| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmeocld | Structured version Visualization version GIF version | ||
| Description: Homeomorphisms preserve closedness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| hmeoopn.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| hmeocld | ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (𝐹 “ 𝐴) ∈ (Clsd‘𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeocnvcn 23646 | . . . 4 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) |
| 3 | imacnvcnv 6155 | . . . . 5 ⊢ (◡◡𝐹 “ 𝐴) = (𝐹 “ 𝐴) | |
| 4 | cnclima 23153 | . . . . 5 ⊢ ((◡𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (◡◡𝐹 “ 𝐴) ∈ (Clsd‘𝐾)) | |
| 5 | 3, 4 | eqeltrrid 2833 | . . . 4 ⊢ ((◡𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝐴) ∈ (Clsd‘𝐾)) |
| 6 | 5 | ex 412 | . . 3 ⊢ (◡𝐹 ∈ (𝐾 Cn 𝐽) → (𝐴 ∈ (Clsd‘𝐽) → (𝐹 “ 𝐴) ∈ (Clsd‘𝐾))) |
| 7 | 2, 6 | syl 17 | . 2 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) → (𝐹 “ 𝐴) ∈ (Clsd‘𝐾))) |
| 8 | hmeocn 23645 | . . . . 5 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| 10 | cnclima 23153 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐹 “ 𝐴) ∈ (Clsd‘𝐾)) → (◡𝐹 “ (𝐹 “ 𝐴)) ∈ (Clsd‘𝐽)) | |
| 11 | 10 | ex 412 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝐹 “ 𝐴) ∈ (Clsd‘𝐾) → (◡𝐹 “ (𝐹 “ 𝐴)) ∈ (Clsd‘𝐽))) |
| 12 | 9, 11 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((𝐹 “ 𝐴) ∈ (Clsd‘𝐾) → (◡𝐹 “ (𝐹 “ 𝐴)) ∈ (Clsd‘𝐽))) |
| 13 | hmeoopn.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
| 14 | eqid 2729 | . . . . . . 7 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 15 | 13, 14 | hmeof1o 23649 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1-onto→∪ 𝐾) |
| 16 | f1of1 6763 | . . . . . 6 ⊢ (𝐹:𝑋–1-1-onto→∪ 𝐾 → 𝐹:𝑋–1-1→∪ 𝐾) | |
| 17 | 15, 16 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1→∪ 𝐾) |
| 18 | f1imacnv 6780 | . . . . 5 ⊢ ((𝐹:𝑋–1-1→∪ 𝐾 ∧ 𝐴 ⊆ 𝑋) → (◡𝐹 “ (𝐹 “ 𝐴)) = 𝐴) | |
| 19 | 17, 18 | sylan 580 | . . . 4 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (◡𝐹 “ (𝐹 “ 𝐴)) = 𝐴) |
| 20 | 19 | eleq1d 2813 | . . 3 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((◡𝐹 “ (𝐹 “ 𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽))) |
| 21 | 12, 20 | sylibd 239 | . 2 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((𝐹 “ 𝐴) ∈ (Clsd‘𝐾) → 𝐴 ∈ (Clsd‘𝐽))) |
| 22 | 7, 21 | impbid 212 | 1 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (𝐹 “ 𝐴) ∈ (Clsd‘𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 ∪ cuni 4858 ◡ccnv 5618 “ cima 5622 –1-1→wf1 6479 –1-1-onto→wf1o 6481 ‘cfv 6482 (class class class)co 7349 Clsdccld 22901 Cn ccn 23109 Homeochmeo 23638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-top 22779 df-topon 22796 df-cld 22904 df-cn 23112 df-hmeo 23640 |
| This theorem is referenced by: cldsubg 23996 reheibor 37819 |
| Copyright terms: Public domain | W3C validator |