![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmeoima | Structured version Visualization version GIF version |
Description: The image of an open set by a homeomorphism is an open set. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
hmeoima | ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ∈ 𝐽) → (𝐹 “ 𝐴) ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocnvcn 21893 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) | |
2 | imacnvcnv 5815 | . . 3 ⊢ (◡◡𝐹 “ 𝐴) = (𝐹 “ 𝐴) | |
3 | cnima 21398 | . . 3 ⊢ ((◡𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴 ∈ 𝐽) → (◡◡𝐹 “ 𝐴) ∈ 𝐾) | |
4 | 2, 3 | syl5eqelr 2883 | . 2 ⊢ ((◡𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴 ∈ 𝐽) → (𝐹 “ 𝐴) ∈ 𝐾) |
5 | 1, 4 | sylan 576 | 1 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ∈ 𝐽) → (𝐹 “ 𝐴) ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∈ wcel 2157 ◡ccnv 5311 “ cima 5315 (class class class)co 6878 Cn ccn 21357 Homeochmeo 21885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-map 8097 df-top 21027 df-topon 21044 df-cn 21360 df-hmeo 21887 |
This theorem is referenced by: hmeoopn 21898 hmeoimaf1o 21902 hmeoqtop 21907 reghmph 21925 nrmhmph 21926 subgntr 22238 opnsubg 22239 tsmsxplem1 22284 tpr2rico 30474 cvmopnlem 31777 |
Copyright terms: Public domain | W3C validator |