| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. 2
⊢ ((𝜑 ∧ 𝑃 = 𝑄) → 𝑃 = 𝑄) |
| 2 | | aks6d1c7lem2.1 |
. . . 4
⊢ ∼ =
{〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈
(Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} |
| 3 | | aks6d1c7lem2.2 |
. . . 4
⊢ 𝑃 = (chr‘𝐾) |
| 4 | | aks6d1c7lem2.3 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ Field) |
| 5 | 4 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ Field) |
| 6 | | aks6d1c7lem2.4 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ ℙ) |
| 8 | | aks6d1c7lem2.5 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ ℕ) |
| 9 | 8 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝑅 ∈ ℕ) |
| 10 | | aks6d1c7lem2.6 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘3)) |
| 11 | | eluzelz 12867 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℤ) |
| 12 | 10, 11 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 13 | | 0red 11243 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℝ) |
| 14 | | 3re 12325 |
. . . . . . . . 9
⊢ 3 ∈
ℝ |
| 15 | 14 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 3 ∈
ℝ) |
| 16 | 12 | zred 12702 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 17 | | 3pos 12350 |
. . . . . . . . 9
⊢ 0 <
3 |
| 18 | 17 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 < 3) |
| 19 | | eluzle 12870 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘3) → 3 ≤ 𝑁) |
| 20 | 10, 19 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 3 ≤ 𝑁) |
| 21 | 13, 15, 16, 18, 20 | ltletrd 11400 |
. . . . . . 7
⊢ (𝜑 → 0 < 𝑁) |
| 22 | 12, 21 | jca 511 |
. . . . . 6
⊢ (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁)) |
| 23 | | elnnz 12603 |
. . . . . 6
⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 <
𝑁)) |
| 24 | 22, 23 | sylibr 234 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 25 | 24 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝑁 ∈ ℕ) |
| 26 | | aks6d1c7lem2.7 |
. . . . 5
⊢ (𝜑 → 𝑃 ∥ 𝑁) |
| 27 | 26 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝑃 ∥ 𝑁) |
| 28 | | aks6d1c7lem2.8 |
. . . . 5
⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
| 29 | 28 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (𝑁 gcd 𝑅) = 1) |
| 30 | | aks6d1c7lem2.21 |
. . . 4
⊢ 𝐺 = (𝑔 ∈ (ℕ0
↑m (0...𝐴))
↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) |
| 31 | | aks6d1c7lem2.12 |
. . . . . 6
⊢ 𝐴 =
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) |
| 32 | 8 | phicld 16796 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ϕ‘𝑅) ∈
ℕ) |
| 33 | 32 | nnred 12260 |
. . . . . . . . . . 11
⊢ (𝜑 → (ϕ‘𝑅) ∈
ℝ) |
| 34 | | 1red 11241 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℝ) |
| 35 | | 0le1 11765 |
. . . . . . . . . . . . 13
⊢ 0 ≤
1 |
| 36 | 35 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ≤ 1) |
| 37 | 32 | nnge1d 12293 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ≤ (ϕ‘𝑅)) |
| 38 | 13, 34, 33, 36, 37 | letrd 11397 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ≤ (ϕ‘𝑅)) |
| 39 | 33, 38 | resqrtcld 15441 |
. . . . . . . . . 10
⊢ (𝜑 →
(√‘(ϕ‘𝑅)) ∈ ℝ) |
| 40 | | 2re 12319 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ |
| 41 | 40 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 2 ∈
ℝ) |
| 42 | | 2pos 12348 |
. . . . . . . . . . . 12
⊢ 0 <
2 |
| 43 | 42 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 < 2) |
| 44 | | 1lt2 12416 |
. . . . . . . . . . . . . 14
⊢ 1 <
2 |
| 45 | 44 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 < 2) |
| 46 | 34, 45 | ltned 11376 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ≠ 2) |
| 47 | 46 | necomd 2988 |
. . . . . . . . . . 11
⊢ (𝜑 → 2 ≠ 1) |
| 48 | 41, 43, 16, 21, 47 | relogbcld 41991 |
. . . . . . . . . 10
⊢ (𝜑 → (2 logb 𝑁) ∈
ℝ) |
| 49 | 39, 48 | remulcld 11270 |
. . . . . . . . 9
⊢ (𝜑 →
((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈
ℝ) |
| 50 | 49 | flcld 13820 |
. . . . . . . 8
⊢ (𝜑 →
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈
ℤ) |
| 51 | 33, 38 | sqrtge0d 15444 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤
(√‘(ϕ‘𝑅))) |
| 52 | 41 | recnd 11268 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 2 ∈
ℂ) |
| 53 | 13, 43 | gtned 11375 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 2 ≠ 0) |
| 54 | | logb1 26736 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) =
0) |
| 55 | 52, 53, 47, 54 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2 logb 1) =
0) |
| 56 | 55 | eqcomd 2742 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 = (2 logb
1)) |
| 57 | | 2z 12629 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℤ |
| 58 | 57 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 2 ∈
ℤ) |
| 59 | 41 | leidd 11808 |
. . . . . . . . . . . 12
⊢ (𝜑 → 2 ≤ 2) |
| 60 | | 0lt1 11764 |
. . . . . . . . . . . . 13
⊢ 0 <
1 |
| 61 | 60 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < 1) |
| 62 | 24 | nnge1d 12293 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ≤ 𝑁) |
| 63 | 58, 59, 34, 61, 16, 21, 62 | logblebd 41994 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 logb 1) ≤
(2 logb 𝑁)) |
| 64 | 56, 63 | eqbrtrd 5146 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ (2 logb
𝑁)) |
| 65 | 39, 48, 51, 64 | mulge0d 11819 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤
((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) |
| 66 | | 0zd 12605 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈
ℤ) |
| 67 | | flge 13827 |
. . . . . . . . . 10
⊢
((((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ ∧ 0 ∈
ℤ) → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))) |
| 68 | 49, 66, 67 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (0 ≤
((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))) |
| 69 | 65, 68 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) |
| 70 | 50, 69 | jca 511 |
. . . . . . 7
⊢ (𝜑 →
((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))) |
| 71 | | elnn0z 12606 |
. . . . . . 7
⊢
((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0
↔ ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))) |
| 72 | 70, 71 | sylibr 234 |
. . . . . 6
⊢ (𝜑 →
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈
ℕ0) |
| 73 | 31, 72 | eqeltrid 2839 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈
ℕ0) |
| 74 | 73 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝐴 ∈
ℕ0) |
| 75 | | aks6d1c7lem2.9 |
. . . 4
⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
| 76 | | aks6d1c7lem2.10 |
. . . 4
⊢ 𝐿 =
(ℤRHom‘(ℤ/nℤ‘𝑅)) |
| 77 | | aks6d1c7lem2.22 |
. . . . 5
⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼
((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) |
| 78 | 77 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → ∀𝑎 ∈ (1...𝐴)𝑁 ∼
((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) |
| 79 | | aks6d1c7lem2.14 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
| 80 | 79 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
| 81 | | aks6d1c7lem2.15 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) |
| 82 | 81 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) |
| 83 | | aks6d1c7lem2.16 |
. . . 4
⊢ 𝐻 = (ℎ ∈ (ℕ0
↑m (0...𝐴))
↦ (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀)) |
| 84 | | aks6d1c7lem2.17 |
. . . 4
⊢ 𝐵 =
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) |
| 85 | | aks6d1c7lem2.18 |
. . . 4
⊢ 𝐶 = (𝐸 “ ((0...𝐵) × (0...𝐵))) |
| 86 | | aks6d1c7lem2.19 |
. . . . . . 7
⊢ (𝜑 → (𝑄 ∈ ℙ ∧ 𝑄 ∥ 𝑁)) |
| 87 | 86 | simpld 494 |
. . . . . 6
⊢ (𝜑 → 𝑄 ∈ ℙ) |
| 88 | 87 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ ℙ) |
| 89 | 86 | simprd 495 |
. . . . . 6
⊢ (𝜑 → 𝑄 ∥ 𝑁) |
| 90 | 89 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝑄 ∥ 𝑁) |
| 91 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) |
| 92 | 88, 90, 91 | 3jca 1128 |
. . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (𝑄 ∈ ℙ ∧ 𝑄 ∥ 𝑁 ∧ 𝑃 ≠ 𝑄)) |
| 93 | 2, 3, 5, 7, 9, 25,
27, 29, 30, 74, 75, 76, 78, 80, 82, 83, 84, 85, 92 | aks6d1c2 42148 |
. . 3
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ≤ (𝑁↑𝐵)) |
| 94 | 24 | nnzd 12620 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 95 | | eqid 2736 |
. . . . . . . . . . . . . . . 16
⊢
(ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅) |
| 96 | 24, 6, 26, 8, 28, 75, 76, 95 | hashscontpowcl 42138 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ∈ ℕ0) |
| 97 | 96 | nn0red 12568 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ∈ ℝ) |
| 98 | 96 | nn0ge0d 12570 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ≤
(♯‘(𝐿 “
(𝐸 “
(ℕ0 × ℕ0))))) |
| 99 | 97, 98 | resqrtcld 15441 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ∈ ℝ) |
| 100 | 99 | flcld 13820 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℤ) |
| 101 | 97, 98 | sqrtge0d 15444 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ≤
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) |
| 102 | | flge 13827 |
. . . . . . . . . . . . . 14
⊢
(((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ↔ 0 ≤
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) |
| 103 | 99, 66, 102 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0 ≤
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ↔ 0 ≤
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) |
| 104 | 101, 103 | mpbid 232 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ≤
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) |
| 105 | 100, 104 | jca 511 |
. . . . . . . . . . 11
⊢ (𝜑 →
((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℤ ∧ 0 ≤
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) |
| 106 | | elnn0z 12606 |
. . . . . . . . . . 11
⊢
((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℕ0 ↔
((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℤ ∧ 0 ≤
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) |
| 107 | 105, 106 | sylibr 234 |
. . . . . . . . . 10
⊢ (𝜑 →
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℕ0) |
| 108 | 84, 107 | eqeltrid 2839 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈
ℕ0) |
| 109 | 94, 108 | zexpcld 14110 |
. . . . . . . 8
⊢ (𝜑 → (𝑁↑𝐵) ∈ ℤ) |
| 110 | 109 | zred 12702 |
. . . . . . 7
⊢ (𝜑 → (𝑁↑𝐵) ∈ ℝ) |
| 111 | 110 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (𝑁↑𝐵) ∈ ℝ) |
| 112 | 111 | rexrd 11290 |
. . . . 5
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (𝑁↑𝐵) ∈
ℝ*) |
| 113 | | aks6d1c7lem2.11 |
. . . . . . . . . 10
⊢ 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) |
| 114 | 96 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ∈ ℕ0) |
| 115 | 113, 114 | eqeltrid 2839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝐷 ∈
ℕ0) |
| 116 | 115, 74 | nn0addcld 12571 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (𝐷 + 𝐴) ∈
ℕ0) |
| 117 | 115 | nn0zd 12619 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝐷 ∈ ℤ) |
| 118 | | 1zzd 12628 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 1 ∈ ℤ) |
| 119 | 117, 118 | zsubcld 12707 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (𝐷 − 1) ∈ ℤ) |
| 120 | | bccl 14345 |
. . . . . . . 8
⊢ (((𝐷 + 𝐴) ∈ ℕ0 ∧ (𝐷 − 1) ∈ ℤ)
→ ((𝐷 + 𝐴)C(𝐷 − 1)) ∈
ℕ0) |
| 121 | 116, 119,
120 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈
ℕ0) |
| 122 | 121 | nn0red 12568 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈
ℝ) |
| 123 | 122 | rexrd 11290 |
. . . . 5
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈
ℝ*) |
| 124 | | ovexd 7445 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (ℕ0
↑m (0...𝐴))
∈ V) |
| 125 | 124 | mptexd 7221 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (ℎ ∈ (ℕ0
↑m (0...𝐴))
↦ (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀)) ∈ V) |
| 126 | 83, 125 | eqeltrid 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝐻 ∈ V) |
| 127 | 126 | imaexd 7917 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (𝐻 “ (ℕ0
↑m (0...𝐴))) ∈ V) |
| 128 | | hashxrcl 14380 |
. . . . . 6
⊢ ((𝐻 “ (ℕ0
↑m (0...𝐴))) ∈ V → (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ∈
ℝ*) |
| 129 | 127, 128 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ∈
ℝ*) |
| 130 | | eqcom 2743 |
. . . . . . . . . . . 12
⊢ (𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ↔ (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) = 𝐷) |
| 131 | 113, 130 | mpbi 230 |
. . . . . . . . . . 11
⊢
(♯‘(𝐿
“ (𝐸 “
(ℕ0 × ℕ0)))) = 𝐷 |
| 132 | 131 | fveq2i 6884 |
. . . . . . . . . 10
⊢
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) = (√‘𝐷) |
| 133 | 132 | fveq2i 6884 |
. . . . . . . . 9
⊢
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) = (⌊‘(√‘𝐷)) |
| 134 | 84, 133 | eqtri 2759 |
. . . . . . . 8
⊢ 𝐵 =
(⌊‘(√‘𝐷)) |
| 135 | 134 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝐵 = (⌊‘(√‘𝐷))) |
| 136 | 135 | oveq2d 7426 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (𝑁↑𝐵) = (𝑁↑(⌊‘(√‘𝐷)))) |
| 137 | 10 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝑁 ∈
(ℤ≥‘3)) |
| 138 | | aks6d1c7lem2.13 |
. . . . . . . 8
⊢ (𝜑 → ((2 logb 𝑁)↑2) <
((odℤ‘𝑅)‘𝑁)) |
| 139 | 138 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → ((2 logb 𝑁)↑2) <
((odℤ‘𝑅)‘𝑁)) |
| 140 | 7, 9, 137, 27, 29, 75, 76, 113, 31, 139 | aks6d1c7lem1 42198 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (𝑁↑(⌊‘(√‘𝐷))) < ((𝐷 + 𝐴)C(𝐷 − 1))) |
| 141 | 136, 140 | eqbrtrd 5146 |
. . . . 5
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (𝑁↑𝐵) < ((𝐷 + 𝐴)C(𝐷 − 1))) |
| 142 | | aks6d1c7lem2.20 |
. . . . . . 7
⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) |
| 143 | 142 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) |
| 144 | | aks6d1c7lem2.23 |
. . . . . 6
⊢ 𝑆 = {𝑠 ∈ (ℕ0
↑m (0...𝐴))
∣ Σ𝑡 ∈
(0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)} |
| 145 | | eqid 2736 |
. . . . . 6
⊢ (𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) = (𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) |
| 146 | | eqid 2736 |
. . . . . 6
⊢ {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))} = {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈
(Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))} |
| 147 | | nfcv 2899 |
. . . . . . 7
⊢
Ⅎ𝑏∪ ((𝑐
∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ ℎ) |
| 148 | | nfcv 2899 |
. . . . . . 7
⊢
Ⅎℎ∪ ((𝑐
∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ 𝑏) |
| 149 | | imaeq2 6048 |
. . . . . . . 8
⊢ (ℎ = 𝑏 → ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ ℎ) = ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ 𝑏)) |
| 150 | 149 | unieqd 4901 |
. . . . . . 7
⊢ (ℎ = 𝑏 → ∪ ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ ℎ) = ∪ ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ 𝑏)) |
| 151 | 147, 148,
150 | cbvmpt 5228 |
. . . . . 6
⊢ (ℎ ∈
(Base‘(ℤring /s
(ℤring ~QG (◡(𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “
{(0g‘(((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈
(Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}) ↾s ran
(𝑐 ∈ ℤ ↦
(𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀))))})))) ↦ ∪ ((𝑐
∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ ℎ)) = (𝑏 ∈ (Base‘(ℤring
/s (ℤring ~QG (◡(𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “
{(0g‘(((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈
(Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}) ↾s ran
(𝑐 ∈ ℤ ↦
(𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀))))})))) ↦ ∪ ((𝑐
∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈
(Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ 𝑏)) |
| 152 | 2, 3, 5, 7, 9, 25,
27, 29, 143, 30, 31, 75, 76, 78, 80, 82, 83, 113, 144, 145, 146, 151 | aks6d1c6lem5 42195 |
. . . . 5
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴))))) |
| 153 | 112, 123,
129, 141, 152 | xrltletrd 13182 |
. . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → (𝑁↑𝐵) < (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴))))) |
| 154 | | xrltnle 11307 |
. . . . 5
⊢ (((𝑁↑𝐵) ∈ ℝ* ∧
(♯‘(𝐻 “
(ℕ0 ↑m (0...𝐴)))) ∈ ℝ*) →
((𝑁↑𝐵) < (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ↔ ¬ (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ≤ (𝑁↑𝐵))) |
| 155 | 112, 129,
154 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → ((𝑁↑𝐵) < (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ↔ ¬ (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ≤ (𝑁↑𝐵))) |
| 156 | 153, 155 | mpbid 232 |
. . 3
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → ¬ (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ≤ (𝑁↑𝐵)) |
| 157 | 93, 156 | pm2.21dd 195 |
. 2
⊢ ((𝜑 ∧ 𝑃 ≠ 𝑄) → 𝑃 = 𝑄) |
| 158 | 1, 157 | pm2.61dane 3020 |
1
⊢ (𝜑 → 𝑃 = 𝑄) |