Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c7lem2 Structured version   Visualization version   GIF version

Theorem aks6d1c7lem2 42176
Description: Contradiction to Claim 2 and Claim 7. We assumed in Claim 2 that there are two different prime numbers 𝑃 and 𝑄. (Contributed by metakunt, 16-May-2025.)
Hypotheses
Ref Expression
aks6d1c7lem2.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c7lem2.2 𝑃 = (chr‘𝐾)
aks6d1c7lem2.3 (𝜑𝐾 ∈ Field)
aks6d1c7lem2.4 (𝜑𝑃 ∈ ℙ)
aks6d1c7lem2.5 (𝜑𝑅 ∈ ℕ)
aks6d1c7lem2.6 (𝜑𝑁 ∈ (ℤ‘3))
aks6d1c7lem2.7 (𝜑𝑃𝑁)
aks6d1c7lem2.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c7lem2.9 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c7lem2.10 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c7lem2.11 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c7lem2.12 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
aks6d1c7lem2.13 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
aks6d1c7lem2.14 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c7lem2.15 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c7lem2.16 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c7lem2.17 𝐵 = (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
aks6d1c7lem2.18 𝐶 = (𝐸 “ ((0...𝐵) × (0...𝐵)))
aks6d1c7lem2.19 (𝜑 → (𝑄 ∈ ℙ ∧ 𝑄𝑁))
aks6d1c7lem2.20 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
aks6d1c7lem2.21 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c7lem2.22 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c7lem2.23 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
Assertion
Ref Expression
aks6d1c7lem2 (𝜑𝑃 = 𝑄)
Distinct variable groups:   ,𝑎   𝐴,𝑎   𝐴,𝑏,   𝐴,𝑔,𝑖,𝑥   𝐴,𝑘,𝑙,𝑠   𝑡,𝐴,𝑖,𝑥   𝐵,𝑎   𝐵,𝑔,𝑖,𝑥   𝐵,𝑘,𝑙,𝑥   𝐶,𝑎   𝐶,𝑔,𝑖,𝑥   𝐶,   𝐶,𝑘,𝑙   𝐷,𝑠   𝐸,𝑎   𝑦,𝐸,𝑒,𝑓   𝑔,𝐸,𝑖,𝑥,𝑦   𝑘,𝐸,𝑙,𝑦   𝑒,𝐺,𝑓,𝑦   𝑔,𝐺,𝑖   ,𝐺   𝑡,𝐺,𝑦   𝐻,𝑎   ,𝐻   𝑔,𝐻,𝑖,𝑥,𝑦   𝐻,𝑠,𝑡   𝐾,𝑎   𝐾,𝑏,   𝑒,𝐾,𝑓,𝑦   𝑔,𝐾,𝑖,𝑥   𝐾,𝑙   𝑡,𝐾   𝑀,𝑏,   𝑀,𝑙,𝑦   𝑁,𝑎   𝑁,𝑏   𝑒,𝑁,𝑓,𝑦   𝑘,𝑁,𝑙,𝑠   𝑥,𝑁   𝑃,𝑎   𝑃,𝑏,   𝑃,𝑒,𝑓,𝑦   𝑃,𝑔,𝑖,𝑥   𝑃,𝑘,𝑙,𝑠   𝑡,𝑃   𝑄,𝑎   𝑄,𝑏,   𝑄,𝑔,𝑖,𝑥,𝑦   𝑄,𝑘,𝑙,𝑠   𝑡,𝑄   𝑅,𝑎   𝑅,   𝑅,𝑒,𝑓,𝑦   𝑅,𝑔,𝑖,𝑥   𝑅,𝑘,𝑙   𝑆,𝑎   𝑆,   𝑆,𝑔,𝑖,𝑥,𝑦   𝑆,𝑠,𝑡   𝜑,𝑎   𝜑,𝑏,   𝜑,𝑔,𝑖,𝑥,𝑦   𝜑,𝑘,𝑙,𝑠   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐴(𝑦,𝑒,𝑓)   𝐵(𝑦,𝑡,𝑒,𝑓,,𝑠,𝑏)   𝐶(𝑦,𝑡,𝑒,𝑓,𝑠,𝑏)   𝐷(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑎,𝑏,𝑙)   𝑄(𝑒,𝑓)   (𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑏,𝑙)   𝑅(𝑡,𝑠,𝑏)   𝑆(𝑒,𝑓,𝑘,𝑏,𝑙)   𝐸(𝑡,,𝑠,𝑏)   𝐺(𝑥,𝑘,𝑠,𝑎,𝑏,𝑙)   𝐻(𝑒,𝑓,𝑘,𝑏,𝑙)   𝐾(𝑘,𝑠)   𝐿(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑏,𝑙)   𝑀(𝑥,𝑡,𝑒,𝑓,𝑔,𝑖,𝑘,𝑠,𝑎)   𝑁(𝑡,𝑔,,𝑖)

Proof of Theorem aks6d1c7lem2
Dummy variables 𝑐 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝜑𝑃 = 𝑄) → 𝑃 = 𝑄)
2 aks6d1c7lem2.1 . . . 4 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
3 aks6d1c7lem2.2 . . . 4 𝑃 = (chr‘𝐾)
4 aks6d1c7lem2.3 . . . . 5 (𝜑𝐾 ∈ Field)
54adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝐾 ∈ Field)
6 aks6d1c7lem2.4 . . . . 5 (𝜑𝑃 ∈ ℙ)
76adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝑃 ∈ ℙ)
8 aks6d1c7lem2.5 . . . . 5 (𝜑𝑅 ∈ ℕ)
98adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝑅 ∈ ℕ)
10 aks6d1c7lem2.6 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘3))
11 eluzelz 12810 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
1210, 11syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
13 0red 11184 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
14 3re 12273 . . . . . . . . 9 3 ∈ ℝ
1514a1i 11 . . . . . . . 8 (𝜑 → 3 ∈ ℝ)
1612zred 12645 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
17 3pos 12298 . . . . . . . . 9 0 < 3
1817a1i 11 . . . . . . . 8 (𝜑 → 0 < 3)
19 eluzle 12813 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
2010, 19syl 17 . . . . . . . 8 (𝜑 → 3 ≤ 𝑁)
2113, 15, 16, 18, 20ltletrd 11341 . . . . . . 7 (𝜑 → 0 < 𝑁)
2212, 21jca 511 . . . . . 6 (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁))
23 elnnz 12546 . . . . . 6 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
2422, 23sylibr 234 . . . . 5 (𝜑𝑁 ∈ ℕ)
2524adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝑁 ∈ ℕ)
26 aks6d1c7lem2.7 . . . . 5 (𝜑𝑃𝑁)
2726adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝑃𝑁)
28 aks6d1c7lem2.8 . . . . 5 (𝜑 → (𝑁 gcd 𝑅) = 1)
2928adantr 480 . . . 4 ((𝜑𝑃𝑄) → (𝑁 gcd 𝑅) = 1)
30 aks6d1c7lem2.21 . . . 4 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
31 aks6d1c7lem2.12 . . . . . 6 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
328phicld 16749 . . . . . . . . . . . 12 (𝜑 → (ϕ‘𝑅) ∈ ℕ)
3332nnred 12208 . . . . . . . . . . 11 (𝜑 → (ϕ‘𝑅) ∈ ℝ)
34 1red 11182 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
35 0le1 11708 . . . . . . . . . . . . 13 0 ≤ 1
3635a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 1)
3732nnge1d 12241 . . . . . . . . . . . 12 (𝜑 → 1 ≤ (ϕ‘𝑅))
3813, 34, 33, 36, 37letrd 11338 . . . . . . . . . . 11 (𝜑 → 0 ≤ (ϕ‘𝑅))
3933, 38resqrtcld 15391 . . . . . . . . . 10 (𝜑 → (√‘(ϕ‘𝑅)) ∈ ℝ)
40 2re 12267 . . . . . . . . . . . 12 2 ∈ ℝ
4140a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
42 2pos 12296 . . . . . . . . . . . 12 0 < 2
4342a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 2)
44 1lt2 12359 . . . . . . . . . . . . . 14 1 < 2
4544a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 < 2)
4634, 45ltned 11317 . . . . . . . . . . . 12 (𝜑 → 1 ≠ 2)
4746necomd 2981 . . . . . . . . . . 11 (𝜑 → 2 ≠ 1)
4841, 43, 16, 21, 47relogbcld 41968 . . . . . . . . . 10 (𝜑 → (2 logb 𝑁) ∈ ℝ)
4939, 48remulcld 11211 . . . . . . . . 9 (𝜑 → ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ)
5049flcld 13767 . . . . . . . 8 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ)
5133, 38sqrtge0d 15394 . . . . . . . . . 10 (𝜑 → 0 ≤ (√‘(ϕ‘𝑅)))
5241recnd 11209 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℂ)
5313, 43gtned 11316 . . . . . . . . . . . . 13 (𝜑 → 2 ≠ 0)
54 logb1 26686 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
5552, 53, 47, 54syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (2 logb 1) = 0)
5655eqcomd 2736 . . . . . . . . . . 11 (𝜑 → 0 = (2 logb 1))
57 2z 12572 . . . . . . . . . . . . 13 2 ∈ ℤ
5857a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℤ)
5941leidd 11751 . . . . . . . . . . . 12 (𝜑 → 2 ≤ 2)
60 0lt1 11707 . . . . . . . . . . . . 13 0 < 1
6160a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 1)
6224nnge1d 12241 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 𝑁)
6358, 59, 34, 61, 16, 21, 62logblebd 41971 . . . . . . . . . . 11 (𝜑 → (2 logb 1) ≤ (2 logb 𝑁))
6456, 63eqbrtrd 5132 . . . . . . . . . 10 (𝜑 → 0 ≤ (2 logb 𝑁))
6539, 48, 51, 64mulge0d 11762 . . . . . . . . 9 (𝜑 → 0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
66 0zd 12548 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
67 flge 13774 . . . . . . . . . 10 ((((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
6849, 66, 67syl2anc 584 . . . . . . . . 9 (𝜑 → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
6965, 68mpbid 232 . . . . . . . 8 (𝜑 → 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))
7050, 69jca 511 . . . . . . 7 (𝜑 → ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
71 elnn0z 12549 . . . . . . 7 ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0 ↔ ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
7270, 71sylibr 234 . . . . . 6 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0)
7331, 72eqeltrid 2833 . . . . 5 (𝜑𝐴 ∈ ℕ0)
7473adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝐴 ∈ ℕ0)
75 aks6d1c7lem2.9 . . . 4 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
76 aks6d1c7lem2.10 . . . 4 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
77 aks6d1c7lem2.22 . . . . 5 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
7877adantr 480 . . . 4 ((𝜑𝑃𝑄) → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
79 aks6d1c7lem2.14 . . . . 5 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
8079adantr 480 . . . 4 ((𝜑𝑃𝑄) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
81 aks6d1c7lem2.15 . . . . 5 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
8281adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
83 aks6d1c7lem2.16 . . . 4 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
84 aks6d1c7lem2.17 . . . 4 𝐵 = (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
85 aks6d1c7lem2.18 . . . 4 𝐶 = (𝐸 “ ((0...𝐵) × (0...𝐵)))
86 aks6d1c7lem2.19 . . . . . . 7 (𝜑 → (𝑄 ∈ ℙ ∧ 𝑄𝑁))
8786simpld 494 . . . . . 6 (𝜑𝑄 ∈ ℙ)
8887adantr 480 . . . . 5 ((𝜑𝑃𝑄) → 𝑄 ∈ ℙ)
8986simprd 495 . . . . . 6 (𝜑𝑄𝑁)
9089adantr 480 . . . . 5 ((𝜑𝑃𝑄) → 𝑄𝑁)
91 simpr 484 . . . . 5 ((𝜑𝑃𝑄) → 𝑃𝑄)
9288, 90, 913jca 1128 . . . 4 ((𝜑𝑃𝑄) → (𝑄 ∈ ℙ ∧ 𝑄𝑁𝑃𝑄))
932, 3, 5, 7, 9, 25, 27, 29, 30, 74, 75, 76, 78, 80, 82, 83, 84, 85, 92aks6d1c2 42125 . . 3 ((𝜑𝑃𝑄) → (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ≤ (𝑁𝐵))
9424nnzd 12563 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
95 eqid 2730 . . . . . . . . . . . . . . . 16 (ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅)
9624, 6, 26, 8, 28, 75, 76, 95hashscontpowcl 42115 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0)
9796nn0red 12511 . . . . . . . . . . . . . 14 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ)
9896nn0ge0d 12513 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
9997, 98resqrtcld 15391 . . . . . . . . . . . . 13 (𝜑 → (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℝ)
10099flcld 13767 . . . . . . . . . . . 12 (𝜑 → (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℤ)
10197, 98sqrtge0d 15394 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
102 flge 13774 . . . . . . . . . . . . . 14 (((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ↔ 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
10399, 66, 102syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (0 ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ↔ 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
104101, 103mpbid 232 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
105100, 104jca 511 . . . . . . . . . . 11 (𝜑 → ((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℤ ∧ 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
106 elnn0z 12549 . . . . . . . . . . 11 ((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℕ0 ↔ ((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℤ ∧ 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
107105, 106sylibr 234 . . . . . . . . . 10 (𝜑 → (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℕ0)
10884, 107eqeltrid 2833 . . . . . . . . 9 (𝜑𝐵 ∈ ℕ0)
10994, 108zexpcld 14059 . . . . . . . 8 (𝜑 → (𝑁𝐵) ∈ ℤ)
110109zred 12645 . . . . . . 7 (𝜑 → (𝑁𝐵) ∈ ℝ)
111110adantr 480 . . . . . 6 ((𝜑𝑃𝑄) → (𝑁𝐵) ∈ ℝ)
112111rexrd 11231 . . . . 5 ((𝜑𝑃𝑄) → (𝑁𝐵) ∈ ℝ*)
113 aks6d1c7lem2.11 . . . . . . . . . 10 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
11496adantr 480 . . . . . . . . . 10 ((𝜑𝑃𝑄) → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0)
115113, 114eqeltrid 2833 . . . . . . . . 9 ((𝜑𝑃𝑄) → 𝐷 ∈ ℕ0)
116115, 74nn0addcld 12514 . . . . . . . 8 ((𝜑𝑃𝑄) → (𝐷 + 𝐴) ∈ ℕ0)
117115nn0zd 12562 . . . . . . . . 9 ((𝜑𝑃𝑄) → 𝐷 ∈ ℤ)
118 1zzd 12571 . . . . . . . . 9 ((𝜑𝑃𝑄) → 1 ∈ ℤ)
119117, 118zsubcld 12650 . . . . . . . 8 ((𝜑𝑃𝑄) → (𝐷 − 1) ∈ ℤ)
120 bccl 14294 . . . . . . . 8 (((𝐷 + 𝐴) ∈ ℕ0 ∧ (𝐷 − 1) ∈ ℤ) → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈ ℕ0)
121116, 119, 120syl2anc 584 . . . . . . 7 ((𝜑𝑃𝑄) → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈ ℕ0)
122121nn0red 12511 . . . . . 6 ((𝜑𝑃𝑄) → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈ ℝ)
123122rexrd 11231 . . . . 5 ((𝜑𝑃𝑄) → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈ ℝ*)
124 ovexd 7425 . . . . . . . . 9 ((𝜑𝑃𝑄) → (ℕ0m (0...𝐴)) ∈ V)
125124mptexd 7201 . . . . . . . 8 ((𝜑𝑃𝑄) → ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀)) ∈ V)
12683, 125eqeltrid 2833 . . . . . . 7 ((𝜑𝑃𝑄) → 𝐻 ∈ V)
127126imaexd 7895 . . . . . 6 ((𝜑𝑃𝑄) → (𝐻 “ (ℕ0m (0...𝐴))) ∈ V)
128 hashxrcl 14329 . . . . . 6 ((𝐻 “ (ℕ0m (0...𝐴))) ∈ V → (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ∈ ℝ*)
129127, 128syl 17 . . . . 5 ((𝜑𝑃𝑄) → (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ∈ ℝ*)
130 eqcom 2737 . . . . . . . . . . . 12 (𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ↔ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) = 𝐷)
131113, 130mpbi 230 . . . . . . . . . . 11 (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) = 𝐷
132131fveq2i 6864 . . . . . . . . . 10 (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) = (√‘𝐷)
133132fveq2i 6864 . . . . . . . . 9 (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) = (⌊‘(√‘𝐷))
13484, 133eqtri 2753 . . . . . . . 8 𝐵 = (⌊‘(√‘𝐷))
135134a1i 11 . . . . . . 7 ((𝜑𝑃𝑄) → 𝐵 = (⌊‘(√‘𝐷)))
136135oveq2d 7406 . . . . . 6 ((𝜑𝑃𝑄) → (𝑁𝐵) = (𝑁↑(⌊‘(√‘𝐷))))
13710adantr 480 . . . . . . 7 ((𝜑𝑃𝑄) → 𝑁 ∈ (ℤ‘3))
138 aks6d1c7lem2.13 . . . . . . . 8 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
139138adantr 480 . . . . . . 7 ((𝜑𝑃𝑄) → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
1407, 9, 137, 27, 29, 75, 76, 113, 31, 139aks6d1c7lem1 42175 . . . . . 6 ((𝜑𝑃𝑄) → (𝑁↑(⌊‘(√‘𝐷))) < ((𝐷 + 𝐴)C(𝐷 − 1)))
141136, 140eqbrtrd 5132 . . . . 5 ((𝜑𝑃𝑄) → (𝑁𝐵) < ((𝐷 + 𝐴)C(𝐷 − 1)))
142 aks6d1c7lem2.20 . . . . . . 7 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
143142adantr 480 . . . . . 6 ((𝜑𝑃𝑄) → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
144 aks6d1c7lem2.23 . . . . . 6 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
145 eqid 2730 . . . . . 6 (𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) = (𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀))
146 eqid 2730 . . . . . 6 {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))} = {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}
147 nfcv 2892 . . . . . . 7 𝑏 ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ )
148 nfcv 2892 . . . . . . 7 ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ 𝑏)
149 imaeq2 6030 . . . . . . . 8 ( = 𝑏 → ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ ) = ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ 𝑏))
150149unieqd 4887 . . . . . . 7 ( = 𝑏 ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ ) = ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ 𝑏))
151147, 148, 150cbvmpt 5212 . . . . . 6 ( ∈ (Base‘(ℤring /s (ℤring ~QG ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ {(0g‘(((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}) ↾s ran (𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀))))})))) ↦ ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ )) = (𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ {(0g‘(((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}) ↾s ran (𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀))))})))) ↦ ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ 𝑏))
1522, 3, 5, 7, 9, 25, 27, 29, 143, 30, 31, 75, 76, 78, 80, 82, 83, 113, 144, 145, 146, 151aks6d1c6lem5 42172 . . . . 5 ((𝜑𝑃𝑄) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
153112, 123, 129, 141, 152xrltletrd 13128 . . . 4 ((𝜑𝑃𝑄) → (𝑁𝐵) < (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
154 xrltnle 11248 . . . . 5 (((𝑁𝐵) ∈ ℝ* ∧ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ∈ ℝ*) → ((𝑁𝐵) < (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ↔ ¬ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ≤ (𝑁𝐵)))
155112, 129, 154syl2anc 584 . . . 4 ((𝜑𝑃𝑄) → ((𝑁𝐵) < (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ↔ ¬ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ≤ (𝑁𝐵)))
156153, 155mpbid 232 . . 3 ((𝜑𝑃𝑄) → ¬ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ≤ (𝑁𝐵))
15793, 156pm2.21dd 195 . 2 ((𝜑𝑃𝑄) → 𝑃 = 𝑄)
1581, 157pm2.61dane 3013 1 (𝜑𝑃 = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  {csn 4592   cuni 4874   class class class wbr 5110  {copab 5172  cmpt 5191   × cxp 5639  ccnv 5640  ran crn 5642  cima 5644  cfv 6514  (class class class)co 7390  cmpo 7392  m cmap 8802  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  *cxr 11214   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  3c3 12249  0cn0 12449  cz 12536  cuz 12800  ...cfz 13475  cfl 13759  cexp 14033  Ccbc 14274  chash 14302  csqrt 15206  Σcsu 15659  cdvds 16229   gcd cgcd 16471  cprime 16648  odcodz 16740  ϕcphi 16741  Basecbs 17186  s cress 17207  +gcplusg 17227  0gc0g 17409   Σg cgsu 17410   /s cqus 17475  .gcmg 19006   ~QG cqg 19061  mulGrpcmgp 20056   RingIso crs 20386  Fieldcfield 20646  ringczring 21363  ℤRHomczrh 21416  chrcchr 21418  ℤ/nczn 21419  algSccascl 21768  var1cv1 22067  Poly1cpl1 22068  eval1ce1 22208   logb clogb 26681   PrimRoots cprimroots 42086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-prod 15877  df-fallfac 15980  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-gcd 16472  df-prm 16649  df-odz 16742  df-phi 16743  df-pc 16815  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-pws 17419  df-xrs 17472  df-qtop 17477  df-imas 17478  df-qus 17479  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-nsg 19063  df-eqg 19064  df-ghm 19152  df-gim 19198  df-cntz 19256  df-od 19465  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-rim 20389  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-domn 20611  df-idom 20612  df-drng 20647  df-field 20648  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-2idl 21167  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-chr 21422  df-zn 21423  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-evl1 22210  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-mdeg 25967  df-deg1 25968  df-mon1 26043  df-uc1p 26044  df-q1p 26045  df-r1p 26046  df-log 26472  df-cxp 26473  df-logb 26682  df-primroots 42087
This theorem is referenced by:  aks6d1c7lem3  42177
  Copyright terms: Public domain W3C validator