MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeocld Structured version   Visualization version   GIF version

Theorem hmeocld 21895
Description: Homeomorphisms preserve closedness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
hmeoopn.1 𝑋 = 𝐽
Assertion
Ref Expression
hmeocld ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (𝐹𝐴) ∈ (Clsd‘𝐾)))

Proof of Theorem hmeocld
StepHypRef Expression
1 hmeocnvcn 21889 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
21adantr 473 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → 𝐹 ∈ (𝐾 Cn 𝐽))
3 imacnvcnv 5813 . . . . 5 (𝐹𝐴) = (𝐹𝐴)
4 cnclima 21397 . . . . 5 ((𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐹𝐴) ∈ (Clsd‘𝐾))
53, 4syl5eqelr 2881 . . . 4 ((𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐹𝐴) ∈ (Clsd‘𝐾))
65ex 402 . . 3 (𝐹 ∈ (𝐾 Cn 𝐽) → (𝐴 ∈ (Clsd‘𝐽) → (𝐹𝐴) ∈ (Clsd‘𝐾)))
72, 6syl 17 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) → (𝐹𝐴) ∈ (Clsd‘𝐾)))
8 hmeocn 21888 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
98adantr 473 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾))
10 cnclima 21397 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐹𝐴) ∈ (Clsd‘𝐾)) → (𝐹 “ (𝐹𝐴)) ∈ (Clsd‘𝐽))
1110ex 402 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝐹𝐴) ∈ (Clsd‘𝐾) → (𝐹 “ (𝐹𝐴)) ∈ (Clsd‘𝐽)))
129, 11syl 17 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ (Clsd‘𝐾) → (𝐹 “ (𝐹𝐴)) ∈ (Clsd‘𝐽)))
13 hmeoopn.1 . . . . . . 7 𝑋 = 𝐽
14 eqid 2797 . . . . . . 7 𝐾 = 𝐾
1513, 14hmeof1o 21892 . . . . . 6 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1-onto 𝐾)
16 f1of1 6353 . . . . . 6 (𝐹:𝑋1-1-onto 𝐾𝐹:𝑋1-1 𝐾)
1715, 16syl 17 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1 𝐾)
18 f1imacnv 6370 . . . . 5 ((𝐹:𝑋1-1 𝐾𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
1917, 18sylan 576 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
2019eleq1d 2861 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹 “ (𝐹𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽)))
2112, 20sylibd 231 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ (Clsd‘𝐾) → 𝐴 ∈ (Clsd‘𝐽)))
227, 21impbid 204 1 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (𝐹𝐴) ∈ (Clsd‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wss 3767   cuni 4626  ccnv 5309  cima 5313  1-1wf1 6096  1-1-ontowf1o 6098  cfv 6099  (class class class)co 6876  Clsdccld 21145   Cn ccn 21353  Homeochmeo 21881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2375  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-ral 3092  df-rex 3093  df-rab 3096  df-v 3385  df-sbc 3632  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-br 4842  df-opab 4904  df-mpt 4921  df-id 5218  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-map 8095  df-top 21023  df-topon 21040  df-cld 21148  df-cn 21356  df-hmeo 21883
This theorem is referenced by:  cldsubg  22238  reheibor  34116
  Copyright terms: Public domain W3C validator