| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpr 484 | . 2
⊢ ((𝜑 ∧ 𝑃 = 𝑄) → 𝑃 = 𝑄) | 
| 2 |  | aks6d1c7lem2.1 | . . . 4
⊢  ∼ =
{〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈
(Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} | 
| 3 |  | aks6d1c7lem2.2 | . . . 4
⊢ 𝑃 = (chr‘𝐾) | 
| 4 |  | aks6d1c7lem2.3 | . . . . 5
⊢ (𝜑 → 𝐾 ∈ Field) | 
| 5 | 4 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ Field) | 
| 6 |  | aks6d1c7lem2.4 | . . . . 5
⊢ (𝜑 → 𝑃 ∈ ℙ) | 
| 7 | 6 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ ℙ) | 
| 8 |  | aks6d1c7lem2.5 | . . . . 5
⊢ (𝜑 → 𝑅 ∈ ℕ) | 
| 9 | 8 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝑅 ∈ ℕ) | 
| 10 |  | aks6d1c7lem2.6 | . . . . . . . 8
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘3)) | 
| 11 |  | eluzelz 12889 | . . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℤ) | 
| 12 | 10, 11 | syl 17 | . . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 13 |  | 0red 11265 | . . . . . . . 8
⊢ (𝜑 → 0 ∈
ℝ) | 
| 14 |  | 3re 12347 | . . . . . . . . 9
⊢ 3 ∈
ℝ | 
| 15 | 14 | a1i 11 | . . . . . . . 8
⊢ (𝜑 → 3 ∈
ℝ) | 
| 16 | 12 | zred 12724 | . . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℝ) | 
| 17 |  | 3pos 12372 | . . . . . . . . 9
⊢ 0 <
3 | 
| 18 | 17 | a1i 11 | . . . . . . . 8
⊢ (𝜑 → 0 < 3) | 
| 19 |  | eluzle 12892 | . . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘3) → 3 ≤ 𝑁) | 
| 20 | 10, 19 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 3 ≤ 𝑁) | 
| 21 | 13, 15, 16, 18, 20 | ltletrd 11422 | . . . . . . 7
⊢ (𝜑 → 0 < 𝑁) | 
| 22 | 12, 21 | jca 511 | . . . . . 6
⊢ (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁)) | 
| 23 |  | elnnz 12625 | . . . . . 6
⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 <
𝑁)) | 
| 24 | 22, 23 | sylibr 234 | . . . . 5
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 25 | 24 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝑁 ∈ ℕ) | 
| 26 |  | aks6d1c7lem2.7 | . . . . 5
⊢ (𝜑 → 𝑃 ∥ 𝑁) | 
| 27 | 26 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝑃 ∥ 𝑁) | 
| 28 |  | aks6d1c7lem2.8 | . . . . 5
⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) | 
| 29 | 28 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (𝑁 gcd 𝑅) = 1) | 
| 30 |  | aks6d1c7lem2.21 | . . . 4
⊢ 𝐺 = (𝑔 ∈ (ℕ0
↑m (0...𝐴))
↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) | 
| 31 |  | aks6d1c7lem2.12 | . . . . . 6
⊢ 𝐴 =
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) | 
| 32 | 8 | phicld 16810 | . . . . . . . . . . . 12
⊢ (𝜑 → (ϕ‘𝑅) ∈
ℕ) | 
| 33 | 32 | nnred 12282 | . . . . . . . . . . 11
⊢ (𝜑 → (ϕ‘𝑅) ∈
ℝ) | 
| 34 |  | 1red 11263 | . . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℝ) | 
| 35 |  | 0le1 11787 | . . . . . . . . . . . . 13
⊢ 0 ≤
1 | 
| 36 | 35 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝜑 → 0 ≤ 1) | 
| 37 | 32 | nnge1d 12315 | . . . . . . . . . . . 12
⊢ (𝜑 → 1 ≤ (ϕ‘𝑅)) | 
| 38 | 13, 34, 33, 36, 37 | letrd 11419 | . . . . . . . . . . 11
⊢ (𝜑 → 0 ≤ (ϕ‘𝑅)) | 
| 39 | 33, 38 | resqrtcld 15457 | . . . . . . . . . 10
⊢ (𝜑 →
(√‘(ϕ‘𝑅)) ∈ ℝ) | 
| 40 |  | 2re 12341 | . . . . . . . . . . . 12
⊢ 2 ∈
ℝ | 
| 41 | 40 | a1i 11 | . . . . . . . . . . 11
⊢ (𝜑 → 2 ∈
ℝ) | 
| 42 |  | 2pos 12370 | . . . . . . . . . . . 12
⊢ 0 <
2 | 
| 43 | 42 | a1i 11 | . . . . . . . . . . 11
⊢ (𝜑 → 0 < 2) | 
| 44 |  | 1lt2 12438 | . . . . . . . . . . . . . 14
⊢ 1 <
2 | 
| 45 | 44 | a1i 11 | . . . . . . . . . . . . 13
⊢ (𝜑 → 1 < 2) | 
| 46 | 34, 45 | ltned 11398 | . . . . . . . . . . . 12
⊢ (𝜑 → 1 ≠ 2) | 
| 47 | 46 | necomd 2995 | . . . . . . . . . . 11
⊢ (𝜑 → 2 ≠ 1) | 
| 48 | 41, 43, 16, 21, 47 | relogbcld 41975 | . . . . . . . . . 10
⊢ (𝜑 → (2 logb 𝑁) ∈
ℝ) | 
| 49 | 39, 48 | remulcld 11292 | . . . . . . . . 9
⊢ (𝜑 →
((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈
ℝ) | 
| 50 | 49 | flcld 13839 | . . . . . . . 8
⊢ (𝜑 →
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈
ℤ) | 
| 51 | 33, 38 | sqrtge0d 15460 | . . . . . . . . . 10
⊢ (𝜑 → 0 ≤
(√‘(ϕ‘𝑅))) | 
| 52 | 41 | recnd 11290 | . . . . . . . . . . . . 13
⊢ (𝜑 → 2 ∈
ℂ) | 
| 53 | 13, 43 | gtned 11397 | . . . . . . . . . . . . 13
⊢ (𝜑 → 2 ≠ 0) | 
| 54 |  | logb1 26813 | . . . . . . . . . . . . 13
⊢ ((2
∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) =
0) | 
| 55 | 52, 53, 47, 54 | syl3anc 1372 | . . . . . . . . . . . 12
⊢ (𝜑 → (2 logb 1) =
0) | 
| 56 | 55 | eqcomd 2742 | . . . . . . . . . . 11
⊢ (𝜑 → 0 = (2 logb
1)) | 
| 57 |  | 2z 12651 | . . . . . . . . . . . . 13
⊢ 2 ∈
ℤ | 
| 58 | 57 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝜑 → 2 ∈
ℤ) | 
| 59 | 41 | leidd 11830 | . . . . . . . . . . . 12
⊢ (𝜑 → 2 ≤ 2) | 
| 60 |  | 0lt1 11786 | . . . . . . . . . . . . 13
⊢ 0 <
1 | 
| 61 | 60 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝜑 → 0 < 1) | 
| 62 | 24 | nnge1d 12315 | . . . . . . . . . . . 12
⊢ (𝜑 → 1 ≤ 𝑁) | 
| 63 | 58, 59, 34, 61, 16, 21, 62 | logblebd 41978 | . . . . . . . . . . 11
⊢ (𝜑 → (2 logb 1) ≤
(2 logb 𝑁)) | 
| 64 | 56, 63 | eqbrtrd 5164 | . . . . . . . . . 10
⊢ (𝜑 → 0 ≤ (2 logb
𝑁)) | 
| 65 | 39, 48, 51, 64 | mulge0d 11841 | . . . . . . . . 9
⊢ (𝜑 → 0 ≤
((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) | 
| 66 |  | 0zd 12627 | . . . . . . . . . 10
⊢ (𝜑 → 0 ∈
ℤ) | 
| 67 |  | flge 13846 | . . . . . . . . . 10
⊢
((((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ ∧ 0 ∈
ℤ) → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))) | 
| 68 | 49, 66, 67 | syl2anc 584 | . . . . . . . . 9
⊢ (𝜑 → (0 ≤
((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))) | 
| 69 | 65, 68 | mpbid 232 | . . . . . . . 8
⊢ (𝜑 → 0 ≤
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) | 
| 70 | 50, 69 | jca 511 | . . . . . . 7
⊢ (𝜑 →
((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))) | 
| 71 |  | elnn0z 12628 | . . . . . . 7
⊢
((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0
↔ ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))) | 
| 72 | 70, 71 | sylibr 234 | . . . . . 6
⊢ (𝜑 →
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈
ℕ0) | 
| 73 | 31, 72 | eqeltrid 2844 | . . . . 5
⊢ (𝜑 → 𝐴 ∈
ℕ0) | 
| 74 | 73 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝐴 ∈
ℕ0) | 
| 75 |  | aks6d1c7lem2.9 | . . . 4
⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) | 
| 76 |  | aks6d1c7lem2.10 | . . . 4
⊢ 𝐿 =
(ℤRHom‘(ℤ/nℤ‘𝑅)) | 
| 77 |  | aks6d1c7lem2.22 | . . . . 5
⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼
((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) | 
| 78 | 77 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → ∀𝑎 ∈ (1...𝐴)𝑁 ∼
((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) | 
| 79 |  | aks6d1c7lem2.14 | . . . . 5
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) | 
| 80 | 79 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) | 
| 81 |  | aks6d1c7lem2.15 | . . . . 5
⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) | 
| 82 | 81 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) | 
| 83 |  | aks6d1c7lem2.16 | . . . 4
⊢ 𝐻 = (ℎ ∈ (ℕ0
↑m (0...𝐴))
↦ (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀)) | 
| 84 |  | aks6d1c7lem2.17 | . . . 4
⊢ 𝐵 =
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) | 
| 85 |  | aks6d1c7lem2.18 | . . . 4
⊢ 𝐶 = (𝐸 “ ((0...𝐵) × (0...𝐵))) | 
| 86 |  | aks6d1c7lem2.19 | . . . . . . 7
⊢ (𝜑 → (𝑄 ∈ ℙ ∧ 𝑄 ∥ 𝑁)) | 
| 87 | 86 | simpld 494 | . . . . . 6
⊢ (𝜑 → 𝑄 ∈ ℙ) | 
| 88 | 87 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ ℙ) | 
| 89 | 86 | simprd 495 | . . . . . 6
⊢ (𝜑 → 𝑄 ∥ 𝑁) | 
| 90 | 89 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝑄 ∥ 𝑁) | 
| 91 |  | simpr 484 | . . . . 5
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) | 
| 92 | 88, 90, 91 | 3jca 1128 | . . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (𝑄 ∈ ℙ ∧ 𝑄 ∥ 𝑁 ∧ 𝑃 ≠ 𝑄)) | 
| 93 | 2, 3, 5, 7, 9, 25,
27, 29, 30, 74, 75, 76, 78, 80, 82, 83, 84, 85, 92 | aks6d1c2 42132 | . . 3
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ≤ (𝑁↑𝐵)) | 
| 94 | 24 | nnzd 12642 | . . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 95 |  | eqid 2736 | . . . . . . . . . . . . . . . 16
⊢
(ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅) | 
| 96 | 24, 6, 26, 8, 28, 75, 76, 95 | hashscontpowcl 42122 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ∈ ℕ0) | 
| 97 | 96 | nn0red 12590 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ∈ ℝ) | 
| 98 | 96 | nn0ge0d 12592 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ≤
(♯‘(𝐿 “
(𝐸 “
(ℕ0 × ℕ0))))) | 
| 99 | 97, 98 | resqrtcld 15457 | . . . . . . . . . . . . 13
⊢ (𝜑 →
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ∈ ℝ) | 
| 100 | 99 | flcld 13839 | . . . . . . . . . . . 12
⊢ (𝜑 →
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℤ) | 
| 101 | 97, 98 | sqrtge0d 15460 | . . . . . . . . . . . . 13
⊢ (𝜑 → 0 ≤
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) | 
| 102 |  | flge 13846 | . . . . . . . . . . . . . 14
⊢
(((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ↔ 0 ≤
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) | 
| 103 | 99, 66, 102 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ (𝜑 → (0 ≤
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ↔ 0 ≤
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) | 
| 104 | 101, 103 | mpbid 232 | . . . . . . . . . . . 12
⊢ (𝜑 → 0 ≤
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) | 
| 105 | 100, 104 | jca 511 | . . . . . . . . . . 11
⊢ (𝜑 →
((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℤ ∧ 0 ≤
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) | 
| 106 |  | elnn0z 12628 | . . . . . . . . . . 11
⊢
((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℕ0 ↔
((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℤ ∧ 0 ≤
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) | 
| 107 | 105, 106 | sylibr 234 | . . . . . . . . . 10
⊢ (𝜑 →
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℕ0) | 
| 108 | 84, 107 | eqeltrid 2844 | . . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈
ℕ0) | 
| 109 | 94, 108 | zexpcld 14129 | . . . . . . . 8
⊢ (𝜑 → (𝑁↑𝐵) ∈ ℤ) | 
| 110 | 109 | zred 12724 | . . . . . . 7
⊢ (𝜑 → (𝑁↑𝐵) ∈ ℝ) | 
| 111 | 110 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (𝑁↑𝐵) ∈ ℝ) | 
| 112 | 111 | rexrd 11312 | . . . . 5
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (𝑁↑𝐵) ∈
ℝ*) | 
| 113 |  | aks6d1c7lem2.11 | . . . . . . . . . 10
⊢ 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) | 
| 114 | 96 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ∈ ℕ0) | 
| 115 | 113, 114 | eqeltrid 2844 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝐷 ∈
ℕ0) | 
| 116 | 115, 74 | nn0addcld 12593 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (𝐷 + 𝐴) ∈
ℕ0) | 
| 117 | 115 | nn0zd 12641 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝐷 ∈ ℤ) | 
| 118 |  | 1zzd 12650 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 1 ∈ ℤ) | 
| 119 | 117, 118 | zsubcld 12729 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (𝐷 − 1) ∈ ℤ) | 
| 120 |  | bccl 14362 | . . . . . . . 8
⊢ (((𝐷 + 𝐴) ∈ ℕ0 ∧ (𝐷 − 1) ∈ ℤ)
→ ((𝐷 + 𝐴)C(𝐷 − 1)) ∈
ℕ0) | 
| 121 | 116, 119,
120 | syl2anc 584 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈
ℕ0) | 
| 122 | 121 | nn0red 12590 | . . . . . 6
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈
ℝ) | 
| 123 | 122 | rexrd 11312 | . . . . 5
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈
ℝ*) | 
| 124 |  | ovexd 7467 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (ℕ0
↑m (0...𝐴))
∈ V) | 
| 125 | 124 | mptexd 7245 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (ℎ ∈ (ℕ0
↑m (0...𝐴))
↦ (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀)) ∈ V) | 
| 126 | 83, 125 | eqeltrid 2844 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝐻 ∈ V) | 
| 127 | 126 | imaexd 7939 | . . . . . 6
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (𝐻 “ (ℕ0
↑m (0...𝐴))) ∈ V) | 
| 128 |  | hashxrcl 14397 | . . . . . 6
⊢ ((𝐻 “ (ℕ0
↑m (0...𝐴))) ∈ V → (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ∈
ℝ*) | 
| 129 | 127, 128 | syl 17 | . . . . 5
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ∈
ℝ*) | 
| 130 |  | eqcom 2743 | . . . . . . . . . . . 12
⊢ (𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ↔ (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) = 𝐷) | 
| 131 | 113, 130 | mpbi 230 | . . . . . . . . . . 11
⊢
(♯‘(𝐿
“ (𝐸 “
(ℕ0 × ℕ0)))) = 𝐷 | 
| 132 | 131 | fveq2i 6908 | . . . . . . . . . 10
⊢
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) = (√‘𝐷) | 
| 133 | 132 | fveq2i 6908 | . . . . . . . . 9
⊢
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) = (⌊‘(√‘𝐷)) | 
| 134 | 84, 133 | eqtri 2764 | . . . . . . . 8
⊢ 𝐵 =
(⌊‘(√‘𝐷)) | 
| 135 | 134 | a1i 11 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝐵 = (⌊‘(√‘𝐷))) | 
| 136 | 135 | oveq2d 7448 | . . . . . 6
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (𝑁↑𝐵) = (𝑁↑(⌊‘(√‘𝐷)))) | 
| 137 | 10 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝑁 ∈
(ℤ≥‘3)) | 
| 138 |  | aks6d1c7lem2.13 | . . . . . . . 8
⊢ (𝜑 → ((2 logb 𝑁)↑2) <
((odℤ‘𝑅)‘𝑁)) | 
| 139 | 138 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → ((2 logb 𝑁)↑2) <
((odℤ‘𝑅)‘𝑁)) | 
| 140 | 7, 9, 137, 27, 29, 75, 76, 113, 31, 139 | aks6d1c7lem1 42182 | . . . . . 6
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (𝑁↑(⌊‘(√‘𝐷))) < ((𝐷 + 𝐴)C(𝐷 − 1))) | 
| 141 | 136, 140 | eqbrtrd 5164 | . . . . 5
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (𝑁↑𝐵) < ((𝐷 + 𝐴)C(𝐷 − 1))) | 
| 142 |  | aks6d1c7lem2.20 | . . . . . . 7
⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) | 
| 143 | 142 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) | 
| 144 |  | aks6d1c7lem2.23 | . . . . . 6
⊢ 𝑆 = {𝑠 ∈ (ℕ0
↑m (0...𝐴))
∣ Σ𝑡 ∈
(0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)} | 
| 145 |  | eqid 2736 | . . . . . 6
⊢ (𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) = (𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) | 
| 146 |  | eqid 2736 | . . . . . 6
⊢ {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))} = {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈
(Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))} | 
| 147 |  | nfcv 2904 | . . . . . . 7
⊢
Ⅎ𝑏∪ ((𝑐
∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ ℎ) | 
| 148 |  | nfcv 2904 | . . . . . . 7
⊢
Ⅎℎ∪ ((𝑐
∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ 𝑏) | 
| 149 |  | imaeq2 6073 | . . . . . . . 8
⊢ (ℎ = 𝑏 → ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ ℎ) = ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ 𝑏)) | 
| 150 | 149 | unieqd 4919 | . . . . . . 7
⊢ (ℎ = 𝑏 → ∪ ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ ℎ) = ∪ ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ 𝑏)) | 
| 151 | 147, 148,
150 | cbvmpt 5252 | . . . . . 6
⊢ (ℎ ∈
(Base‘(ℤring /s
(ℤring ~QG (◡(𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “
{(0g‘(((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈
(Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}) ↾s ran
(𝑐 ∈ ℤ ↦
(𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀))))})))) ↦ ∪ ((𝑐
∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ ℎ)) = (𝑏 ∈ (Base‘(ℤring
/s (ℤring ~QG (◡(𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “
{(0g‘(((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈
(Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}) ↾s ran
(𝑐 ∈ ℤ ↦
(𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀))))})))) ↦ ∪ ((𝑐
∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ 𝑏)) | 
| 152 | 2, 3, 5, 7, 9, 25,
27, 29, 143, 30, 31, 75, 76, 78, 80, 82, 83, 113, 144, 145, 146, 151 | aks6d1c6lem5 42179 | . . . . 5
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴))))) | 
| 153 | 112, 123,
129, 141, 152 | xrltletrd 13204 | . . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (𝑁↑𝐵) < (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴))))) | 
| 154 |  | xrltnle 11329 | . . . . 5
⊢ (((𝑁↑𝐵) ∈ ℝ* ∧
(♯‘(𝐻 “
(ℕ0 ↑m (0...𝐴)))) ∈ ℝ*) →
((𝑁↑𝐵) < (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ↔ ¬ (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ≤ (𝑁↑𝐵))) | 
| 155 | 112, 129,
154 | syl2anc 584 | . . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → ((𝑁↑𝐵) < (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ↔ ¬ (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ≤ (𝑁↑𝐵))) | 
| 156 | 153, 155 | mpbid 232 | . . 3
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → ¬ (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ≤ (𝑁↑𝐵)) | 
| 157 | 93, 156 | pm2.21dd 195 | . 2
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝑃 = 𝑄) | 
| 158 | 1, 157 | pm2.61dane 3028 | 1
⊢ (𝜑 → 𝑃 = 𝑄) |