MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmqusnsg Structured version   Visualization version   GIF version

Theorem ghmqusnsg 19245
Description: The mapping 𝐻 induced by a surjective group homomorphism 𝐹 from the quotient group 𝑄 over a normal subgroup 𝑁 of 𝐹's kernel 𝐾 is a group isomorphism. In this case, one says that 𝐹 factors through 𝑄, which is also called the factor group. (Contributed by Thierry Arnoux, 13-May-2025.)
Hypotheses
Ref Expression
ghmqusnsg.0 0 = (0g𝐻)
ghmqusnsg.f (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
ghmqusnsg.k 𝐾 = (𝐹 “ { 0 })
ghmqusnsg.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
ghmqusnsg.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
ghmqusnsg.n (𝜑𝑁𝐾)
ghmqusnsg.1 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
Assertion
Ref Expression
ghmqusnsg (𝜑𝐽 ∈ (𝑄 GrpHom 𝐻))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝐾,𝑞   𝑁,𝑞   𝑄,𝑞   𝜑,𝑞   𝐻,𝑞   𝐽,𝑞
Allowed substitution hint:   0 (𝑞)

Proof of Theorem ghmqusnsg
Dummy variables 𝑦 𝑥 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . 2 (Base‘𝑄) = (Base‘𝑄)
2 eqid 2725 . 2 (Base‘𝐻) = (Base‘𝐻)
3 eqid 2725 . 2 (+g𝑄) = (+g𝑄)
4 eqid 2725 . 2 (+g𝐻) = (+g𝐻)
5 ghmqusnsg.1 . . 3 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
6 ghmqusnsg.q . . . 4 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
76qusgrp 19149 . . 3 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑄 ∈ Grp)
85, 7syl 17 . 2 (𝜑𝑄 ∈ Grp)
9 ghmqusnsg.f . . 3 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
10 ghmrn 19192 . . 3 (𝐹 ∈ (𝐺 GrpHom 𝐻) → ran 𝐹 ∈ (SubGrp‘𝐻))
11 subgrcl 19094 . . 3 (ran 𝐹 ∈ (SubGrp‘𝐻) → 𝐻 ∈ Grp)
129, 10, 113syl 18 . 2 (𝜑𝐻 ∈ Grp)
139adantr 479 . . . . 5 ((𝜑𝑞 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
1413imaexd 7924 . . . 4 ((𝜑𝑞 ∈ (Base‘𝑄)) → (𝐹𝑞) ∈ V)
1514uniexd 7748 . . 3 ((𝜑𝑞 ∈ (Base‘𝑄)) → (𝐹𝑞) ∈ V)
16 ghmqusnsg.j . . . 4 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
1716a1i 11 . . 3 (𝜑𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞)))
18 simpr 483 . . . . 5 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽𝑟) = (𝐹𝑥))
19 eqid 2725 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
2019, 2ghmf 19183 . . . . . . . . 9 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
219, 20syl 17 . . . . . . . 8 (𝜑𝐹:(Base‘𝐺)⟶(Base‘𝐻))
2221frnd 6731 . . . . . . 7 (𝜑 → ran 𝐹 ⊆ (Base‘𝐻))
2322ad3antrrr 728 . . . . . 6 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → ran 𝐹 ⊆ (Base‘𝐻))
2421ffnd 6724 . . . . . . . 8 (𝜑𝐹 Fn (Base‘𝐺))
2524ad3antrrr 728 . . . . . . 7 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐹 Fn (Base‘𝐺))
266a1i 11 . . . . . . . . . . . . 13 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)))
27 eqidd 2726 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
28 ovexd 7454 . . . . . . . . . . . . 13 (𝜑 → (𝐺 ~QG 𝑁) ∈ V)
29 ghmgrp1 19181 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
309, 29syl 17 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ Grp)
3126, 27, 28, 30qusbas 17530 . . . . . . . . . . . 12 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) = (Base‘𝑄))
32 nsgsubg 19121 . . . . . . . . . . . . . 14 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
33 eqid 2725 . . . . . . . . . . . . . . 15 (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁)
3419, 33eqger 19141 . . . . . . . . . . . . . 14 (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
355, 32, 343syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
3635qsss 8797 . . . . . . . . . . . 12 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ⊆ 𝒫 (Base‘𝐺))
3731, 36eqsstrrd 4016 . . . . . . . . . . 11 (𝜑 → (Base‘𝑄) ⊆ 𝒫 (Base‘𝐺))
3837sselda 3976 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ 𝒫 (Base‘𝐺))
3938elpwid 4613 . . . . . . . . 9 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ⊆ (Base‘𝐺))
4039sselda 3976 . . . . . . . 8 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) → 𝑥 ∈ (Base‘𝐺))
4140adantr 479 . . . . . . 7 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑥 ∈ (Base‘𝐺))
4225, 41fnfvelrnd 7091 . . . . . 6 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐹𝑥) ∈ ran 𝐹)
4323, 42sseldd 3977 . . . . 5 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐹𝑥) ∈ (Base‘𝐻))
4418, 43eqeltrd 2825 . . . 4 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽𝑟) ∈ (Base‘𝐻))
45 ghmqusnsg.0 . . . . 5 0 = (0g𝐻)
469adantr 479 . . . . 5 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
47 ghmqusnsg.k . . . . 5 𝐾 = (𝐹 “ { 0 })
48 ghmqusnsg.n . . . . . 6 (𝜑𝑁𝐾)
4948adantr 479 . . . . 5 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑁𝐾)
505adantr 479 . . . . 5 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑁 ∈ (NrmSGrp‘𝐺))
51 simpr 483 . . . . 5 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ (Base‘𝑄))
5245, 46, 47, 6, 16, 49, 50, 51ghmqusnsglem2 19244 . . . 4 ((𝜑𝑟 ∈ (Base‘𝑄)) → ∃𝑥𝑟 (𝐽𝑟) = (𝐹𝑥))
5344, 52r19.29a 3151 . . 3 ((𝜑𝑟 ∈ (Base‘𝑄)) → (𝐽𝑟) ∈ (Base‘𝐻))
5415, 17, 53fmpt2d 7133 . 2 (𝜑𝐽:(Base‘𝑄)⟶(Base‘𝐻))
5535ad6antr 734 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
5651ad5antr 732 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 ∈ (Base‘𝑄))
5731ad6antr 734 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) = (Base‘𝑄))
5856, 57eleqtrrd 2828 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)))
59 simp-4r 782 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑥𝑟)
60 qsel 8815 . . . . . . . . . . 11 (((𝐺 ~QG 𝑁) Er (Base‘𝐺) ∧ 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ∧ 𝑥𝑟) → 𝑟 = [𝑥](𝐺 ~QG 𝑁))
6155, 58, 59, 60syl3anc 1368 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 = [𝑥](𝐺 ~QG 𝑁))
62 simp-5r 784 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 ∈ (Base‘𝑄))
6362, 57eleqtrrd 2828 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)))
64 simplr 767 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑦𝑠)
65 qsel 8815 . . . . . . . . . . 11 (((𝐺 ~QG 𝑁) Er (Base‘𝐺) ∧ 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ∧ 𝑦𝑠) → 𝑠 = [𝑦](𝐺 ~QG 𝑁))
6655, 63, 64, 65syl3anc 1368 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 = [𝑦](𝐺 ~QG 𝑁))
6761, 66oveq12d 7437 . . . . . . . . 9 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝑟(+g𝑄)𝑠) = ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)))
685ad6antr 734 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑁 ∈ (NrmSGrp‘𝐺))
6939ad5antr 732 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 ⊆ (Base‘𝐺))
7069, 59sseldd 3977 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑥 ∈ (Base‘𝐺))
7137sselda 3976 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (Base‘𝑄)) → 𝑠 ∈ 𝒫 (Base‘𝐺))
7271elpwid 4613 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺))
7372adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺))
7473ad4antr 730 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 ⊆ (Base‘𝐺))
7574, 64sseldd 3977 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑦 ∈ (Base‘𝐺))
76 eqid 2725 . . . . . . . . . . 11 (+g𝐺) = (+g𝐺)
776, 19, 76, 3qusadd 19151 . . . . . . . . . 10 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁))
7868, 70, 75, 77syl3anc 1368 . . . . . . . . 9 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁))
7967, 78eqtrd 2765 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝑟(+g𝑄)𝑠) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁))
8079fveq2d 6900 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘(𝑟(+g𝑄)𝑠)) = (𝐽‘[(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁)))
819ad6antr 734 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
8248ad6antr 734 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑁𝐾)
8381, 29syl 17 . . . . . . . . 9 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐺 ∈ Grp)
8419, 76, 83, 70, 75grpcld 18912 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
8545, 81, 47, 6, 16, 82, 68, 84ghmqusnsglem1 19243 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘[(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁)) = (𝐹‘(𝑥(+g𝐺)𝑦)))
8619, 76, 4ghmlin 19184 . . . . . . . 8 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝐹‘(𝑥(+g𝐺)𝑦)) = ((𝐹𝑥)(+g𝐻)(𝐹𝑦)))
8781, 70, 75, 86syl3anc 1368 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐹‘(𝑥(+g𝐺)𝑦)) = ((𝐹𝑥)(+g𝐻)(𝐹𝑦)))
8880, 85, 873eqtrd 2769 . . . . . 6 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘(𝑟(+g𝑄)𝑠)) = ((𝐹𝑥)(+g𝐻)(𝐹𝑦)))
89 simpllr 774 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽𝑟) = (𝐹𝑥))
90 simpr 483 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽𝑠) = (𝐹𝑦))
9189, 90oveq12d 7437 . . . . . 6 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → ((𝐽𝑟)(+g𝐻)(𝐽𝑠)) = ((𝐹𝑥)(+g𝐻)(𝐹𝑦)))
9288, 91eqtr4d 2768 . . . . 5 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘(𝑟(+g𝑄)𝑠)) = ((𝐽𝑟)(+g𝐻)(𝐽𝑠)))
939ad4antr 730 . . . . . 6 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
9448ad4antr 730 . . . . . 6 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑁𝐾)
955ad4antr 730 . . . . . 6 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑁 ∈ (NrmSGrp‘𝐺))
96 simpllr 774 . . . . . 6 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑠 ∈ (Base‘𝑄))
9745, 93, 47, 6, 16, 94, 95, 96ghmqusnsglem2 19244 . . . . 5 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → ∃𝑦𝑠 (𝐽𝑠) = (𝐹𝑦))
9892, 97r19.29a 3151 . . . 4 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘(𝑟(+g𝑄)𝑠)) = ((𝐽𝑟)(+g𝐻)(𝐽𝑠)))
9952adantr 479 . . . 4 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → ∃𝑥𝑟 (𝐽𝑟) = (𝐹𝑥))
10098, 99r19.29a 3151 . . 3 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → (𝐽‘(𝑟(+g𝑄)𝑠)) = ((𝐽𝑟)(+g𝐻)(𝐽𝑠)))
101100anasss 465 . 2 ((𝜑 ∧ (𝑟 ∈ (Base‘𝑄) ∧ 𝑠 ∈ (Base‘𝑄))) → (𝐽‘(𝑟(+g𝑄)𝑠)) = ((𝐽𝑟)(+g𝐻)(𝐽𝑠)))
1021, 2, 3, 4, 8, 12, 54, 101isghmd 19188 1 (𝜑𝐽 ∈ (𝑄 GrpHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wrex 3059  Vcvv 3461  wss 3944  𝒫 cpw 4604  {csn 4630   cuni 4909  cmpt 5232  ccnv 5677  ran crn 5679  cima 5681   Fn wfn 6544  wf 6545  cfv 6549  (class class class)co 7419   Er wer 8722  [cec 8723   / cqs 8724  Basecbs 17183  +gcplusg 17236  0gc0g 17424   /s cqus 17490  Grpcgrp 18898  SubGrpcsubg 19083  NrmSGrpcnsg 19084   ~QG cqg 19085   GrpHom cghm 19175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-ec 8727  df-qs 8731  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-0g 17426  df-imas 17493  df-qus 17494  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-grp 18901  df-minusg 18902  df-subg 19086  df-nsg 19087  df-eqg 19088  df-ghm 19176
This theorem is referenced by:  rhmqusnsg  21192
  Copyright terms: Public domain W3C validator