MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeoima Structured version   Visualization version   GIF version

Theorem hmeoima 23579
Description: The image of an open set by a homeomorphism is an open set. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
hmeoima ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝐽) → (𝐹𝐴) ∈ 𝐾)

Proof of Theorem hmeoima
StepHypRef Expression
1 hmeocnvcn 23575 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
2 imacnvcnv 6195 . . 3 (𝐹𝐴) = (𝐹𝐴)
3 cnima 23079 . . 3 ((𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴𝐽) → (𝐹𝐴) ∈ 𝐾)
42, 3eqeltrrid 2830 . 2 ((𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴𝐽) → (𝐹𝐴) ∈ 𝐾)
51, 4sylan 579 1 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝐽) → (𝐹𝐴) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2098  ccnv 5665  cima 5669  (class class class)co 7401   Cn ccn 23038  Homeochmeo 23567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-map 8817  df-top 22706  df-topon 22723  df-cn 23041  df-hmeo 23569
This theorem is referenced by:  hmeoopn  23580  hmeoimaf1o  23584  hmeoqtop  23589  reghmph  23607  nrmhmph  23608  subgntr  23921  opnsubg  23922  tsmsxplem1  23967  tpr2rico  33347  cvmopnlem  34724
  Copyright terms: Public domain W3C validator