Step | Hyp | Ref
| Expression |
1 | | eqid 2725 |
. 2
⊢
(Base‘𝑄) =
(Base‘𝑄) |
2 | | eqid 2725 |
. 2
⊢
(Base‘𝐻) =
(Base‘𝐻) |
3 | | eqid 2725 |
. 2
⊢
(+g‘𝑄) = (+g‘𝑄) |
4 | | eqid 2725 |
. 2
⊢
(+g‘𝐻) = (+g‘𝐻) |
5 | | ghmqusnsg.1 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
6 | | ghmqusnsg.q |
. . . 4
⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) |
7 | 6 | qusgrp 19149 |
. . 3
⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑄 ∈ Grp) |
8 | 5, 7 | syl 17 |
. 2
⊢ (𝜑 → 𝑄 ∈ Grp) |
9 | | ghmqusnsg.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
10 | | ghmrn 19192 |
. . 3
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → ran 𝐹 ∈ (SubGrp‘𝐻)) |
11 | | subgrcl 19094 |
. . 3
⊢ (ran
𝐹 ∈
(SubGrp‘𝐻) →
𝐻 ∈
Grp) |
12 | 9, 10, 11 | 3syl 18 |
. 2
⊢ (𝜑 → 𝐻 ∈ Grp) |
13 | 9 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ 𝑞 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
14 | 13 | imaexd 7924 |
. . . 4
⊢ ((𝜑 ∧ 𝑞 ∈ (Base‘𝑄)) → (𝐹 “ 𝑞) ∈ V) |
15 | 14 | uniexd 7748 |
. . 3
⊢ ((𝜑 ∧ 𝑞 ∈ (Base‘𝑄)) → ∪
(𝐹 “ 𝑞) ∈ V) |
16 | | ghmqusnsg.j |
. . . 4
⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪
(𝐹 “ 𝑞)) |
17 | 16 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪
(𝐹 “ 𝑞))) |
18 | | simpr 483 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐽‘𝑟) = (𝐹‘𝑥)) |
19 | | eqid 2725 |
. . . . . . . . . 10
⊢
(Base‘𝐺) =
(Base‘𝐺) |
20 | 19, 2 | ghmf 19183 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
21 | 9, 20 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
22 | 21 | frnd 6731 |
. . . . . . 7
⊢ (𝜑 → ran 𝐹 ⊆ (Base‘𝐻)) |
23 | 22 | ad3antrrr 728 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → ran 𝐹 ⊆ (Base‘𝐻)) |
24 | 21 | ffnd 6724 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 Fn (Base‘𝐺)) |
25 | 24 | ad3antrrr 728 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝐹 Fn (Base‘𝐺)) |
26 | 6 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))) |
27 | | eqidd 2726 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) |
28 | | ovexd 7454 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺 ~QG 𝑁) ∈ V) |
29 | | ghmgrp1 19181 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp) |
30 | 9, 29 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 ∈ Grp) |
31 | 26, 27, 28, 30 | qusbas 17530 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) = (Base‘𝑄)) |
32 | | nsgsubg 19121 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) |
33 | | eqid 2725 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁) |
34 | 19, 33 | eqger 19141 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er (Base‘𝐺)) |
35 | 5, 32, 34 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺 ~QG 𝑁) Er (Base‘𝐺)) |
36 | 35 | qsss 8797 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ⊆ 𝒫 (Base‘𝐺)) |
37 | 31, 36 | eqsstrrd 4016 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝑄) ⊆ 𝒫
(Base‘𝐺)) |
38 | 37 | sselda 3976 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ 𝒫 (Base‘𝐺)) |
39 | 38 | elpwid 4613 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ⊆ (Base‘𝐺)) |
40 | 39 | sselda 3976 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) → 𝑥 ∈ (Base‘𝐺)) |
41 | 40 | adantr 479 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑥 ∈ (Base‘𝐺)) |
42 | 25, 41 | fnfvelrnd 7091 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐹‘𝑥) ∈ ran 𝐹) |
43 | 23, 42 | sseldd 3977 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐹‘𝑥) ∈ (Base‘𝐻)) |
44 | 18, 43 | eqeltrd 2825 |
. . . 4
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐽‘𝑟) ∈ (Base‘𝐻)) |
45 | | ghmqusnsg.0 |
. . . . 5
⊢ 0 =
(0g‘𝐻) |
46 | 9 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
47 | | ghmqusnsg.k |
. . . . 5
⊢ 𝐾 = (◡𝐹 “ { 0 }) |
48 | | ghmqusnsg.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ⊆ 𝐾) |
49 | 48 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑁 ⊆ 𝐾) |
50 | 5 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑁 ∈ (NrmSGrp‘𝐺)) |
51 | | simpr 483 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ (Base‘𝑄)) |
52 | 45, 46, 47, 6, 16, 49, 50, 51 | ghmqusnsglem2 19244 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → ∃𝑥 ∈ 𝑟 (𝐽‘𝑟) = (𝐹‘𝑥)) |
53 | 44, 52 | r19.29a 3151 |
. . 3
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → (𝐽‘𝑟) ∈ (Base‘𝐻)) |
54 | 15, 17, 53 | fmpt2d 7133 |
. 2
⊢ (𝜑 → 𝐽:(Base‘𝑄)⟶(Base‘𝐻)) |
55 | 35 | ad6antr 734 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐺 ~QG 𝑁) Er (Base‘𝐺)) |
56 | 51 | ad5antr 732 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑟 ∈ (Base‘𝑄)) |
57 | 31 | ad6antr 734 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) = (Base‘𝑄)) |
58 | 56, 57 | eleqtrrd 2828 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁))) |
59 | | simp-4r 782 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑥 ∈ 𝑟) |
60 | | qsel 8815 |
. . . . . . . . . . 11
⊢ (((𝐺 ~QG 𝑁) Er (Base‘𝐺) ∧ 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ∧ 𝑥 ∈ 𝑟) → 𝑟 = [𝑥](𝐺 ~QG 𝑁)) |
61 | 55, 58, 59, 60 | syl3anc 1368 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑟 = [𝑥](𝐺 ~QG 𝑁)) |
62 | | simp-5r 784 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑠 ∈ (Base‘𝑄)) |
63 | 62, 57 | eleqtrrd 2828 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁))) |
64 | | simplr 767 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑦 ∈ 𝑠) |
65 | | qsel 8815 |
. . . . . . . . . . 11
⊢ (((𝐺 ~QG 𝑁) Er (Base‘𝐺) ∧ 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ∧ 𝑦 ∈ 𝑠) → 𝑠 = [𝑦](𝐺 ~QG 𝑁)) |
66 | 55, 63, 64, 65 | syl3anc 1368 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑠 = [𝑦](𝐺 ~QG 𝑁)) |
67 | 61, 66 | oveq12d 7437 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝑟(+g‘𝑄)𝑠) = ([𝑥](𝐺 ~QG 𝑁)(+g‘𝑄)[𝑦](𝐺 ~QG 𝑁))) |
68 | 5 | ad6antr 734 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑁 ∈ (NrmSGrp‘𝐺)) |
69 | 39 | ad5antr 732 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑟 ⊆ (Base‘𝐺)) |
70 | 69, 59 | sseldd 3977 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑥 ∈ (Base‘𝐺)) |
71 | 37 | sselda 3976 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑠 ∈ 𝒫 (Base‘𝐺)) |
72 | 71 | elpwid 4613 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺)) |
73 | 72 | adantlr 713 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺)) |
74 | 73 | ad4antr 730 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑠 ⊆ (Base‘𝐺)) |
75 | 74, 64 | sseldd 3977 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑦 ∈ (Base‘𝐺)) |
76 | | eqid 2725 |
. . . . . . . . . . 11
⊢
(+g‘𝐺) = (+g‘𝐺) |
77 | 6, 19, 76, 3 | qusadd 19151 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ([𝑥](𝐺 ~QG 𝑁)(+g‘𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g‘𝐺)𝑦)](𝐺 ~QG 𝑁)) |
78 | 68, 70, 75, 77 | syl3anc 1368 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → ([𝑥](𝐺 ~QG 𝑁)(+g‘𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g‘𝐺)𝑦)](𝐺 ~QG 𝑁)) |
79 | 67, 78 | eqtrd 2765 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝑟(+g‘𝑄)𝑠) = [(𝑥(+g‘𝐺)𝑦)](𝐺 ~QG 𝑁)) |
80 | 79 | fveq2d 6900 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘(𝑟(+g‘𝑄)𝑠)) = (𝐽‘[(𝑥(+g‘𝐺)𝑦)](𝐺 ~QG 𝑁))) |
81 | 9 | ad6antr 734 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
82 | 48 | ad6antr 734 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑁 ⊆ 𝐾) |
83 | 81, 29 | syl 17 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝐺 ∈ Grp) |
84 | 19, 76, 83, 70, 75 | grpcld 18912 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
85 | 45, 81, 47, 6, 16, 82, 68, 84 | ghmqusnsglem1 19243 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘[(𝑥(+g‘𝐺)𝑦)](𝐺 ~QG 𝑁)) = (𝐹‘(𝑥(+g‘𝐺)𝑦))) |
86 | 19, 76, 4 | ghmlin 19184 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝐹‘(𝑥(+g‘𝐺)𝑦)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝑦))) |
87 | 81, 70, 75, 86 | syl3anc 1368 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐹‘(𝑥(+g‘𝐺)𝑦)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝑦))) |
88 | 80, 85, 87 | 3eqtrd 2769 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘(𝑟(+g‘𝑄)𝑠)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝑦))) |
89 | | simpllr 774 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘𝑟) = (𝐹‘𝑥)) |
90 | | simpr 483 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘𝑠) = (𝐹‘𝑦)) |
91 | 89, 90 | oveq12d 7437 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → ((𝐽‘𝑟)(+g‘𝐻)(𝐽‘𝑠)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝑦))) |
92 | 88, 91 | eqtr4d 2768 |
. . . . 5
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘(𝑟(+g‘𝑄)𝑠)) = ((𝐽‘𝑟)(+g‘𝐻)(𝐽‘𝑠))) |
93 | 9 | ad4antr 730 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
94 | 48 | ad4antr 730 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑁 ⊆ 𝐾) |
95 | 5 | ad4antr 730 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑁 ∈ (NrmSGrp‘𝐺)) |
96 | | simpllr 774 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑠 ∈ (Base‘𝑄)) |
97 | 45, 93, 47, 6, 16, 94, 95, 96 | ghmqusnsglem2 19244 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → ∃𝑦 ∈ 𝑠 (𝐽‘𝑠) = (𝐹‘𝑦)) |
98 | 92, 97 | r19.29a 3151 |
. . . 4
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐽‘(𝑟(+g‘𝑄)𝑠)) = ((𝐽‘𝑟)(+g‘𝐻)(𝐽‘𝑠))) |
99 | 52 | adantr 479 |
. . . 4
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → ∃𝑥 ∈ 𝑟 (𝐽‘𝑟) = (𝐹‘𝑥)) |
100 | 98, 99 | r19.29a 3151 |
. . 3
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → (𝐽‘(𝑟(+g‘𝑄)𝑠)) = ((𝐽‘𝑟)(+g‘𝐻)(𝐽‘𝑠))) |
101 | 100 | anasss 465 |
. 2
⊢ ((𝜑 ∧ (𝑟 ∈ (Base‘𝑄) ∧ 𝑠 ∈ (Base‘𝑄))) → (𝐽‘(𝑟(+g‘𝑄)𝑠)) = ((𝐽‘𝑟)(+g‘𝐻)(𝐽‘𝑠))) |
102 | 1, 2, 3, 4, 8, 12,
54, 101 | isghmd 19188 |
1
⊢ (𝜑 → 𝐽 ∈ (𝑄 GrpHom 𝐻)) |