MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeocld Structured version   Visualization version   GIF version

Theorem hmeocld 23796
Description: Homeomorphisms preserve closedness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
hmeoopn.1 𝑋 = 𝐽
Assertion
Ref Expression
hmeocld ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (𝐹𝐴) ∈ (Clsd‘𝐾)))

Proof of Theorem hmeocld
StepHypRef Expression
1 hmeocnvcn 23790 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
21adantr 480 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → 𝐹 ∈ (𝐾 Cn 𝐽))
3 imacnvcnv 6237 . . . . 5 (𝐹𝐴) = (𝐹𝐴)
4 cnclima 23297 . . . . 5 ((𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐹𝐴) ∈ (Clsd‘𝐾))
53, 4eqeltrrid 2849 . . . 4 ((𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐹𝐴) ∈ (Clsd‘𝐾))
65ex 412 . . 3 (𝐹 ∈ (𝐾 Cn 𝐽) → (𝐴 ∈ (Clsd‘𝐽) → (𝐹𝐴) ∈ (Clsd‘𝐾)))
72, 6syl 17 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) → (𝐹𝐴) ∈ (Clsd‘𝐾)))
8 hmeocn 23789 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
98adantr 480 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾))
10 cnclima 23297 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐹𝐴) ∈ (Clsd‘𝐾)) → (𝐹 “ (𝐹𝐴)) ∈ (Clsd‘𝐽))
1110ex 412 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝐹𝐴) ∈ (Clsd‘𝐾) → (𝐹 “ (𝐹𝐴)) ∈ (Clsd‘𝐽)))
129, 11syl 17 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ (Clsd‘𝐾) → (𝐹 “ (𝐹𝐴)) ∈ (Clsd‘𝐽)))
13 hmeoopn.1 . . . . . . 7 𝑋 = 𝐽
14 eqid 2740 . . . . . . 7 𝐾 = 𝐾
1513, 14hmeof1o 23793 . . . . . 6 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1-onto 𝐾)
16 f1of1 6861 . . . . . 6 (𝐹:𝑋1-1-onto 𝐾𝐹:𝑋1-1 𝐾)
1715, 16syl 17 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1 𝐾)
18 f1imacnv 6878 . . . . 5 ((𝐹:𝑋1-1 𝐾𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
1917, 18sylan 579 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
2019eleq1d 2829 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹 “ (𝐹𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽)))
2112, 20sylibd 239 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ (Clsd‘𝐾) → 𝐴 ∈ (Clsd‘𝐽)))
227, 21impbid 212 1 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (𝐹𝐴) ∈ (Clsd‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wss 3976   cuni 4931  ccnv 5699  cima 5703  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Clsdccld 23045   Cn ccn 23253  Homeochmeo 23782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-top 22921  df-topon 22938  df-cld 23048  df-cn 23256  df-hmeo 23784
This theorem is referenced by:  cldsubg  24140  reheibor  37799
  Copyright terms: Public domain W3C validator