Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c7lem2 Structured version   Visualization version   GIF version

Theorem aks6d1c7lem2 42297
Description: Contradiction to Claim 2 and Claim 7. We assumed in Claim 2 that there are two different prime numbers 𝑃 and 𝑄. (Contributed by metakunt, 16-May-2025.)
Hypotheses
Ref Expression
aks6d1c7lem2.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c7lem2.2 𝑃 = (chr‘𝐾)
aks6d1c7lem2.3 (𝜑𝐾 ∈ Field)
aks6d1c7lem2.4 (𝜑𝑃 ∈ ℙ)
aks6d1c7lem2.5 (𝜑𝑅 ∈ ℕ)
aks6d1c7lem2.6 (𝜑𝑁 ∈ (ℤ‘3))
aks6d1c7lem2.7 (𝜑𝑃𝑁)
aks6d1c7lem2.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c7lem2.9 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c7lem2.10 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c7lem2.11 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c7lem2.12 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
aks6d1c7lem2.13 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
aks6d1c7lem2.14 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c7lem2.15 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c7lem2.16 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c7lem2.17 𝐵 = (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
aks6d1c7lem2.18 𝐶 = (𝐸 “ ((0...𝐵) × (0...𝐵)))
aks6d1c7lem2.19 (𝜑 → (𝑄 ∈ ℙ ∧ 𝑄𝑁))
aks6d1c7lem2.20 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
aks6d1c7lem2.21 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c7lem2.22 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c7lem2.23 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
Assertion
Ref Expression
aks6d1c7lem2 (𝜑𝑃 = 𝑄)
Distinct variable groups:   ,𝑎   𝐴,𝑎   𝐴,𝑏,   𝐴,𝑔,𝑖,𝑥   𝐴,𝑘,𝑙,𝑠   𝑡,𝐴,𝑖,𝑥   𝐵,𝑎   𝐵,𝑔,𝑖,𝑥   𝐵,𝑘,𝑙,𝑥   𝐶,𝑎   𝐶,𝑔,𝑖,𝑥   𝐶,   𝐶,𝑘,𝑙   𝐷,𝑠   𝐸,𝑎   𝑦,𝐸,𝑒,𝑓   𝑔,𝐸,𝑖,𝑥,𝑦   𝑘,𝐸,𝑙,𝑦   𝑒,𝐺,𝑓,𝑦   𝑔,𝐺,𝑖   ,𝐺   𝑡,𝐺,𝑦   𝐻,𝑎   ,𝐻   𝑔,𝐻,𝑖,𝑥,𝑦   𝐻,𝑠,𝑡   𝐾,𝑎   𝐾,𝑏,   𝑒,𝐾,𝑓,𝑦   𝑔,𝐾,𝑖,𝑥   𝐾,𝑙   𝑡,𝐾   𝑀,𝑏,   𝑀,𝑙,𝑦   𝑁,𝑎   𝑁,𝑏   𝑒,𝑁,𝑓,𝑦   𝑘,𝑁,𝑙,𝑠   𝑥,𝑁   𝑃,𝑎   𝑃,𝑏,   𝑃,𝑒,𝑓,𝑦   𝑃,𝑔,𝑖,𝑥   𝑃,𝑘,𝑙,𝑠   𝑡,𝑃   𝑄,𝑎   𝑄,𝑏,   𝑄,𝑔,𝑖,𝑥,𝑦   𝑄,𝑘,𝑙,𝑠   𝑡,𝑄   𝑅,𝑎   𝑅,   𝑅,𝑒,𝑓,𝑦   𝑅,𝑔,𝑖,𝑥   𝑅,𝑘,𝑙   𝑆,𝑎   𝑆,   𝑆,𝑔,𝑖,𝑥,𝑦   𝑆,𝑠,𝑡   𝜑,𝑎   𝜑,𝑏,   𝜑,𝑔,𝑖,𝑥,𝑦   𝜑,𝑘,𝑙,𝑠   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐴(𝑦,𝑒,𝑓)   𝐵(𝑦,𝑡,𝑒,𝑓,,𝑠,𝑏)   𝐶(𝑦,𝑡,𝑒,𝑓,𝑠,𝑏)   𝐷(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑎,𝑏,𝑙)   𝑄(𝑒,𝑓)   (𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑏,𝑙)   𝑅(𝑡,𝑠,𝑏)   𝑆(𝑒,𝑓,𝑘,𝑏,𝑙)   𝐸(𝑡,,𝑠,𝑏)   𝐺(𝑥,𝑘,𝑠,𝑎,𝑏,𝑙)   𝐻(𝑒,𝑓,𝑘,𝑏,𝑙)   𝐾(𝑘,𝑠)   𝐿(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑏,𝑙)   𝑀(𝑥,𝑡,𝑒,𝑓,𝑔,𝑖,𝑘,𝑠,𝑎)   𝑁(𝑡,𝑔,,𝑖)

Proof of Theorem aks6d1c7lem2
Dummy variables 𝑐 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝜑𝑃 = 𝑄) → 𝑃 = 𝑄)
2 aks6d1c7lem2.1 . . . 4 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
3 aks6d1c7lem2.2 . . . 4 𝑃 = (chr‘𝐾)
4 aks6d1c7lem2.3 . . . . 5 (𝜑𝐾 ∈ Field)
54adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝐾 ∈ Field)
6 aks6d1c7lem2.4 . . . . 5 (𝜑𝑃 ∈ ℙ)
76adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝑃 ∈ ℙ)
8 aks6d1c7lem2.5 . . . . 5 (𝜑𝑅 ∈ ℕ)
98adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝑅 ∈ ℕ)
10 aks6d1c7lem2.6 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘3))
11 eluzelz 12750 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
1210, 11syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
13 0red 11124 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
14 3re 12214 . . . . . . . . 9 3 ∈ ℝ
1514a1i 11 . . . . . . . 8 (𝜑 → 3 ∈ ℝ)
1612zred 12585 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
17 3pos 12239 . . . . . . . . 9 0 < 3
1817a1i 11 . . . . . . . 8 (𝜑 → 0 < 3)
19 eluzle 12753 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
2010, 19syl 17 . . . . . . . 8 (𝜑 → 3 ≤ 𝑁)
2113, 15, 16, 18, 20ltletrd 11282 . . . . . . 7 (𝜑 → 0 < 𝑁)
2212, 21jca 511 . . . . . 6 (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁))
23 elnnz 12487 . . . . . 6 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
2422, 23sylibr 234 . . . . 5 (𝜑𝑁 ∈ ℕ)
2524adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝑁 ∈ ℕ)
26 aks6d1c7lem2.7 . . . . 5 (𝜑𝑃𝑁)
2726adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝑃𝑁)
28 aks6d1c7lem2.8 . . . . 5 (𝜑 → (𝑁 gcd 𝑅) = 1)
2928adantr 480 . . . 4 ((𝜑𝑃𝑄) → (𝑁 gcd 𝑅) = 1)
30 aks6d1c7lem2.21 . . . 4 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
31 aks6d1c7lem2.12 . . . . . 6 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
328phicld 16687 . . . . . . . . . . . 12 (𝜑 → (ϕ‘𝑅) ∈ ℕ)
3332nnred 12149 . . . . . . . . . . 11 (𝜑 → (ϕ‘𝑅) ∈ ℝ)
34 1red 11122 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
35 0le1 11649 . . . . . . . . . . . . 13 0 ≤ 1
3635a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 1)
3732nnge1d 12182 . . . . . . . . . . . 12 (𝜑 → 1 ≤ (ϕ‘𝑅))
3813, 34, 33, 36, 37letrd 11279 . . . . . . . . . . 11 (𝜑 → 0 ≤ (ϕ‘𝑅))
3933, 38resqrtcld 15329 . . . . . . . . . 10 (𝜑 → (√‘(ϕ‘𝑅)) ∈ ℝ)
40 2re 12208 . . . . . . . . . . . 12 2 ∈ ℝ
4140a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
42 2pos 12237 . . . . . . . . . . . 12 0 < 2
4342a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 2)
44 1lt2 12300 . . . . . . . . . . . . . 14 1 < 2
4544a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 < 2)
4634, 45ltned 11258 . . . . . . . . . . . 12 (𝜑 → 1 ≠ 2)
4746necomd 2984 . . . . . . . . . . 11 (𝜑 → 2 ≠ 1)
4841, 43, 16, 21, 47relogbcld 42089 . . . . . . . . . 10 (𝜑 → (2 logb 𝑁) ∈ ℝ)
4939, 48remulcld 11151 . . . . . . . . 9 (𝜑 → ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ)
5049flcld 13706 . . . . . . . 8 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ)
5133, 38sqrtge0d 15332 . . . . . . . . . 10 (𝜑 → 0 ≤ (√‘(ϕ‘𝑅)))
5241recnd 11149 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℂ)
5313, 43gtned 11257 . . . . . . . . . . . . 13 (𝜑 → 2 ≠ 0)
54 logb1 26709 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
5552, 53, 47, 54syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (2 logb 1) = 0)
5655eqcomd 2739 . . . . . . . . . . 11 (𝜑 → 0 = (2 logb 1))
57 2z 12512 . . . . . . . . . . . . 13 2 ∈ ℤ
5857a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℤ)
5941leidd 11692 . . . . . . . . . . . 12 (𝜑 → 2 ≤ 2)
60 0lt1 11648 . . . . . . . . . . . . 13 0 < 1
6160a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 1)
6224nnge1d 12182 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 𝑁)
6358, 59, 34, 61, 16, 21, 62logblebd 42092 . . . . . . . . . . 11 (𝜑 → (2 logb 1) ≤ (2 logb 𝑁))
6456, 63eqbrtrd 5117 . . . . . . . . . 10 (𝜑 → 0 ≤ (2 logb 𝑁))
6539, 48, 51, 64mulge0d 11703 . . . . . . . . 9 (𝜑 → 0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
66 0zd 12489 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
67 flge 13713 . . . . . . . . . 10 ((((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
6849, 66, 67syl2anc 584 . . . . . . . . 9 (𝜑 → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
6965, 68mpbid 232 . . . . . . . 8 (𝜑 → 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))
7050, 69jca 511 . . . . . . 7 (𝜑 → ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
71 elnn0z 12490 . . . . . . 7 ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0 ↔ ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
7270, 71sylibr 234 . . . . . 6 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0)
7331, 72eqeltrid 2837 . . . . 5 (𝜑𝐴 ∈ ℕ0)
7473adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝐴 ∈ ℕ0)
75 aks6d1c7lem2.9 . . . 4 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
76 aks6d1c7lem2.10 . . . 4 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
77 aks6d1c7lem2.22 . . . . 5 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
7877adantr 480 . . . 4 ((𝜑𝑃𝑄) → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
79 aks6d1c7lem2.14 . . . . 5 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
8079adantr 480 . . . 4 ((𝜑𝑃𝑄) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
81 aks6d1c7lem2.15 . . . . 5 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
8281adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
83 aks6d1c7lem2.16 . . . 4 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
84 aks6d1c7lem2.17 . . . 4 𝐵 = (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
85 aks6d1c7lem2.18 . . . 4 𝐶 = (𝐸 “ ((0...𝐵) × (0...𝐵)))
86 aks6d1c7lem2.19 . . . . . . 7 (𝜑 → (𝑄 ∈ ℙ ∧ 𝑄𝑁))
8786simpld 494 . . . . . 6 (𝜑𝑄 ∈ ℙ)
8887adantr 480 . . . . 5 ((𝜑𝑃𝑄) → 𝑄 ∈ ℙ)
8986simprd 495 . . . . . 6 (𝜑𝑄𝑁)
9089adantr 480 . . . . 5 ((𝜑𝑃𝑄) → 𝑄𝑁)
91 simpr 484 . . . . 5 ((𝜑𝑃𝑄) → 𝑃𝑄)
9288, 90, 913jca 1128 . . . 4 ((𝜑𝑃𝑄) → (𝑄 ∈ ℙ ∧ 𝑄𝑁𝑃𝑄))
932, 3, 5, 7, 9, 25, 27, 29, 30, 74, 75, 76, 78, 80, 82, 83, 84, 85, 92aks6d1c2 42246 . . 3 ((𝜑𝑃𝑄) → (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ≤ (𝑁𝐵))
9424nnzd 12503 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
95 eqid 2733 . . . . . . . . . . . . . . . 16 (ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅)
9624, 6, 26, 8, 28, 75, 76, 95hashscontpowcl 42236 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0)
9796nn0red 12452 . . . . . . . . . . . . . 14 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ)
9896nn0ge0d 12454 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
9997, 98resqrtcld 15329 . . . . . . . . . . . . 13 (𝜑 → (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℝ)
10099flcld 13706 . . . . . . . . . . . 12 (𝜑 → (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℤ)
10197, 98sqrtge0d 15332 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
102 flge 13713 . . . . . . . . . . . . . 14 (((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ↔ 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
10399, 66, 102syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (0 ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ↔ 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
104101, 103mpbid 232 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
105100, 104jca 511 . . . . . . . . . . 11 (𝜑 → ((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℤ ∧ 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
106 elnn0z 12490 . . . . . . . . . . 11 ((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℕ0 ↔ ((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℤ ∧ 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
107105, 106sylibr 234 . . . . . . . . . 10 (𝜑 → (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℕ0)
10884, 107eqeltrid 2837 . . . . . . . . 9 (𝜑𝐵 ∈ ℕ0)
10994, 108zexpcld 13998 . . . . . . . 8 (𝜑 → (𝑁𝐵) ∈ ℤ)
110109zred 12585 . . . . . . 7 (𝜑 → (𝑁𝐵) ∈ ℝ)
111110adantr 480 . . . . . 6 ((𝜑𝑃𝑄) → (𝑁𝐵) ∈ ℝ)
112111rexrd 11171 . . . . 5 ((𝜑𝑃𝑄) → (𝑁𝐵) ∈ ℝ*)
113 aks6d1c7lem2.11 . . . . . . . . . 10 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
11496adantr 480 . . . . . . . . . 10 ((𝜑𝑃𝑄) → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0)
115113, 114eqeltrid 2837 . . . . . . . . 9 ((𝜑𝑃𝑄) → 𝐷 ∈ ℕ0)
116115, 74nn0addcld 12455 . . . . . . . 8 ((𝜑𝑃𝑄) → (𝐷 + 𝐴) ∈ ℕ0)
117115nn0zd 12502 . . . . . . . . 9 ((𝜑𝑃𝑄) → 𝐷 ∈ ℤ)
118 1zzd 12511 . . . . . . . . 9 ((𝜑𝑃𝑄) → 1 ∈ ℤ)
119117, 118zsubcld 12590 . . . . . . . 8 ((𝜑𝑃𝑄) → (𝐷 − 1) ∈ ℤ)
120 bccl 14233 . . . . . . . 8 (((𝐷 + 𝐴) ∈ ℕ0 ∧ (𝐷 − 1) ∈ ℤ) → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈ ℕ0)
121116, 119, 120syl2anc 584 . . . . . . 7 ((𝜑𝑃𝑄) → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈ ℕ0)
122121nn0red 12452 . . . . . 6 ((𝜑𝑃𝑄) → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈ ℝ)
123122rexrd 11171 . . . . 5 ((𝜑𝑃𝑄) → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈ ℝ*)
124 ovexd 7389 . . . . . . . . 9 ((𝜑𝑃𝑄) → (ℕ0m (0...𝐴)) ∈ V)
125124mptexd 7166 . . . . . . . 8 ((𝜑𝑃𝑄) → ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀)) ∈ V)
12683, 125eqeltrid 2837 . . . . . . 7 ((𝜑𝑃𝑄) → 𝐻 ∈ V)
127126imaexd 7854 . . . . . 6 ((𝜑𝑃𝑄) → (𝐻 “ (ℕ0m (0...𝐴))) ∈ V)
128 hashxrcl 14268 . . . . . 6 ((𝐻 “ (ℕ0m (0...𝐴))) ∈ V → (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ∈ ℝ*)
129127, 128syl 17 . . . . 5 ((𝜑𝑃𝑄) → (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ∈ ℝ*)
130 eqcom 2740 . . . . . . . . . . . 12 (𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ↔ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) = 𝐷)
131113, 130mpbi 230 . . . . . . . . . . 11 (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) = 𝐷
132131fveq2i 6833 . . . . . . . . . 10 (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) = (√‘𝐷)
133132fveq2i 6833 . . . . . . . . 9 (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) = (⌊‘(√‘𝐷))
13484, 133eqtri 2756 . . . . . . . 8 𝐵 = (⌊‘(√‘𝐷))
135134a1i 11 . . . . . . 7 ((𝜑𝑃𝑄) → 𝐵 = (⌊‘(√‘𝐷)))
136135oveq2d 7370 . . . . . 6 ((𝜑𝑃𝑄) → (𝑁𝐵) = (𝑁↑(⌊‘(√‘𝐷))))
13710adantr 480 . . . . . . 7 ((𝜑𝑃𝑄) → 𝑁 ∈ (ℤ‘3))
138 aks6d1c7lem2.13 . . . . . . . 8 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
139138adantr 480 . . . . . . 7 ((𝜑𝑃𝑄) → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
1407, 9, 137, 27, 29, 75, 76, 113, 31, 139aks6d1c7lem1 42296 . . . . . 6 ((𝜑𝑃𝑄) → (𝑁↑(⌊‘(√‘𝐷))) < ((𝐷 + 𝐴)C(𝐷 − 1)))
141136, 140eqbrtrd 5117 . . . . 5 ((𝜑𝑃𝑄) → (𝑁𝐵) < ((𝐷 + 𝐴)C(𝐷 − 1)))
142 aks6d1c7lem2.20 . . . . . . 7 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
143142adantr 480 . . . . . 6 ((𝜑𝑃𝑄) → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
144 aks6d1c7lem2.23 . . . . . 6 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
145 eqid 2733 . . . . . 6 (𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) = (𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀))
146 eqid 2733 . . . . . 6 {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))} = {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}
147 nfcv 2895 . . . . . . 7 𝑏 ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ )
148 nfcv 2895 . . . . . . 7 ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ 𝑏)
149 imaeq2 6011 . . . . . . . 8 ( = 𝑏 → ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ ) = ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ 𝑏))
150149unieqd 4873 . . . . . . 7 ( = 𝑏 ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ ) = ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ 𝑏))
151147, 148, 150cbvmpt 5197 . . . . . 6 ( ∈ (Base‘(ℤring /s (ℤring ~QG ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ {(0g‘(((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}) ↾s ran (𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀))))})))) ↦ ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ )) = (𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ {(0g‘(((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}) ↾s ran (𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀))))})))) ↦ ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ 𝑏))
1522, 3, 5, 7, 9, 25, 27, 29, 143, 30, 31, 75, 76, 78, 80, 82, 83, 113, 144, 145, 146, 151aks6d1c6lem5 42293 . . . . 5 ((𝜑𝑃𝑄) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
153112, 123, 129, 141, 152xrltletrd 13064 . . . 4 ((𝜑𝑃𝑄) → (𝑁𝐵) < (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
154 xrltnle 11188 . . . . 5 (((𝑁𝐵) ∈ ℝ* ∧ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ∈ ℝ*) → ((𝑁𝐵) < (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ↔ ¬ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ≤ (𝑁𝐵)))
155112, 129, 154syl2anc 584 . . . 4 ((𝜑𝑃𝑄) → ((𝑁𝐵) < (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ↔ ¬ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ≤ (𝑁𝐵)))
156153, 155mpbid 232 . . 3 ((𝜑𝑃𝑄) → ¬ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ≤ (𝑁𝐵))
15793, 156pm2.21dd 195 . 2 ((𝜑𝑃𝑄) → 𝑃 = 𝑄)
1581, 157pm2.61dane 3016 1 (𝜑𝑃 = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  {csn 4577   cuni 4860   class class class wbr 5095  {copab 5157  cmpt 5176   × cxp 5619  ccnv 5620  ran crn 5622  cima 5624  cfv 6488  (class class class)co 7354  cmpo 7356  m cmap 8758  cc 11013  cr 11014  0cc0 11015  1c1 11016   + caddc 11018   · cmul 11020  *cxr 11154   < clt 11155  cle 11156  cmin 11353   / cdiv 11783  cn 12134  2c2 12189  3c3 12190  0cn0 12390  cz 12477  cuz 12740  ...cfz 13411  cfl 13698  cexp 13972  Ccbc 14213  chash 14241  csqrt 15144  Σcsu 15597  cdvds 16167   gcd cgcd 16409  cprime 16586  odcodz 16678  ϕcphi 16679  Basecbs 17124  s cress 17145  +gcplusg 17165  0gc0g 17347   Σg cgsu 17348   /s cqus 17413  .gcmg 18984   ~QG cqg 19039  mulGrpcmgp 20062   RingIso crs 20392  Fieldcfield 20649  ringczring 21387  ℤRHomczrh 21440  chrcchr 21442  ℤ/nczn 21443  algSccascl 21793  var1cv1 22091  Poly1cpl1 22092  eval1ce1 22232   logb clogb 26704   PrimRoots cprimroots 42207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093  ax-addf 11094  ax-mulf 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-ofr 7619  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-tpos 8164  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-oadd 8397  df-er 8630  df-ec 8632  df-qs 8636  df-map 8760  df-pm 8761  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-fi 9304  df-sup 9335  df-inf 9336  df-oi 9405  df-dju 9803  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-xnn0 12464  df-z 12478  df-dec 12597  df-uz 12741  df-q 12851  df-rp 12895  df-xneg 13015  df-xadd 13016  df-xmul 13017  df-ioo 13253  df-ioc 13254  df-ico 13255  df-icc 13256  df-fz 13412  df-fzo 13559  df-fl 13700  df-mod 13778  df-seq 13913  df-exp 13973  df-fac 14185  df-bc 14214  df-hash 14242  df-shft 14978  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-limsup 15382  df-clim 15399  df-rlim 15400  df-sum 15598  df-prod 15815  df-fallfac 15918  df-ef 15978  df-sin 15980  df-cos 15981  df-pi 15983  df-dvds 16168  df-gcd 16410  df-prm 16587  df-odz 16680  df-phi 16681  df-pc 16753  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-starv 17180  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-unif 17188  df-hom 17189  df-cco 17190  df-rest 17330  df-topn 17331  df-0g 17349  df-gsum 17350  df-topgen 17351  df-pt 17352  df-prds 17355  df-pws 17357  df-xrs 17410  df-qtop 17415  df-imas 17416  df-qus 17417  df-xps 17418  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-mhm 18695  df-submnd 18696  df-grp 18853  df-minusg 18854  df-sbg 18855  df-mulg 18985  df-subg 19040  df-nsg 19041  df-eqg 19042  df-ghm 19129  df-gim 19175  df-cntz 19233  df-od 19444  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-srg 20109  df-ring 20157  df-cring 20158  df-oppr 20259  df-dvdsr 20279  df-unit 20280  df-invr 20310  df-dvr 20323  df-rhm 20394  df-rim 20395  df-nzr 20432  df-subrng 20465  df-subrg 20489  df-rlreg 20613  df-domn 20614  df-idom 20615  df-drng 20650  df-field 20651  df-lmod 20799  df-lss 20869  df-lsp 20909  df-sra 21111  df-rgmod 21112  df-lidl 21149  df-rsp 21150  df-2idl 21191  df-psmet 21287  df-xmet 21288  df-met 21289  df-bl 21290  df-mopn 21291  df-fbas 21292  df-fg 21293  df-cnfld 21296  df-zring 21388  df-zrh 21444  df-chr 21446  df-zn 21447  df-assa 21794  df-asp 21795  df-ascl 21796  df-psr 21850  df-mvr 21851  df-mpl 21852  df-opsr 21854  df-evls 22012  df-evl 22013  df-psr1 22095  df-vr1 22096  df-ply1 22097  df-coe1 22098  df-evl1 22234  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22864  df-cld 22937  df-ntr 22938  df-cls 22939  df-nei 23016  df-lp 23054  df-perf 23055  df-cn 23145  df-cnp 23146  df-haus 23233  df-tx 23480  df-hmeo 23673  df-fil 23764  df-fm 23856  df-flim 23857  df-flf 23858  df-xms 24238  df-ms 24239  df-tms 24240  df-cncf 24801  df-limc 25797  df-dv 25798  df-mdeg 25990  df-deg1 25991  df-mon1 26066  df-uc1p 26067  df-q1p 26068  df-r1p 26069  df-log 26495  df-cxp 26496  df-logb 26705  df-primroots 42208
This theorem is referenced by:  aks6d1c7lem3  42298
  Copyright terms: Public domain W3C validator