “ 𝐴) ∈ (Clsd‘𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocnvcn 21889 | . . . 4 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) | |
2 | 1 | adantr 473 | . . 3 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) |
3 | imacnvcnv 5813 | . . . . 5 ⊢ (◡◡𝐹 “ 𝐴) = (𝐹 “ 𝐴) | |
4 | cnclima 21397 | . . . . 5 ⊢ ((◡𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (◡◡𝐹 “ 𝐴) ∈ (Clsd‘𝐾)) | |
5 | 3, 4 | syl5eqelr 2881 | . . . 4 ⊢ ((◡𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝐴) ∈ (Clsd‘𝐾)) |
6 | 5 | ex 402 | . . 3 ⊢ (◡𝐹 ∈ (𝐾 Cn 𝐽) → (𝐴 ∈ (Clsd‘𝐽) → (𝐹 “ 𝐴) ∈ (Clsd‘𝐾))) |
7 | 2, 6 | syl 17 | . 2 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) → (𝐹 “ 𝐴) ∈ (Clsd‘𝐾))) |
8 | hmeocn 21888 | . . . . 5 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
9 | 8 | adantr 473 | . . . 4 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
10 | cnclima 21397 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐹 “ 𝐴) ∈ (Clsd‘𝐾)) → (◡𝐹 “ (𝐹 “ 𝐴)) ∈ (Clsd‘𝐽)) | |
11 | 10 | ex 402 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝐹 “ 𝐴) ∈ (Clsd‘𝐾) → (◡𝐹 “ (𝐹 “ 𝐴)) ∈ (Clsd‘𝐽))) |
12 | 9, 11 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((𝐹 “ 𝐴) ∈ (Clsd‘𝐾) → (◡𝐹 “ (𝐹 “ 𝐴)) ∈ (Clsd‘𝐽))) |
13 | hmeoopn.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
14 | eqid 2797 | . . . . . . 7 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
15 | 13, 14 | hmeof1o 21892 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1-onto→∪ 𝐾) |
16 | f1of1 6353 | . . . . . 6 ⊢ (𝐹:𝑋–1-1-onto→∪ 𝐾 → 𝐹:𝑋–1-1→∪ 𝐾) | |
17 | 15, 16 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1→∪ 𝐾) |
18 | f1imacnv 6370 | . . . . 5 ⊢ ((𝐹:𝑋–1-1→∪ 𝐾 ∧ 𝐴 ⊆ 𝑋) → (◡𝐹 “ (𝐹 “ 𝐴)) = 𝐴) | |
19 | 17, 18 | sylan 576 | . . . 4 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (◡𝐹 “ (𝐹 “ 𝐴)) = 𝐴) |
20 | 19 | eleq1d 2861 | . . 3 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((◡𝐹 “ (𝐹 “ 𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽))) |
21 | 12, 20 | sylibd 231 | . 2 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((𝐹 “ 𝐴) ∈ (Clsd‘𝐾) → 𝐴 ∈ (Clsd‘𝐽))) |
22 | 7, 21 | impbid 204 | 1 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (𝐹 “ 𝐴) ∈ (Clsd‘𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ⊆ wss 3767 ∪ cuni 4626 ◡ccnv 5309 “ cima 5313 –1-1→wf1 6096 –1-1-onto→wf1o 6098 ‘cfv 6099 (class class class)co 6876 Clsdccld 21145 Cn ccn 21353 Homeochmeo 21881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-map 8095 df-top 21023 df-topon 21040 df-cld 21148 df-cn 21356 df-hmeo 21883 |
This theorem is referenced by: cldsubg 22238 reheibor 34116 |
Copyright terms: Public domain | W3C validator |