Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c7lem2 Structured version   Visualization version   GIF version

Theorem aks6d1c7lem2 42157
Description: Contradiction to Claim 2 and Claim 7. We assumed in Claim 2 that there are two different prime numbers 𝑃 and 𝑄. (Contributed by metakunt, 16-May-2025.)
Hypotheses
Ref Expression
aks6d1c7lem2.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c7lem2.2 𝑃 = (chr‘𝐾)
aks6d1c7lem2.3 (𝜑𝐾 ∈ Field)
aks6d1c7lem2.4 (𝜑𝑃 ∈ ℙ)
aks6d1c7lem2.5 (𝜑𝑅 ∈ ℕ)
aks6d1c7lem2.6 (𝜑𝑁 ∈ (ℤ‘3))
aks6d1c7lem2.7 (𝜑𝑃𝑁)
aks6d1c7lem2.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c7lem2.9 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c7lem2.10 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c7lem2.11 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c7lem2.12 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
aks6d1c7lem2.13 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
aks6d1c7lem2.14 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c7lem2.15 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c7lem2.16 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c7lem2.17 𝐵 = (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
aks6d1c7lem2.18 𝐶 = (𝐸 “ ((0...𝐵) × (0...𝐵)))
aks6d1c7lem2.19 (𝜑 → (𝑄 ∈ ℙ ∧ 𝑄𝑁))
aks6d1c7lem2.20 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
aks6d1c7lem2.21 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c7lem2.22 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c7lem2.23 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
Assertion
Ref Expression
aks6d1c7lem2 (𝜑𝑃 = 𝑄)
Distinct variable groups:   ,𝑎   𝐴,𝑎   𝐴,𝑏,   𝐴,𝑔,𝑖,𝑥   𝐴,𝑘,𝑙,𝑠   𝑡,𝐴,𝑖,𝑥   𝐵,𝑎   𝐵,𝑔,𝑖,𝑥   𝐵,𝑘,𝑙,𝑥   𝐶,𝑎   𝐶,𝑔,𝑖,𝑥   𝐶,   𝐶,𝑘,𝑙   𝐷,𝑠   𝐸,𝑎   𝑦,𝐸,𝑒,𝑓   𝑔,𝐸,𝑖,𝑥,𝑦   𝑘,𝐸,𝑙,𝑦   𝑒,𝐺,𝑓,𝑦   𝑔,𝐺,𝑖   ,𝐺   𝑡,𝐺,𝑦   𝐻,𝑎   ,𝐻   𝑔,𝐻,𝑖,𝑥,𝑦   𝐻,𝑠,𝑡   𝐾,𝑎   𝐾,𝑏,   𝑒,𝐾,𝑓,𝑦   𝑔,𝐾,𝑖,𝑥   𝐾,𝑙   𝑡,𝐾   𝑀,𝑏,   𝑀,𝑙,𝑦   𝑁,𝑎   𝑁,𝑏   𝑒,𝑁,𝑓,𝑦   𝑘,𝑁,𝑙,𝑠   𝑥,𝑁   𝑃,𝑎   𝑃,𝑏,   𝑃,𝑒,𝑓,𝑦   𝑃,𝑔,𝑖,𝑥   𝑃,𝑘,𝑙,𝑠   𝑡,𝑃   𝑄,𝑎   𝑄,𝑏,   𝑄,𝑔,𝑖,𝑥,𝑦   𝑄,𝑘,𝑙,𝑠   𝑡,𝑄   𝑅,𝑎   𝑅,   𝑅,𝑒,𝑓,𝑦   𝑅,𝑔,𝑖,𝑥   𝑅,𝑘,𝑙   𝑆,𝑎   𝑆,   𝑆,𝑔,𝑖,𝑥,𝑦   𝑆,𝑠,𝑡   𝜑,𝑎   𝜑,𝑏,   𝜑,𝑔,𝑖,𝑥,𝑦   𝜑,𝑘,𝑙,𝑠   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐴(𝑦,𝑒,𝑓)   𝐵(𝑦,𝑡,𝑒,𝑓,,𝑠,𝑏)   𝐶(𝑦,𝑡,𝑒,𝑓,𝑠,𝑏)   𝐷(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑎,𝑏,𝑙)   𝑄(𝑒,𝑓)   (𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑏,𝑙)   𝑅(𝑡,𝑠,𝑏)   𝑆(𝑒,𝑓,𝑘,𝑏,𝑙)   𝐸(𝑡,,𝑠,𝑏)   𝐺(𝑥,𝑘,𝑠,𝑎,𝑏,𝑙)   𝐻(𝑒,𝑓,𝑘,𝑏,𝑙)   𝐾(𝑘,𝑠)   𝐿(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑏,𝑙)   𝑀(𝑥,𝑡,𝑒,𝑓,𝑔,𝑖,𝑘,𝑠,𝑎)   𝑁(𝑡,𝑔,,𝑖)

Proof of Theorem aks6d1c7lem2
Dummy variables 𝑐 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝜑𝑃 = 𝑄) → 𝑃 = 𝑄)
2 aks6d1c7lem2.1 . . . 4 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
3 aks6d1c7lem2.2 . . . 4 𝑃 = (chr‘𝐾)
4 aks6d1c7lem2.3 . . . . 5 (𝜑𝐾 ∈ Field)
54adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝐾 ∈ Field)
6 aks6d1c7lem2.4 . . . . 5 (𝜑𝑃 ∈ ℙ)
76adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝑃 ∈ ℙ)
8 aks6d1c7lem2.5 . . . . 5 (𝜑𝑅 ∈ ℕ)
98adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝑅 ∈ ℕ)
10 aks6d1c7lem2.6 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘3))
11 eluzelz 12763 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
1210, 11syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
13 0red 11137 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
14 3re 12226 . . . . . . . . 9 3 ∈ ℝ
1514a1i 11 . . . . . . . 8 (𝜑 → 3 ∈ ℝ)
1612zred 12598 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
17 3pos 12251 . . . . . . . . 9 0 < 3
1817a1i 11 . . . . . . . 8 (𝜑 → 0 < 3)
19 eluzle 12766 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
2010, 19syl 17 . . . . . . . 8 (𝜑 → 3 ≤ 𝑁)
2113, 15, 16, 18, 20ltletrd 11294 . . . . . . 7 (𝜑 → 0 < 𝑁)
2212, 21jca 511 . . . . . 6 (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁))
23 elnnz 12499 . . . . . 6 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
2422, 23sylibr 234 . . . . 5 (𝜑𝑁 ∈ ℕ)
2524adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝑁 ∈ ℕ)
26 aks6d1c7lem2.7 . . . . 5 (𝜑𝑃𝑁)
2726adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝑃𝑁)
28 aks6d1c7lem2.8 . . . . 5 (𝜑 → (𝑁 gcd 𝑅) = 1)
2928adantr 480 . . . 4 ((𝜑𝑃𝑄) → (𝑁 gcd 𝑅) = 1)
30 aks6d1c7lem2.21 . . . 4 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
31 aks6d1c7lem2.12 . . . . . 6 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
328phicld 16701 . . . . . . . . . . . 12 (𝜑 → (ϕ‘𝑅) ∈ ℕ)
3332nnred 12161 . . . . . . . . . . 11 (𝜑 → (ϕ‘𝑅) ∈ ℝ)
34 1red 11135 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
35 0le1 11661 . . . . . . . . . . . . 13 0 ≤ 1
3635a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 1)
3732nnge1d 12194 . . . . . . . . . . . 12 (𝜑 → 1 ≤ (ϕ‘𝑅))
3813, 34, 33, 36, 37letrd 11291 . . . . . . . . . . 11 (𝜑 → 0 ≤ (ϕ‘𝑅))
3933, 38resqrtcld 15343 . . . . . . . . . 10 (𝜑 → (√‘(ϕ‘𝑅)) ∈ ℝ)
40 2re 12220 . . . . . . . . . . . 12 2 ∈ ℝ
4140a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
42 2pos 12249 . . . . . . . . . . . 12 0 < 2
4342a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 2)
44 1lt2 12312 . . . . . . . . . . . . . 14 1 < 2
4544a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 < 2)
4634, 45ltned 11270 . . . . . . . . . . . 12 (𝜑 → 1 ≠ 2)
4746necomd 2980 . . . . . . . . . . 11 (𝜑 → 2 ≠ 1)
4841, 43, 16, 21, 47relogbcld 41949 . . . . . . . . . 10 (𝜑 → (2 logb 𝑁) ∈ ℝ)
4939, 48remulcld 11164 . . . . . . . . 9 (𝜑 → ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ)
5049flcld 13720 . . . . . . . 8 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ)
5133, 38sqrtge0d 15346 . . . . . . . . . 10 (𝜑 → 0 ≤ (√‘(ϕ‘𝑅)))
5241recnd 11162 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℂ)
5313, 43gtned 11269 . . . . . . . . . . . . 13 (𝜑 → 2 ≠ 0)
54 logb1 26695 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
5552, 53, 47, 54syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (2 logb 1) = 0)
5655eqcomd 2735 . . . . . . . . . . 11 (𝜑 → 0 = (2 logb 1))
57 2z 12525 . . . . . . . . . . . . 13 2 ∈ ℤ
5857a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℤ)
5941leidd 11704 . . . . . . . . . . . 12 (𝜑 → 2 ≤ 2)
60 0lt1 11660 . . . . . . . . . . . . 13 0 < 1
6160a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 1)
6224nnge1d 12194 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 𝑁)
6358, 59, 34, 61, 16, 21, 62logblebd 41952 . . . . . . . . . . 11 (𝜑 → (2 logb 1) ≤ (2 logb 𝑁))
6456, 63eqbrtrd 5117 . . . . . . . . . 10 (𝜑 → 0 ≤ (2 logb 𝑁))
6539, 48, 51, 64mulge0d 11715 . . . . . . . . 9 (𝜑 → 0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
66 0zd 12501 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
67 flge 13727 . . . . . . . . . 10 ((((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
6849, 66, 67syl2anc 584 . . . . . . . . 9 (𝜑 → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
6965, 68mpbid 232 . . . . . . . 8 (𝜑 → 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))
7050, 69jca 511 . . . . . . 7 (𝜑 → ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
71 elnn0z 12502 . . . . . . 7 ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0 ↔ ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
7270, 71sylibr 234 . . . . . 6 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0)
7331, 72eqeltrid 2832 . . . . 5 (𝜑𝐴 ∈ ℕ0)
7473adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝐴 ∈ ℕ0)
75 aks6d1c7lem2.9 . . . 4 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
76 aks6d1c7lem2.10 . . . 4 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
77 aks6d1c7lem2.22 . . . . 5 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
7877adantr 480 . . . 4 ((𝜑𝑃𝑄) → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
79 aks6d1c7lem2.14 . . . . 5 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
8079adantr 480 . . . 4 ((𝜑𝑃𝑄) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
81 aks6d1c7lem2.15 . . . . 5 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
8281adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
83 aks6d1c7lem2.16 . . . 4 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
84 aks6d1c7lem2.17 . . . 4 𝐵 = (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
85 aks6d1c7lem2.18 . . . 4 𝐶 = (𝐸 “ ((0...𝐵) × (0...𝐵)))
86 aks6d1c7lem2.19 . . . . . . 7 (𝜑 → (𝑄 ∈ ℙ ∧ 𝑄𝑁))
8786simpld 494 . . . . . 6 (𝜑𝑄 ∈ ℙ)
8887adantr 480 . . . . 5 ((𝜑𝑃𝑄) → 𝑄 ∈ ℙ)
8986simprd 495 . . . . . 6 (𝜑𝑄𝑁)
9089adantr 480 . . . . 5 ((𝜑𝑃𝑄) → 𝑄𝑁)
91 simpr 484 . . . . 5 ((𝜑𝑃𝑄) → 𝑃𝑄)
9288, 90, 913jca 1128 . . . 4 ((𝜑𝑃𝑄) → (𝑄 ∈ ℙ ∧ 𝑄𝑁𝑃𝑄))
932, 3, 5, 7, 9, 25, 27, 29, 30, 74, 75, 76, 78, 80, 82, 83, 84, 85, 92aks6d1c2 42106 . . 3 ((𝜑𝑃𝑄) → (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ≤ (𝑁𝐵))
9424nnzd 12516 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
95 eqid 2729 . . . . . . . . . . . . . . . 16 (ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅)
9624, 6, 26, 8, 28, 75, 76, 95hashscontpowcl 42096 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0)
9796nn0red 12464 . . . . . . . . . . . . . 14 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ)
9896nn0ge0d 12466 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
9997, 98resqrtcld 15343 . . . . . . . . . . . . 13 (𝜑 → (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℝ)
10099flcld 13720 . . . . . . . . . . . 12 (𝜑 → (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℤ)
10197, 98sqrtge0d 15346 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
102 flge 13727 . . . . . . . . . . . . . 14 (((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ↔ 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
10399, 66, 102syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (0 ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ↔ 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
104101, 103mpbid 232 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
105100, 104jca 511 . . . . . . . . . . 11 (𝜑 → ((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℤ ∧ 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
106 elnn0z 12502 . . . . . . . . . . 11 ((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℕ0 ↔ ((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℤ ∧ 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
107105, 106sylibr 234 . . . . . . . . . 10 (𝜑 → (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℕ0)
10884, 107eqeltrid 2832 . . . . . . . . 9 (𝜑𝐵 ∈ ℕ0)
10994, 108zexpcld 14012 . . . . . . . 8 (𝜑 → (𝑁𝐵) ∈ ℤ)
110109zred 12598 . . . . . . 7 (𝜑 → (𝑁𝐵) ∈ ℝ)
111110adantr 480 . . . . . 6 ((𝜑𝑃𝑄) → (𝑁𝐵) ∈ ℝ)
112111rexrd 11184 . . . . 5 ((𝜑𝑃𝑄) → (𝑁𝐵) ∈ ℝ*)
113 aks6d1c7lem2.11 . . . . . . . . . 10 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
11496adantr 480 . . . . . . . . . 10 ((𝜑𝑃𝑄) → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0)
115113, 114eqeltrid 2832 . . . . . . . . 9 ((𝜑𝑃𝑄) → 𝐷 ∈ ℕ0)
116115, 74nn0addcld 12467 . . . . . . . 8 ((𝜑𝑃𝑄) → (𝐷 + 𝐴) ∈ ℕ0)
117115nn0zd 12515 . . . . . . . . 9 ((𝜑𝑃𝑄) → 𝐷 ∈ ℤ)
118 1zzd 12524 . . . . . . . . 9 ((𝜑𝑃𝑄) → 1 ∈ ℤ)
119117, 118zsubcld 12603 . . . . . . . 8 ((𝜑𝑃𝑄) → (𝐷 − 1) ∈ ℤ)
120 bccl 14247 . . . . . . . 8 (((𝐷 + 𝐴) ∈ ℕ0 ∧ (𝐷 − 1) ∈ ℤ) → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈ ℕ0)
121116, 119, 120syl2anc 584 . . . . . . 7 ((𝜑𝑃𝑄) → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈ ℕ0)
122121nn0red 12464 . . . . . 6 ((𝜑𝑃𝑄) → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈ ℝ)
123122rexrd 11184 . . . . 5 ((𝜑𝑃𝑄) → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈ ℝ*)
124 ovexd 7388 . . . . . . . . 9 ((𝜑𝑃𝑄) → (ℕ0m (0...𝐴)) ∈ V)
125124mptexd 7164 . . . . . . . 8 ((𝜑𝑃𝑄) → ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀)) ∈ V)
12683, 125eqeltrid 2832 . . . . . . 7 ((𝜑𝑃𝑄) → 𝐻 ∈ V)
127126imaexd 7856 . . . . . 6 ((𝜑𝑃𝑄) → (𝐻 “ (ℕ0m (0...𝐴))) ∈ V)
128 hashxrcl 14282 . . . . . 6 ((𝐻 “ (ℕ0m (0...𝐴))) ∈ V → (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ∈ ℝ*)
129127, 128syl 17 . . . . 5 ((𝜑𝑃𝑄) → (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ∈ ℝ*)
130 eqcom 2736 . . . . . . . . . . . 12 (𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ↔ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) = 𝐷)
131113, 130mpbi 230 . . . . . . . . . . 11 (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) = 𝐷
132131fveq2i 6829 . . . . . . . . . 10 (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) = (√‘𝐷)
133132fveq2i 6829 . . . . . . . . 9 (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) = (⌊‘(√‘𝐷))
13484, 133eqtri 2752 . . . . . . . 8 𝐵 = (⌊‘(√‘𝐷))
135134a1i 11 . . . . . . 7 ((𝜑𝑃𝑄) → 𝐵 = (⌊‘(√‘𝐷)))
136135oveq2d 7369 . . . . . 6 ((𝜑𝑃𝑄) → (𝑁𝐵) = (𝑁↑(⌊‘(√‘𝐷))))
13710adantr 480 . . . . . . 7 ((𝜑𝑃𝑄) → 𝑁 ∈ (ℤ‘3))
138 aks6d1c7lem2.13 . . . . . . . 8 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
139138adantr 480 . . . . . . 7 ((𝜑𝑃𝑄) → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
1407, 9, 137, 27, 29, 75, 76, 113, 31, 139aks6d1c7lem1 42156 . . . . . 6 ((𝜑𝑃𝑄) → (𝑁↑(⌊‘(√‘𝐷))) < ((𝐷 + 𝐴)C(𝐷 − 1)))
141136, 140eqbrtrd 5117 . . . . 5 ((𝜑𝑃𝑄) → (𝑁𝐵) < ((𝐷 + 𝐴)C(𝐷 − 1)))
142 aks6d1c7lem2.20 . . . . . . 7 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
143142adantr 480 . . . . . 6 ((𝜑𝑃𝑄) → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
144 aks6d1c7lem2.23 . . . . . 6 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
145 eqid 2729 . . . . . 6 (𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) = (𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀))
146 eqid 2729 . . . . . 6 {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))} = {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}
147 nfcv 2891 . . . . . . 7 𝑏 ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ )
148 nfcv 2891 . . . . . . 7 ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ 𝑏)
149 imaeq2 6011 . . . . . . . 8 ( = 𝑏 → ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ ) = ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ 𝑏))
150149unieqd 4874 . . . . . . 7 ( = 𝑏 ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ ) = ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ 𝑏))
151147, 148, 150cbvmpt 5197 . . . . . 6 ( ∈ (Base‘(ℤring /s (ℤring ~QG ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ {(0g‘(((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}) ↾s ran (𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀))))})))) ↦ ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ )) = (𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ {(0g‘(((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}) ↾s ran (𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀))))})))) ↦ ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ 𝑏))
1522, 3, 5, 7, 9, 25, 27, 29, 143, 30, 31, 75, 76, 78, 80, 82, 83, 113, 144, 145, 146, 151aks6d1c6lem5 42153 . . . . 5 ((𝜑𝑃𝑄) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
153112, 123, 129, 141, 152xrltletrd 13081 . . . 4 ((𝜑𝑃𝑄) → (𝑁𝐵) < (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
154 xrltnle 11201 . . . . 5 (((𝑁𝐵) ∈ ℝ* ∧ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ∈ ℝ*) → ((𝑁𝐵) < (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ↔ ¬ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ≤ (𝑁𝐵)))
155112, 129, 154syl2anc 584 . . . 4 ((𝜑𝑃𝑄) → ((𝑁𝐵) < (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ↔ ¬ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ≤ (𝑁𝐵)))
156153, 155mpbid 232 . . 3 ((𝜑𝑃𝑄) → ¬ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ≤ (𝑁𝐵))
15793, 156pm2.21dd 195 . 2 ((𝜑𝑃𝑄) → 𝑃 = 𝑄)
1581, 157pm2.61dane 3012 1 (𝜑𝑃 = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3396  Vcvv 3438  {csn 4579   cuni 4861   class class class wbr 5095  {copab 5157  cmpt 5176   × cxp 5621  ccnv 5622  ran crn 5624  cima 5626  cfv 6486  (class class class)co 7353  cmpo 7355  m cmap 8760  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  *cxr 11167   < clt 11168  cle 11169  cmin 11365   / cdiv 11795  cn 12146  2c2 12201  3c3 12202  0cn0 12402  cz 12489  cuz 12753  ...cfz 13428  cfl 13712  cexp 13986  Ccbc 14227  chash 14255  csqrt 15158  Σcsu 15611  cdvds 16181   gcd cgcd 16423  cprime 16600  odcodz 16692  ϕcphi 16693  Basecbs 17138  s cress 17159  +gcplusg 17179  0gc0g 17361   Σg cgsu 17362   /s cqus 17427  .gcmg 18964   ~QG cqg 19019  mulGrpcmgp 20043   RingIso crs 20373  Fieldcfield 20633  ringczring 21371  ℤRHomczrh 21424  chrcchr 21426  ℤ/nczn 21427  algSccascl 21777  var1cv1 22076  Poly1cpl1 22077  eval1ce1 22217   logb clogb 26690   PrimRoots cprimroots 42067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-ec 8634  df-qs 8638  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-prod 15829  df-fallfac 15932  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-dvds 16182  df-gcd 16424  df-prm 16601  df-odz 16694  df-phi 16695  df-pc 16767  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-pws 17371  df-xrs 17424  df-qtop 17429  df-imas 17430  df-qus 17431  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-nsg 19021  df-eqg 19022  df-ghm 19110  df-gim 19156  df-cntz 19214  df-od 19425  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-srg 20090  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-rhm 20375  df-rim 20376  df-nzr 20416  df-subrng 20449  df-subrg 20473  df-rlreg 20597  df-domn 20598  df-idom 20599  df-drng 20634  df-field 20635  df-lmod 20783  df-lss 20853  df-lsp 20893  df-sra 21095  df-rgmod 21096  df-lidl 21133  df-rsp 21134  df-2idl 21175  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-zring 21372  df-zrh 21428  df-chr 21430  df-zn 21431  df-assa 21778  df-asp 21779  df-ascl 21780  df-psr 21834  df-mvr 21835  df-mpl 21836  df-opsr 21838  df-evls 21997  df-evl 21998  df-psr1 22080  df-vr1 22081  df-ply1 22082  df-coe1 22083  df-evl1 22219  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-mdeg 25976  df-deg1 25977  df-mon1 26052  df-uc1p 26053  df-q1p 26054  df-r1p 26055  df-log 26481  df-cxp 26482  df-logb 26691  df-primroots 42068
This theorem is referenced by:  aks6d1c7lem3  42158
  Copyright terms: Public domain W3C validator