| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmeoima | Structured version Visualization version GIF version | ||
| Description: The image of an open set by a homeomorphism is an open set. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| hmeoima | ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ∈ 𝐽) → (𝐹 “ 𝐴) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeocnvcn 23624 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) | |
| 2 | imacnvcnv 6167 | . . 3 ⊢ (◡◡𝐹 “ 𝐴) = (𝐹 “ 𝐴) | |
| 3 | cnima 23128 | . . 3 ⊢ ((◡𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴 ∈ 𝐽) → (◡◡𝐹 “ 𝐴) ∈ 𝐾) | |
| 4 | 2, 3 | eqeltrrid 2833 | . 2 ⊢ ((◡𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴 ∈ 𝐽) → (𝐹 “ 𝐴) ∈ 𝐾) |
| 5 | 1, 4 | sylan 580 | 1 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ∈ 𝐽) → (𝐹 “ 𝐴) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ◡ccnv 5630 “ cima 5634 (class class class)co 7369 Cn ccn 23087 Homeochmeo 23616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-top 22757 df-topon 22774 df-cn 23090 df-hmeo 23618 |
| This theorem is referenced by: hmeoopn 23629 hmeoimaf1o 23633 hmeoqtop 23638 reghmph 23656 nrmhmph 23657 subgntr 23970 opnsubg 23971 tsmsxplem1 24016 tpr2rico 33875 cvmopnlem 35238 |
| Copyright terms: Public domain | W3C validator |