Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c7lem2 Structured version   Visualization version   GIF version

Theorem aks6d1c7lem2 42199
Description: Contradiction to Claim 2 and Claim 7. We assumed in Claim 2 that there are two different prime numbers 𝑃 and 𝑄. (Contributed by metakunt, 16-May-2025.)
Hypotheses
Ref Expression
aks6d1c7lem2.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c7lem2.2 𝑃 = (chr‘𝐾)
aks6d1c7lem2.3 (𝜑𝐾 ∈ Field)
aks6d1c7lem2.4 (𝜑𝑃 ∈ ℙ)
aks6d1c7lem2.5 (𝜑𝑅 ∈ ℕ)
aks6d1c7lem2.6 (𝜑𝑁 ∈ (ℤ‘3))
aks6d1c7lem2.7 (𝜑𝑃𝑁)
aks6d1c7lem2.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c7lem2.9 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c7lem2.10 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c7lem2.11 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c7lem2.12 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
aks6d1c7lem2.13 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
aks6d1c7lem2.14 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c7lem2.15 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c7lem2.16 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c7lem2.17 𝐵 = (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
aks6d1c7lem2.18 𝐶 = (𝐸 “ ((0...𝐵) × (0...𝐵)))
aks6d1c7lem2.19 (𝜑 → (𝑄 ∈ ℙ ∧ 𝑄𝑁))
aks6d1c7lem2.20 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
aks6d1c7lem2.21 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c7lem2.22 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c7lem2.23 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
Assertion
Ref Expression
aks6d1c7lem2 (𝜑𝑃 = 𝑄)
Distinct variable groups:   ,𝑎   𝐴,𝑎   𝐴,𝑏,   𝐴,𝑔,𝑖,𝑥   𝐴,𝑘,𝑙,𝑠   𝑡,𝐴,𝑖,𝑥   𝐵,𝑎   𝐵,𝑔,𝑖,𝑥   𝐵,𝑘,𝑙,𝑥   𝐶,𝑎   𝐶,𝑔,𝑖,𝑥   𝐶,   𝐶,𝑘,𝑙   𝐷,𝑠   𝐸,𝑎   𝑦,𝐸,𝑒,𝑓   𝑔,𝐸,𝑖,𝑥,𝑦   𝑘,𝐸,𝑙,𝑦   𝑒,𝐺,𝑓,𝑦   𝑔,𝐺,𝑖   ,𝐺   𝑡,𝐺,𝑦   𝐻,𝑎   ,𝐻   𝑔,𝐻,𝑖,𝑥,𝑦   𝐻,𝑠,𝑡   𝐾,𝑎   𝐾,𝑏,   𝑒,𝐾,𝑓,𝑦   𝑔,𝐾,𝑖,𝑥   𝐾,𝑙   𝑡,𝐾   𝑀,𝑏,   𝑀,𝑙,𝑦   𝑁,𝑎   𝑁,𝑏   𝑒,𝑁,𝑓,𝑦   𝑘,𝑁,𝑙,𝑠   𝑥,𝑁   𝑃,𝑎   𝑃,𝑏,   𝑃,𝑒,𝑓,𝑦   𝑃,𝑔,𝑖,𝑥   𝑃,𝑘,𝑙,𝑠   𝑡,𝑃   𝑄,𝑎   𝑄,𝑏,   𝑄,𝑔,𝑖,𝑥,𝑦   𝑄,𝑘,𝑙,𝑠   𝑡,𝑄   𝑅,𝑎   𝑅,   𝑅,𝑒,𝑓,𝑦   𝑅,𝑔,𝑖,𝑥   𝑅,𝑘,𝑙   𝑆,𝑎   𝑆,   𝑆,𝑔,𝑖,𝑥,𝑦   𝑆,𝑠,𝑡   𝜑,𝑎   𝜑,𝑏,   𝜑,𝑔,𝑖,𝑥,𝑦   𝜑,𝑘,𝑙,𝑠   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐴(𝑦,𝑒,𝑓)   𝐵(𝑦,𝑡,𝑒,𝑓,,𝑠,𝑏)   𝐶(𝑦,𝑡,𝑒,𝑓,𝑠,𝑏)   𝐷(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑎,𝑏,𝑙)   𝑄(𝑒,𝑓)   (𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑏,𝑙)   𝑅(𝑡,𝑠,𝑏)   𝑆(𝑒,𝑓,𝑘,𝑏,𝑙)   𝐸(𝑡,,𝑠,𝑏)   𝐺(𝑥,𝑘,𝑠,𝑎,𝑏,𝑙)   𝐻(𝑒,𝑓,𝑘,𝑏,𝑙)   𝐾(𝑘,𝑠)   𝐿(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑏,𝑙)   𝑀(𝑥,𝑡,𝑒,𝑓,𝑔,𝑖,𝑘,𝑠,𝑎)   𝑁(𝑡,𝑔,,𝑖)

Proof of Theorem aks6d1c7lem2
Dummy variables 𝑐 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝜑𝑃 = 𝑄) → 𝑃 = 𝑄)
2 aks6d1c7lem2.1 . . . 4 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
3 aks6d1c7lem2.2 . . . 4 𝑃 = (chr‘𝐾)
4 aks6d1c7lem2.3 . . . . 5 (𝜑𝐾 ∈ Field)
54adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝐾 ∈ Field)
6 aks6d1c7lem2.4 . . . . 5 (𝜑𝑃 ∈ ℙ)
76adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝑃 ∈ ℙ)
8 aks6d1c7lem2.5 . . . . 5 (𝜑𝑅 ∈ ℕ)
98adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝑅 ∈ ℕ)
10 aks6d1c7lem2.6 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘3))
11 eluzelz 12867 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
1210, 11syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
13 0red 11243 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
14 3re 12325 . . . . . . . . 9 3 ∈ ℝ
1514a1i 11 . . . . . . . 8 (𝜑 → 3 ∈ ℝ)
1612zred 12702 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
17 3pos 12350 . . . . . . . . 9 0 < 3
1817a1i 11 . . . . . . . 8 (𝜑 → 0 < 3)
19 eluzle 12870 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
2010, 19syl 17 . . . . . . . 8 (𝜑 → 3 ≤ 𝑁)
2113, 15, 16, 18, 20ltletrd 11400 . . . . . . 7 (𝜑 → 0 < 𝑁)
2212, 21jca 511 . . . . . 6 (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁))
23 elnnz 12603 . . . . . 6 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
2422, 23sylibr 234 . . . . 5 (𝜑𝑁 ∈ ℕ)
2524adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝑁 ∈ ℕ)
26 aks6d1c7lem2.7 . . . . 5 (𝜑𝑃𝑁)
2726adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝑃𝑁)
28 aks6d1c7lem2.8 . . . . 5 (𝜑 → (𝑁 gcd 𝑅) = 1)
2928adantr 480 . . . 4 ((𝜑𝑃𝑄) → (𝑁 gcd 𝑅) = 1)
30 aks6d1c7lem2.21 . . . 4 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
31 aks6d1c7lem2.12 . . . . . 6 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
328phicld 16796 . . . . . . . . . . . 12 (𝜑 → (ϕ‘𝑅) ∈ ℕ)
3332nnred 12260 . . . . . . . . . . 11 (𝜑 → (ϕ‘𝑅) ∈ ℝ)
34 1red 11241 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
35 0le1 11765 . . . . . . . . . . . . 13 0 ≤ 1
3635a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 1)
3732nnge1d 12293 . . . . . . . . . . . 12 (𝜑 → 1 ≤ (ϕ‘𝑅))
3813, 34, 33, 36, 37letrd 11397 . . . . . . . . . . 11 (𝜑 → 0 ≤ (ϕ‘𝑅))
3933, 38resqrtcld 15441 . . . . . . . . . 10 (𝜑 → (√‘(ϕ‘𝑅)) ∈ ℝ)
40 2re 12319 . . . . . . . . . . . 12 2 ∈ ℝ
4140a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
42 2pos 12348 . . . . . . . . . . . 12 0 < 2
4342a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 2)
44 1lt2 12416 . . . . . . . . . . . . . 14 1 < 2
4544a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 < 2)
4634, 45ltned 11376 . . . . . . . . . . . 12 (𝜑 → 1 ≠ 2)
4746necomd 2988 . . . . . . . . . . 11 (𝜑 → 2 ≠ 1)
4841, 43, 16, 21, 47relogbcld 41991 . . . . . . . . . 10 (𝜑 → (2 logb 𝑁) ∈ ℝ)
4939, 48remulcld 11270 . . . . . . . . 9 (𝜑 → ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ)
5049flcld 13820 . . . . . . . 8 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ)
5133, 38sqrtge0d 15444 . . . . . . . . . 10 (𝜑 → 0 ≤ (√‘(ϕ‘𝑅)))
5241recnd 11268 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℂ)
5313, 43gtned 11375 . . . . . . . . . . . . 13 (𝜑 → 2 ≠ 0)
54 logb1 26736 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
5552, 53, 47, 54syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (2 logb 1) = 0)
5655eqcomd 2742 . . . . . . . . . . 11 (𝜑 → 0 = (2 logb 1))
57 2z 12629 . . . . . . . . . . . . 13 2 ∈ ℤ
5857a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℤ)
5941leidd 11808 . . . . . . . . . . . 12 (𝜑 → 2 ≤ 2)
60 0lt1 11764 . . . . . . . . . . . . 13 0 < 1
6160a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 1)
6224nnge1d 12293 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 𝑁)
6358, 59, 34, 61, 16, 21, 62logblebd 41994 . . . . . . . . . . 11 (𝜑 → (2 logb 1) ≤ (2 logb 𝑁))
6456, 63eqbrtrd 5146 . . . . . . . . . 10 (𝜑 → 0 ≤ (2 logb 𝑁))
6539, 48, 51, 64mulge0d 11819 . . . . . . . . 9 (𝜑 → 0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
66 0zd 12605 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
67 flge 13827 . . . . . . . . . 10 ((((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
6849, 66, 67syl2anc 584 . . . . . . . . 9 (𝜑 → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
6965, 68mpbid 232 . . . . . . . 8 (𝜑 → 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))
7050, 69jca 511 . . . . . . 7 (𝜑 → ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
71 elnn0z 12606 . . . . . . 7 ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0 ↔ ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
7270, 71sylibr 234 . . . . . 6 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0)
7331, 72eqeltrid 2839 . . . . 5 (𝜑𝐴 ∈ ℕ0)
7473adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝐴 ∈ ℕ0)
75 aks6d1c7lem2.9 . . . 4 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
76 aks6d1c7lem2.10 . . . 4 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
77 aks6d1c7lem2.22 . . . . 5 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
7877adantr 480 . . . 4 ((𝜑𝑃𝑄) → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
79 aks6d1c7lem2.14 . . . . 5 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
8079adantr 480 . . . 4 ((𝜑𝑃𝑄) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
81 aks6d1c7lem2.15 . . . . 5 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
8281adantr 480 . . . 4 ((𝜑𝑃𝑄) → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
83 aks6d1c7lem2.16 . . . 4 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
84 aks6d1c7lem2.17 . . . 4 𝐵 = (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
85 aks6d1c7lem2.18 . . . 4 𝐶 = (𝐸 “ ((0...𝐵) × (0...𝐵)))
86 aks6d1c7lem2.19 . . . . . . 7 (𝜑 → (𝑄 ∈ ℙ ∧ 𝑄𝑁))
8786simpld 494 . . . . . 6 (𝜑𝑄 ∈ ℙ)
8887adantr 480 . . . . 5 ((𝜑𝑃𝑄) → 𝑄 ∈ ℙ)
8986simprd 495 . . . . . 6 (𝜑𝑄𝑁)
9089adantr 480 . . . . 5 ((𝜑𝑃𝑄) → 𝑄𝑁)
91 simpr 484 . . . . 5 ((𝜑𝑃𝑄) → 𝑃𝑄)
9288, 90, 913jca 1128 . . . 4 ((𝜑𝑃𝑄) → (𝑄 ∈ ℙ ∧ 𝑄𝑁𝑃𝑄))
932, 3, 5, 7, 9, 25, 27, 29, 30, 74, 75, 76, 78, 80, 82, 83, 84, 85, 92aks6d1c2 42148 . . 3 ((𝜑𝑃𝑄) → (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ≤ (𝑁𝐵))
9424nnzd 12620 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
95 eqid 2736 . . . . . . . . . . . . . . . 16 (ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅)
9624, 6, 26, 8, 28, 75, 76, 95hashscontpowcl 42138 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0)
9796nn0red 12568 . . . . . . . . . . . . . 14 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ)
9896nn0ge0d 12570 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
9997, 98resqrtcld 15441 . . . . . . . . . . . . 13 (𝜑 → (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℝ)
10099flcld 13820 . . . . . . . . . . . 12 (𝜑 → (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℤ)
10197, 98sqrtge0d 15444 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
102 flge 13827 . . . . . . . . . . . . . 14 (((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ↔ 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
10399, 66, 102syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (0 ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ↔ 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
104101, 103mpbid 232 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
105100, 104jca 511 . . . . . . . . . . 11 (𝜑 → ((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℤ ∧ 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
106 elnn0z 12606 . . . . . . . . . . 11 ((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℕ0 ↔ ((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℤ ∧ 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
107105, 106sylibr 234 . . . . . . . . . 10 (𝜑 → (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℕ0)
10884, 107eqeltrid 2839 . . . . . . . . 9 (𝜑𝐵 ∈ ℕ0)
10994, 108zexpcld 14110 . . . . . . . 8 (𝜑 → (𝑁𝐵) ∈ ℤ)
110109zred 12702 . . . . . . 7 (𝜑 → (𝑁𝐵) ∈ ℝ)
111110adantr 480 . . . . . 6 ((𝜑𝑃𝑄) → (𝑁𝐵) ∈ ℝ)
112111rexrd 11290 . . . . 5 ((𝜑𝑃𝑄) → (𝑁𝐵) ∈ ℝ*)
113 aks6d1c7lem2.11 . . . . . . . . . 10 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
11496adantr 480 . . . . . . . . . 10 ((𝜑𝑃𝑄) → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0)
115113, 114eqeltrid 2839 . . . . . . . . 9 ((𝜑𝑃𝑄) → 𝐷 ∈ ℕ0)
116115, 74nn0addcld 12571 . . . . . . . 8 ((𝜑𝑃𝑄) → (𝐷 + 𝐴) ∈ ℕ0)
117115nn0zd 12619 . . . . . . . . 9 ((𝜑𝑃𝑄) → 𝐷 ∈ ℤ)
118 1zzd 12628 . . . . . . . . 9 ((𝜑𝑃𝑄) → 1 ∈ ℤ)
119117, 118zsubcld 12707 . . . . . . . 8 ((𝜑𝑃𝑄) → (𝐷 − 1) ∈ ℤ)
120 bccl 14345 . . . . . . . 8 (((𝐷 + 𝐴) ∈ ℕ0 ∧ (𝐷 − 1) ∈ ℤ) → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈ ℕ0)
121116, 119, 120syl2anc 584 . . . . . . 7 ((𝜑𝑃𝑄) → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈ ℕ0)
122121nn0red 12568 . . . . . 6 ((𝜑𝑃𝑄) → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈ ℝ)
123122rexrd 11290 . . . . 5 ((𝜑𝑃𝑄) → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈ ℝ*)
124 ovexd 7445 . . . . . . . . 9 ((𝜑𝑃𝑄) → (ℕ0m (0...𝐴)) ∈ V)
125124mptexd 7221 . . . . . . . 8 ((𝜑𝑃𝑄) → ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀)) ∈ V)
12683, 125eqeltrid 2839 . . . . . . 7 ((𝜑𝑃𝑄) → 𝐻 ∈ V)
127126imaexd 7917 . . . . . 6 ((𝜑𝑃𝑄) → (𝐻 “ (ℕ0m (0...𝐴))) ∈ V)
128 hashxrcl 14380 . . . . . 6 ((𝐻 “ (ℕ0m (0...𝐴))) ∈ V → (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ∈ ℝ*)
129127, 128syl 17 . . . . 5 ((𝜑𝑃𝑄) → (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ∈ ℝ*)
130 eqcom 2743 . . . . . . . . . . . 12 (𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ↔ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) = 𝐷)
131113, 130mpbi 230 . . . . . . . . . . 11 (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) = 𝐷
132131fveq2i 6884 . . . . . . . . . 10 (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) = (√‘𝐷)
133132fveq2i 6884 . . . . . . . . 9 (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) = (⌊‘(√‘𝐷))
13484, 133eqtri 2759 . . . . . . . 8 𝐵 = (⌊‘(√‘𝐷))
135134a1i 11 . . . . . . 7 ((𝜑𝑃𝑄) → 𝐵 = (⌊‘(√‘𝐷)))
136135oveq2d 7426 . . . . . 6 ((𝜑𝑃𝑄) → (𝑁𝐵) = (𝑁↑(⌊‘(√‘𝐷))))
13710adantr 480 . . . . . . 7 ((𝜑𝑃𝑄) → 𝑁 ∈ (ℤ‘3))
138 aks6d1c7lem2.13 . . . . . . . 8 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
139138adantr 480 . . . . . . 7 ((𝜑𝑃𝑄) → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
1407, 9, 137, 27, 29, 75, 76, 113, 31, 139aks6d1c7lem1 42198 . . . . . 6 ((𝜑𝑃𝑄) → (𝑁↑(⌊‘(√‘𝐷))) < ((𝐷 + 𝐴)C(𝐷 − 1)))
141136, 140eqbrtrd 5146 . . . . 5 ((𝜑𝑃𝑄) → (𝑁𝐵) < ((𝐷 + 𝐴)C(𝐷 − 1)))
142 aks6d1c7lem2.20 . . . . . . 7 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
143142adantr 480 . . . . . 6 ((𝜑𝑃𝑄) → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
144 aks6d1c7lem2.23 . . . . . 6 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
145 eqid 2736 . . . . . 6 (𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) = (𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀))
146 eqid 2736 . . . . . 6 {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))} = {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}
147 nfcv 2899 . . . . . . 7 𝑏 ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ )
148 nfcv 2899 . . . . . . 7 ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ 𝑏)
149 imaeq2 6048 . . . . . . . 8 ( = 𝑏 → ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ ) = ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ 𝑏))
150149unieqd 4901 . . . . . . 7 ( = 𝑏 ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ ) = ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ 𝑏))
151147, 148, 150cbvmpt 5228 . . . . . 6 ( ∈ (Base‘(ℤring /s (ℤring ~QG ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ {(0g‘(((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}) ↾s ran (𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀))))})))) ↦ ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ )) = (𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ {(0g‘(((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}) ↾s ran (𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀))))})))) ↦ ((𝑐 ∈ ℤ ↦ (𝑐(.g‘((mulGrp‘𝐾) ↾s {𝑗 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑚 ∈ (Base‘(mulGrp‘𝐾))(𝑚(+g‘(mulGrp‘𝐾))𝑗) = (0g‘(mulGrp‘𝐾))}))𝑀)) “ 𝑏))
1522, 3, 5, 7, 9, 25, 27, 29, 143, 30, 31, 75, 76, 78, 80, 82, 83, 113, 144, 145, 146, 151aks6d1c6lem5 42195 . . . . 5 ((𝜑𝑃𝑄) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
153112, 123, 129, 141, 152xrltletrd 13182 . . . 4 ((𝜑𝑃𝑄) → (𝑁𝐵) < (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
154 xrltnle 11307 . . . . 5 (((𝑁𝐵) ∈ ℝ* ∧ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ∈ ℝ*) → ((𝑁𝐵) < (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ↔ ¬ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ≤ (𝑁𝐵)))
155112, 129, 154syl2anc 584 . . . 4 ((𝜑𝑃𝑄) → ((𝑁𝐵) < (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ↔ ¬ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ≤ (𝑁𝐵)))
156153, 155mpbid 232 . . 3 ((𝜑𝑃𝑄) → ¬ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ≤ (𝑁𝐵))
15793, 156pm2.21dd 195 . 2 ((𝜑𝑃𝑄) → 𝑃 = 𝑄)
1581, 157pm2.61dane 3020 1 (𝜑𝑃 = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  {csn 4606   cuni 4888   class class class wbr 5124  {copab 5186  cmpt 5206   × cxp 5657  ccnv 5658  ran crn 5660  cima 5662  cfv 6536  (class class class)co 7410  cmpo 7412  m cmap 8845  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  *cxr 11273   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  cn 12245  2c2 12300  3c3 12301  0cn0 12506  cz 12593  cuz 12857  ...cfz 13529  cfl 13812  cexp 14084  Ccbc 14325  chash 14353  csqrt 15257  Σcsu 15707  cdvds 16277   gcd cgcd 16518  cprime 16695  odcodz 16787  ϕcphi 16788  Basecbs 17233  s cress 17256  +gcplusg 17276  0gc0g 17458   Σg cgsu 17459   /s cqus 17524  .gcmg 19055   ~QG cqg 19110  mulGrpcmgp 20105   RingIso crs 20435  Fieldcfield 20695  ringczring 21412  ℤRHomczrh 21465  chrcchr 21467  ℤ/nczn 21468  algSccascl 21817  var1cv1 22116  Poly1cpl1 22117  eval1ce1 22257   logb clogb 26731   PrimRoots cprimroots 42109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-prod 15925  df-fallfac 16028  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-dvds 16278  df-gcd 16519  df-prm 16696  df-odz 16789  df-phi 16790  df-pc 16862  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-pws 17468  df-xrs 17521  df-qtop 17526  df-imas 17527  df-qus 17528  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-nsg 19112  df-eqg 19113  df-ghm 19201  df-gim 19247  df-cntz 19305  df-od 19514  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-srg 20152  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366  df-rhm 20437  df-rim 20438  df-nzr 20478  df-subrng 20511  df-subrg 20535  df-rlreg 20659  df-domn 20660  df-idom 20661  df-drng 20696  df-field 20697  df-lmod 20824  df-lss 20894  df-lsp 20934  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-rsp 21175  df-2idl 21216  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-zring 21413  df-zrh 21469  df-chr 21471  df-zn 21472  df-assa 21818  df-asp 21819  df-ascl 21820  df-psr 21874  df-mvr 21875  df-mpl 21876  df-opsr 21878  df-evls 22037  df-evl 22038  df-psr1 22120  df-vr1 22121  df-ply1 22122  df-coe1 22123  df-evl1 22259  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-mdeg 26017  df-deg1 26018  df-mon1 26093  df-uc1p 26094  df-q1p 26095  df-r1p 26096  df-log 26522  df-cxp 26523  df-logb 26732  df-primroots 42110
This theorem is referenced by:  aks6d1c7lem3  42200
  Copyright terms: Public domain W3C validator