Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c7lem1 Structured version   Visualization version   GIF version

Theorem aks6d1c7lem1 42168
Description: The last set of inequalities of Claim 7 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. (Contributed by metakunt, 12-May-2025.)
Hypotheses
Ref Expression
aks6d1c7lem1.1 (𝜑𝑃 ∈ ℙ)
aks6d1c7lem1.2 (𝜑𝑅 ∈ ℕ)
aks6d1c7lem1.3 (𝜑𝑁 ∈ (ℤ‘3))
aks6d1c7lem1.4 (𝜑𝑃𝑁)
aks6d1c7lem1.5 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c7lem1.6 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c7lem1.7 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c7lem1.8 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c7lem1.9 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
aks6d1c7lem1.10 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
Assertion
Ref Expression
aks6d1c7lem1 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((𝐷 + 𝐴)C(𝐷 − 1)))
Distinct variable groups:   𝑘,𝑁,𝑙   𝑃,𝑘,𝑙   𝜑,𝑘,𝑙
Allowed substitution hints:   𝐴(𝑘,𝑙)   𝐷(𝑘,𝑙)   𝑅(𝑘,𝑙)   𝐸(𝑘,𝑙)   𝐿(𝑘,𝑙)

Proof of Theorem aks6d1c7lem1
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 aks6d1c7lem1.3 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘3))
2 eluzelz 12803 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
31, 2syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
4 0red 11177 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
5 3re 12266 . . . . . . . . . . 11 3 ∈ ℝ
65a1i 11 . . . . . . . . . 10 (𝜑 → 3 ∈ ℝ)
73zred 12638 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
8 3pos 12291 . . . . . . . . . . 11 0 < 3
98a1i 11 . . . . . . . . . 10 (𝜑 → 0 < 3)
10 eluzle 12806 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
111, 10syl 17 . . . . . . . . . 10 (𝜑 → 3 ≤ 𝑁)
124, 6, 7, 9, 11ltletrd 11334 . . . . . . . . 9 (𝜑 → 0 < 𝑁)
133, 12jca 511 . . . . . . . 8 (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁))
14 elnnz 12539 . . . . . . . 8 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
1513, 14sylibr 234 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
1615nnred 12201 . . . . . 6 (𝜑𝑁 ∈ ℝ)
17 aks6d1c7lem1.8 . . . . . . . . . . . . 13 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
1817a1i 11 . . . . . . . . . . . 12 (𝜑𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
19 aks6d1c7lem1.1 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℙ)
20 aks6d1c7lem1.4 . . . . . . . . . . . . 13 (𝜑𝑃𝑁)
21 aks6d1c7lem1.2 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℕ)
22 aks6d1c7lem1.5 . . . . . . . . . . . . 13 (𝜑 → (𝑁 gcd 𝑅) = 1)
23 aks6d1c7lem1.6 . . . . . . . . . . . . 13 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
24 aks6d1c7lem1.7 . . . . . . . . . . . . 13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
25 eqid 2729 . . . . . . . . . . . . 13 (ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅)
2615, 19, 20, 21, 22, 23, 24, 25hashscontpowcl 42108 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0)
2718, 26eqeltrd 2828 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℕ0)
2827nn0red 12504 . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ)
2927nn0ge0d 12506 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐷)
3028, 29resqrtcld 15384 . . . . . . . . 9 (𝜑 → (√‘𝐷) ∈ ℝ)
3130flcld 13760 . . . . . . . 8 (𝜑 → (⌊‘(√‘𝐷)) ∈ ℤ)
3228, 29sqrtge0d 15387 . . . . . . . . 9 (𝜑 → 0 ≤ (√‘𝐷))
33 0zd 12541 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
34 flge 13767 . . . . . . . . . 10 (((√‘𝐷) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ (√‘𝐷) ↔ 0 ≤ (⌊‘(√‘𝐷))))
3530, 33, 34syl2anc 584 . . . . . . . . 9 (𝜑 → (0 ≤ (√‘𝐷) ↔ 0 ≤ (⌊‘(√‘𝐷))))
3632, 35mpbid 232 . . . . . . . 8 (𝜑 → 0 ≤ (⌊‘(√‘𝐷)))
3731, 36jca 511 . . . . . . 7 (𝜑 → ((⌊‘(√‘𝐷)) ∈ ℤ ∧ 0 ≤ (⌊‘(√‘𝐷))))
38 elnn0z 12542 . . . . . . 7 ((⌊‘(√‘𝐷)) ∈ ℕ0 ↔ ((⌊‘(√‘𝐷)) ∈ ℤ ∧ 0 ≤ (⌊‘(√‘𝐷))))
3937, 38sylibr 234 . . . . . 6 (𝜑 → (⌊‘(√‘𝐷)) ∈ ℕ0)
4016, 39reexpcld 14128 . . . . 5 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) ∈ ℝ)
41 2re 12260 . . . . . . . . . . . . . . 15 2 ∈ ℝ
4241a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ)
43 2pos 12289 . . . . . . . . . . . . . . 15 0 < 2
4443a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 2)
4515nngt0d 12235 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
46 1ne2 12389 . . . . . . . . . . . . . . . 16 1 ≠ 2
4746necomi 2979 . . . . . . . . . . . . . . 15 2 ≠ 1
4847a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 1)
4942, 44, 16, 45, 48relogbcld 41961 . . . . . . . . . . . . 13 (𝜑 → (2 logb 𝑁) ∈ ℝ)
5018, 28eqeltrrd 2829 . . . . . . . . . . . . . 14 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ)
5129, 18breqtrd 5133 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
5250, 51resqrtcld 15384 . . . . . . . . . . . . 13 (𝜑 → (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℝ)
5349, 52remulcld 11204 . . . . . . . . . . . 12 (𝜑 → ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℝ)
5453flcld 13760 . . . . . . . . . . 11 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℤ)
55 1red 11175 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
56 0le1 11701 . . . . . . . . . . . . . . 15 0 ≤ 1
5756a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 1)
5842recnd 11202 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℂ)
594, 44gtned 11309 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ≠ 0)
60 logbid1 26678 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 2) = 1)
6158, 59, 48, 60syl3anc 1373 . . . . . . . . . . . . . . . 16 (𝜑 → (2 logb 2) = 1)
6261eqcomd 2735 . . . . . . . . . . . . . . 15 (𝜑 → 1 = (2 logb 2))
63 2z 12565 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
6463a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℤ)
6542leidd 11744 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≤ 2)
66 1nn0 12458 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℕ0
6741, 66nn0addge1i 12490 . . . . . . . . . . . . . . . . . . 19 2 ≤ (2 + 1)
68 2p1e3 12323 . . . . . . . . . . . . . . . . . . 19 (2 + 1) = 3
6967, 68breqtri 5132 . . . . . . . . . . . . . . . . . 18 2 ≤ 3
7069a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ≤ 3)
7142, 6, 7, 70, 11letrd 11331 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≤ 𝑁)
7264, 65, 42, 44, 7, 12, 71logblebd 41964 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 2) ≤ (2 logb 𝑁))
7362, 72eqbrtrd 5129 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ (2 logb 𝑁))
744, 55, 49, 57, 73letrd 11331 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (2 logb 𝑁))
7550, 51sqrtge0d 15387 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
7649, 52, 74, 75mulge0d 11755 . . . . . . . . . . . 12 (𝜑 → 0 ≤ ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
77 flge 13767 . . . . . . . . . . . . 13 ((((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ↔ 0 ≤ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
7853, 33, 77syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (0 ≤ ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ↔ 0 ≤ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
7976, 78mpbid 232 . . . . . . . . . . 11 (𝜑 → 0 ≤ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
8054, 79jca 511 . . . . . . . . . 10 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℤ ∧ 0 ≤ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
81 elnn0z 12542 . . . . . . . . . 10 ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℕ0 ↔ ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℤ ∧ 0 ≤ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
8280, 81sylibr 234 . . . . . . . . 9 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℕ0)
8366a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℕ0)
8482, 83nn0addcld 12507 . . . . . . . 8 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ∈ ℕ0)
8521phicld 16742 . . . . . . . . . . . . . 14 (𝜑 → (ϕ‘𝑅) ∈ ℕ)
8685nnred 12201 . . . . . . . . . . . . 13 (𝜑 → (ϕ‘𝑅) ∈ ℝ)
8785nnnn0d 12503 . . . . . . . . . . . . . 14 (𝜑 → (ϕ‘𝑅) ∈ ℕ0)
8887nn0ge0d 12506 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (ϕ‘𝑅))
8986, 88resqrtcld 15384 . . . . . . . . . . . 12 (𝜑 → (√‘(ϕ‘𝑅)) ∈ ℝ)
9089, 49remulcld 11204 . . . . . . . . . . 11 (𝜑 → ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ)
9190flcld 13760 . . . . . . . . . 10 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ)
9286, 88sqrtge0d 15387 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (√‘(ϕ‘𝑅)))
9389, 49, 92, 74mulge0d 11755 . . . . . . . . . . 11 (𝜑 → 0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
94 flge 13767 . . . . . . . . . . . 12 ((((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
9590, 33, 94syl2anc 584 . . . . . . . . . . 11 (𝜑 → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
9693, 95mpbid 232 . . . . . . . . . 10 (𝜑 → 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))
9791, 96jca 511 . . . . . . . . 9 (𝜑 → ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
98 elnn0z 12542 . . . . . . . . 9 ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0 ↔ ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
9997, 98sylibr 234 . . . . . . . 8 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0)
10084, 99nn0addcld 12507 . . . . . . 7 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) ∈ ℕ0)
10154peano2zd 12641 . . . . . . . 8 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ∈ ℤ)
102 1zzd 12564 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
103102znegcld 12640 . . . . . . . 8 (𝜑 → -1 ∈ ℤ)
104101, 103zaddcld 12642 . . . . . . 7 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1) ∈ ℤ)
105 bccl 14287 . . . . . . 7 (((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) ∈ ℕ0 ∧ (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1) ∈ ℤ) → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1)) ∈ ℕ0)
106100, 104, 105syl2anc 584 . . . . . 6 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1)) ∈ ℕ0)
107106nn0red 12504 . . . . 5 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1)) ∈ ℝ)
10826, 99nn0addcld 12507 . . . . . . 7 (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) ∈ ℕ0)
10926nn0zd 12555 . . . . . . . 8 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℤ)
110109, 103zaddcld 12642 . . . . . . 7 (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1) ∈ ℤ)
111 bccl 14287 . . . . . . 7 ((((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) ∈ ℕ0 ∧ ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1) ∈ ℤ) → (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1)) ∈ ℕ0)
112108, 110, 111syl2anc 584 . . . . . 6 (𝜑 → (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1)) ∈ ℕ0)
113112nn0red 12504 . . . . 5 (𝜑 → (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1)) ∈ ℝ)
11452, 49remulcld 11204 . . . . . . . . . . . . 13 (𝜑 → ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)) ∈ ℝ)
115114flcld 13760 . . . . . . . . . . . 12 (𝜑 → (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))) ∈ ℤ)
11652, 49, 75, 74mulge0d 11755 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))
117 flge 13767 . . . . . . . . . . . . . 14 ((((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))))
118114, 33, 117syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (0 ≤ ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))))
119116, 118mpbid 232 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))))
120115, 119jca 511 . . . . . . . . . . 11 (𝜑 → ((⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))))
121 elnn0z 12542 . . . . . . . . . . 11 ((⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))) ∈ ℕ0 ↔ ((⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))))
122120, 121sylibr 234 . . . . . . . . . 10 (𝜑 → (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))) ∈ ℕ0)
12384, 122nn0addcld 12507 . . . . . . . . 9 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))) ∈ ℕ0)
124 bccl 14287 . . . . . . . . 9 (((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))) ∈ ℕ0 ∧ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℤ) → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℕ0)
125123, 54, 124syl2anc 584 . . . . . . . 8 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℕ0)
126125nn0red 12504 . . . . . . 7 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℝ)
127 bccl 14287 . . . . . . . . 9 (((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) ∈ ℕ0 ∧ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℤ) → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℕ0)
128100, 54, 127syl2anc 584 . . . . . . . 8 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℕ0)
129128nn0red 12504 . . . . . . 7 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℝ)
13042, 84reexpcld 14128 . . . . . . . . . . 11 (𝜑 → (2↑((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)) ∈ ℝ)
131 2nn0 12459 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
132131a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℕ0)
133132, 82nn0mulcld 12508 . . . . . . . . . . . . . 14 (𝜑 → (2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℕ0)
134133, 83nn0addcld 12507 . . . . . . . . . . . . 13 (𝜑 → ((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1) ∈ ℕ0)
135 bccl 14287 . . . . . . . . . . . . 13 ((((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1) ∈ ℕ0 ∧ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℤ) → (((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℕ0)
136134, 54, 135syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℕ0)
137136nn0red 12504 . . . . . . . . . . 11 (𝜑 → (((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℝ)
1384, 42, 44ltled 11322 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 2)
13942, 138, 53recxpcld 26632 . . . . . . . . . . . . 13 (𝜑 → (2↑𝑐((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℝ)
140 reflcl 13758 . . . . . . . . . . . . . . . 16 (((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℝ → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℝ)
14153, 140syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℝ)
142141, 55readdcld 11203 . . . . . . . . . . . . . 14 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ∈ ℝ)
14342, 138, 142recxpcld 26632 . . . . . . . . . . . . 13 (𝜑 → (2↑𝑐((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)) ∈ ℝ)
144 1le2 12390 . . . . . . . . . . . . . . . . . 18 1 ≤ 2
145144a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≤ 2)
14655, 42, 7, 145, 71letrd 11331 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ≤ 𝑁)
147 reflcl 13758 . . . . . . . . . . . . . . . . 17 ((√‘𝐷) ∈ ℝ → (⌊‘(√‘𝐷)) ∈ ℝ)
14830, 147syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘(√‘𝐷)) ∈ ℝ)
14918fveq2d 6862 . . . . . . . . . . . . . . . . . 18 (𝜑 → (√‘𝐷) = (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
150149fveq2d 6862 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘(√‘𝐷)) = (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
151 flle 13761 . . . . . . . . . . . . . . . . . 18 ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℝ → (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
15252, 151syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
153150, 152eqbrtrd 5129 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘(√‘𝐷)) ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
1547, 146, 148, 52, 153cxplead 26630 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑐(⌊‘(√‘𝐷))) ≤ (𝑁𝑐(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
1557recnd 11202 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℂ)
1564, 12gtned 11309 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ≠ 0)
157155, 156, 31cxpexpzd 26620 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑐(⌊‘(√‘𝐷))) = (𝑁↑(⌊‘(√‘𝐷))))
15859, 48nelprd 4621 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ 2 ∈ {0, 1})
15958, 158eldifd 3925 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ∈ (ℂ ∖ {0, 1}))
160156neneqd 2930 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ 𝑁 = 0)
161 elsng 4603 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (𝑁 ∈ {0} ↔ 𝑁 = 0))
16215, 161syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑁 ∈ {0} ↔ 𝑁 = 0))
163160, 162mtbird 325 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ 𝑁 ∈ {0})
164155, 163eldifd 3925 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ (ℂ ∖ {0}))
165 cxplogb 26696 . . . . . . . . . . . . . . . . . 18 ((2 ∈ (ℂ ∖ {0, 1}) ∧ 𝑁 ∈ (ℂ ∖ {0})) → (2↑𝑐(2 logb 𝑁)) = 𝑁)
166159, 164, 165syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (2↑𝑐(2 logb 𝑁)) = 𝑁)
167166eqcomd 2735 . . . . . . . . . . . . . . . 16 (𝜑𝑁 = (2↑𝑐(2 logb 𝑁)))
168167oveq1d 7402 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑐(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) = ((2↑𝑐(2 logb 𝑁))↑𝑐(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
169154, 157, 1683brtr3d 5138 . . . . . . . . . . . . . 14 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) ≤ ((2↑𝑐(2 logb 𝑁))↑𝑐(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
17042, 44elrpd 12992 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℝ+)
17152recnd 11202 . . . . . . . . . . . . . . 15 (𝜑 → (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℂ)
172 cxpmul 26597 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ+ ∧ (2 logb 𝑁) ∈ ℝ ∧ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℂ) → (2↑𝑐((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) = ((2↑𝑐(2 logb 𝑁))↑𝑐(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
173170, 49, 171, 172syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → (2↑𝑐((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) = ((2↑𝑐(2 logb 𝑁))↑𝑐(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
174169, 173breqtrrd 5135 . . . . . . . . . . . . 13 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) ≤ (2↑𝑐((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
175 fllep1 13763 . . . . . . . . . . . . . . 15 (((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℝ → ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ≤ ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1))
17653, 175syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ≤ ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1))
17755, 42, 145, 48leneltd 11328 . . . . . . . . . . . . . . 15 (𝜑 → 1 < 2)
17884nn0red 12504 . . . . . . . . . . . . . . 15 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ∈ ℝ)
17942, 177, 53, 178cxpled 26629 . . . . . . . . . . . . . 14 (𝜑 → (((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ≤ ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ↔ (2↑𝑐((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ≤ (2↑𝑐((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1))))
180176, 179mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (2↑𝑐((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ≤ (2↑𝑐((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)))
18140, 139, 143, 174, 180letrd 11331 . . . . . . . . . . . 12 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) ≤ (2↑𝑐((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)))
182 cxpexpz 26576 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ∈ ℤ) → (2↑𝑐((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)) = (2↑((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)))
18358, 59, 101, 182syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (2↑𝑐((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)) = (2↑((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)))
184181, 183breqtrd 5133 . . . . . . . . . . 11 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) ≤ (2↑((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)))
18549, 49jca 511 . . . . . . . . . . . . . . 15 (𝜑 → ((2 logb 𝑁) ∈ ℝ ∧ (2 logb 𝑁) ∈ ℝ))
186 remulcl 11153 . . . . . . . . . . . . . . 15 (((2 logb 𝑁) ∈ ℝ ∧ (2 logb 𝑁) ∈ ℝ) → ((2 logb 𝑁) · (2 logb 𝑁)) ∈ ℝ)
187185, 186syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 𝑁) · (2 logb 𝑁)) ∈ ℝ)
188 reflcl 13758 . . . . . . . . . . . . . 14 (((2 logb 𝑁) · (2 logb 𝑁)) ∈ ℝ → (⌊‘((2 logb 𝑁) · (2 logb 𝑁))) ∈ ℝ)
189187, 188syl 17 . . . . . . . . . . . . 13 (𝜑 → (⌊‘((2 logb 𝑁) · (2 logb 𝑁))) ∈ ℝ)
19082nn0red 12504 . . . . . . . . . . . . 13 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℝ)
19142, 44, 6, 9, 48relogbcld 41961 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 logb 3) ∈ ℝ)
192191resqcld 14090 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 logb 3)↑2) ∈ ℝ)
19349recnd 11202 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2 logb 𝑁) ∈ ℂ)
194193sqvald 14108 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 logb 𝑁)↑2) = ((2 logb 𝑁) · (2 logb 𝑁)))
195194, 187eqeltrd 2828 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 logb 𝑁)↑2) ∈ ℝ)
196 3lexlogpow2ineq2 42047 . . . . . . . . . . . . . . . . . . 19 (2 < ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < 3)
197196simpli 483 . . . . . . . . . . . . . . . . . 18 2 < ((2 logb 3)↑2)
198197a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 < ((2 logb 3)↑2))
19942, 192, 198ltled 11322 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≤ ((2 logb 3)↑2))
2006, 42, 59redivcld 12010 . . . . . . . . . . . . . . . . . 18 (𝜑 → (3 / 2) ∈ ℝ)
201 2rp 12956 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ+
202201a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 2 ∈ ℝ+)
2034, 6, 9ltled 11322 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ 3)
2046, 202, 203divge0d 13035 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (3 / 2))
205 3lexlogpow2ineq1 42046 . . . . . . . . . . . . . . . . . . . . 21 ((3 / 2) < (2 logb 3) ∧ (2 logb 3) < (5 / 3))
206205simpli 483 . . . . . . . . . . . . . . . . . . . 20 (3 / 2) < (2 logb 3)
207206a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (3 / 2) < (2 logb 3))
208200, 191, 207ltled 11322 . . . . . . . . . . . . . . . . . 18 (𝜑 → (3 / 2) ≤ (2 logb 3))
2094, 200, 191, 204, 208letrd 11331 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ (2 logb 3))
21064, 65, 6, 9, 7, 12, 11logblebd 41964 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 logb 3) ≤ (2 logb 𝑁))
211191, 49, 132, 209, 210leexp1ad 14141 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 logb 3)↑2) ≤ ((2 logb 𝑁)↑2))
21242, 192, 195, 199, 211letrd 11331 . . . . . . . . . . . . . . 15 (𝜑 → 2 ≤ ((2 logb 𝑁)↑2))
213212, 194breqtrd 5133 . . . . . . . . . . . . . 14 (𝜑 → 2 ≤ ((2 logb 𝑁) · (2 logb 𝑁)))
214 flge 13767 . . . . . . . . . . . . . . 15 ((((2 logb 𝑁) · (2 logb 𝑁)) ∈ ℝ ∧ 2 ∈ ℤ) → (2 ≤ ((2 logb 𝑁) · (2 logb 𝑁)) ↔ 2 ≤ (⌊‘((2 logb 𝑁) · (2 logb 𝑁)))))
215187, 64, 214syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (2 ≤ ((2 logb 𝑁) · (2 logb 𝑁)) ↔ 2 ≤ (⌊‘((2 logb 𝑁) · (2 logb 𝑁)))))
216213, 215mpbid 232 . . . . . . . . . . . . 13 (𝜑 → 2 ≤ (⌊‘((2 logb 𝑁) · (2 logb 𝑁))))
21749, 49remulcld 11204 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 𝑁) · (2 logb 𝑁)) ∈ ℝ)
218 aks6d1c7lem1.10 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
21915, 19, 20, 21, 22, 23, 24, 25, 218aks6d1c3 42111 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2 logb 𝑁)↑2) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
220171sqvald 14108 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))↑2) = ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
22126nn0cnd 12505 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℂ)
222221msqsqrtd 15409 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
223220, 222eqtr2d 2765 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) = ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))↑2))
224219, 223breqtrd 5133 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 logb 𝑁)↑2) < ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))↑2))
22549, 52, 74, 75lt2sqd 14221 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 logb 𝑁) < (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ↔ ((2 logb 𝑁)↑2) < ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))↑2)))
226224, 225mpbird 257 . . . . . . . . . . . . . . . 16 (𝜑 → (2 logb 𝑁) < (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
22749, 52, 226ltled 11322 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 𝑁) ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
22849, 52, 49, 74, 227lemul2ad 12123 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 𝑁) · (2 logb 𝑁)) ≤ ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
229 flwordi 13774 . . . . . . . . . . . . . 14 ((((2 logb 𝑁) · (2 logb 𝑁)) ∈ ℝ ∧ ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℝ ∧ ((2 logb 𝑁) · (2 logb 𝑁)) ≤ ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) → (⌊‘((2 logb 𝑁) · (2 logb 𝑁))) ≤ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
230217, 53, 228, 229syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (⌊‘((2 logb 𝑁) · (2 logb 𝑁))) ≤ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
23142, 189, 190, 216, 230letrd 11331 . . . . . . . . . . . 12 (𝜑 → 2 ≤ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
23254, 2312ap1caineq 42133 . . . . . . . . . . 11 (𝜑 → (2↑((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)) < (((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
23340, 130, 137, 184, 232lelttrd 11332 . . . . . . . . . 10 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < (((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
23482nn0cnd 12505 . . . . . . . . . . . . 13 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℂ)
2352342timesd 12425 . . . . . . . . . . . 12 (𝜑 → (2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) = ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
236235oveq1d 7402 . . . . . . . . . . 11 (𝜑 → ((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1) = (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1))
237236oveq1d 7402 . . . . . . . . . 10 (𝜑 → (((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) = ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
238233, 237breqtrd 5133 . . . . . . . . 9 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
239 1cnd 11169 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
240234, 234, 239addassd 11196 . . . . . . . . . . 11 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1) = ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)))
24184nn0cnd 12505 . . . . . . . . . . . 12 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ∈ ℂ)
242234, 241addcomd 11376 . . . . . . . . . . 11 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)) = (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
243240, 242eqtrd 2764 . . . . . . . . . 10 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1) = (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
244243oveq1d 7402 . . . . . . . . 9 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) = ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
245238, 244breqtrd 5133 . . . . . . . 8 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
246193, 171mulcomd 11195 . . . . . . . . . . 11 (𝜑 → ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) = ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))
247246fveq2d 6862 . . . . . . . . . 10 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) = (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))))
248247oveq2d 7403 . . . . . . . . 9 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) = (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))))
249248oveq1d 7402 . . . . . . . 8 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) = ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
250245, 249breqtrd 5133 . . . . . . 7 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
251122nn0red 12504 . . . . . . . . 9 (𝜑 → (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))) ∈ ℝ)
25299nn0red 12504 . . . . . . . . 9 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℝ)
25317, 27eqeltrrid 2833 . . . . . . . . . . . . 13 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0)
254253nn0red 12504 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ)
255253nn0ge0d 12506 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
256254, 255resqrtcld 15384 . . . . . . . . . . 11 (𝜑 → (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℝ)
257256, 49remulcld 11204 . . . . . . . . . 10 (𝜑 → ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)) ∈ ℝ)
25815, 19, 20, 21, 22, 23, 24aks6d1c4 42112 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (ϕ‘𝑅))
25950, 51, 86, 88sqrtled 15393 . . . . . . . . . . . 12 (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (ϕ‘𝑅) ↔ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ≤ (√‘(ϕ‘𝑅))))
260258, 259mpbid 232 . . . . . . . . . . 11 (𝜑 → (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ≤ (√‘(ϕ‘𝑅)))
261256, 89, 49, 74, 260lemul1ad 12122 . . . . . . . . . 10 (𝜑 → ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)) ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
262 flwordi 13774 . . . . . . . . . 10 ((((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)) ∈ ℝ ∧ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ ∧ ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)) ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) → (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))) ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))
263257, 90, 261, 262syl3anc 1373 . . . . . . . . 9 (𝜑 → (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))) ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))
264251, 252, 142, 263leadd2dd 11793 . . . . . . . 8 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))) ≤ (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
265123, 100, 54, 264bcled 42166 . . . . . . 7 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ≤ ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
26640, 126, 129, 250, 265ltletrd 11334 . . . . . 6 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
267234, 239pncand 11534 . . . . . . . . 9 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) − 1) = (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
268267eqcomd 2735 . . . . . . . 8 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) = (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) − 1))
269241, 239negsubd 11539 . . . . . . . . 9 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1) = (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) − 1))
270269eqcomd 2735 . . . . . . . 8 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) − 1) = (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1))
271268, 270eqtrd 2764 . . . . . . 7 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) = (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1))
272271oveq2d 7403 . . . . . 6 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) = ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1)))
273266, 272breqtrd 5133 . . . . 5 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1)))
27421nnnn0d 12503 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 ∈ ℕ0)
27525zncrng 21454 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℕ0 → (ℤ/nℤ‘𝑅) ∈ CRing)
276274, 275syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ℤ/nℤ‘𝑅) ∈ CRing)
277 crngring 20154 . . . . . . . . . . . . . . . . . . . 20 ((ℤ/nℤ‘𝑅) ∈ CRing → (ℤ/nℤ‘𝑅) ∈ Ring)
27824zrhrhm 21421 . . . . . . . . . . . . . . . . . . . 20 ((ℤ/nℤ‘𝑅) ∈ Ring → 𝐿 ∈ (ℤring RingHom (ℤ/nℤ‘𝑅)))
279 zringbas 21363 . . . . . . . . . . . . . . . . . . . . 21 ℤ = (Base‘ℤring)
280 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (Base‘(ℤ/nℤ‘𝑅)) = (Base‘(ℤ/nℤ‘𝑅))
281279, 280rhmf 20394 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ (ℤring RingHom (ℤ/nℤ‘𝑅)) → 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))
282276, 277, 278, 2814syl 19 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))
283282ffnd 6689 . . . . . . . . . . . . . . . . . 18 (𝜑𝐿 Fn ℤ)
28415, 19, 20, 23aks6d1c2p1 42106 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℕ)
285 nnssz 12551 . . . . . . . . . . . . . . . . . . . . . 22 ℕ ⊆ ℤ
286285a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ℕ ⊆ ℤ)
287284, 286fssd 6705 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℤ)
288 frn 6695 . . . . . . . . . . . . . . . . . . . 20 (𝐸:(ℕ0 × ℕ0)⟶ℤ → ran 𝐸 ⊆ ℤ)
289287, 288syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran 𝐸 ⊆ ℤ)
290284ffnd 6689 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐸 Fn (ℕ0 × ℕ0))
291 fnima 6648 . . . . . . . . . . . . . . . . . . . . 21 (𝐸 Fn (ℕ0 × ℕ0) → (𝐸 “ (ℕ0 × ℕ0)) = ran 𝐸)
292290, 291syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐸 “ (ℕ0 × ℕ0)) = ran 𝐸)
293292sseq1d 3978 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ ↔ ran 𝐸 ⊆ ℤ))
294289, 293mpbird 257 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ)
295 vex 3451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑘 ∈ V
296 vex 3451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑙 ∈ V
297295, 296op1std 7978 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = ⟨𝑘, 𝑙⟩ → (1st𝑣) = 𝑘)
298297oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = ⟨𝑘, 𝑙⟩ → (𝑃↑(1st𝑣)) = (𝑃𝑘))
299295, 296op2ndd 7979 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = ⟨𝑘, 𝑙⟩ → (2nd𝑣) = 𝑙)
300299oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = ⟨𝑘, 𝑙⟩ → ((𝑁 / 𝑃)↑(2nd𝑣)) = ((𝑁 / 𝑃)↑𝑙))
301298, 300oveq12d 7405 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = ⟨𝑘, 𝑙⟩ → ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))) = ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
302301mpompt 7503 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
303302eqcomi 2738 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))))
30423, 303eqtri 2752 . . . . . . . . . . . . . . . . . . . . 21 𝐸 = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))))
305304a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐸 = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))))
306 c0ex 11168 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ V
307306, 306op1std 7978 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = ⟨0, 0⟩ → (1st𝑣) = 0)
308307adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑣 = ⟨0, 0⟩) → (1st𝑣) = 0)
309308oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑣 = ⟨0, 0⟩) → (𝑃↑(1st𝑣)) = (𝑃↑0))
310306, 306op2ndd 7979 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = ⟨0, 0⟩ → (2nd𝑣) = 0)
311310adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑣 = ⟨0, 0⟩) → (2nd𝑣) = 0)
312311oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑣 = ⟨0, 0⟩) → ((𝑁 / 𝑃)↑(2nd𝑣)) = ((𝑁 / 𝑃)↑0))
313309, 312oveq12d 7405 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑣 = ⟨0, 0⟩) → ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))) = ((𝑃↑0) · ((𝑁 / 𝑃)↑0)))
314 prmnn 16644 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31519, 314syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑃 ∈ ℕ)
316315nncnd 12202 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑃 ∈ ℂ)
317316exp0d 14105 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑃↑0) = 1)
318315nnne0d 12236 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑃 ≠ 0)
319155, 316, 318divcld 11958 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑁 / 𝑃) ∈ ℂ)
320319exp0d 14105 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝑁 / 𝑃)↑0) = 1)
321317, 320oveq12d 7405 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑃↑0) · ((𝑁 / 𝑃)↑0)) = (1 · 1))
322239mulridd 11191 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 · 1) = 1)
323321, 322eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑃↑0) · ((𝑁 / 𝑃)↑0)) = 1)
324323adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑣 = ⟨0, 0⟩) → ((𝑃↑0) · ((𝑁 / 𝑃)↑0)) = 1)
325313, 324eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑣 = ⟨0, 0⟩) → ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))) = 1)
326 0nn0 12457 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℕ0
327326a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ∈ ℕ0)
328327, 327opelxpd 5677 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ⟨0, 0⟩ ∈ (ℕ0 × ℕ0))
329 1nn 12197 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℕ
330329a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 1 ∈ ℕ)
331305, 325, 328, 330fvmptd 6975 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐸‘⟨0, 0⟩) = 1)
332 ssidd 3970 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ℕ0 × ℕ0) ⊆ (ℕ0 × ℕ0))
333 fnfvima 7207 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 Fn (ℕ0 × ℕ0) ∧ (ℕ0 × ℕ0) ⊆ (ℕ0 × ℕ0) ∧ ⟨0, 0⟩ ∈ (ℕ0 × ℕ0)) → (𝐸‘⟨0, 0⟩) ∈ (𝐸 “ (ℕ0 × ℕ0)))
334290, 332, 328, 333syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐸‘⟨0, 0⟩) ∈ (𝐸 “ (ℕ0 × ℕ0)))
335331, 334eqeltrrd 2829 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ (𝐸 “ (ℕ0 × ℕ0)))
336 fnfvima 7207 . . . . . . . . . . . . . . . . . 18 ((𝐿 Fn ℤ ∧ (𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ ∧ 1 ∈ (𝐸 “ (ℕ0 × ℕ0))) → (𝐿‘1) ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
337283, 294, 335, 336syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐿‘1) ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
33824a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅)))
339 fvexd 6873 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℤRHom‘(ℤ/nℤ‘𝑅)) ∈ V)
340338, 339eqeltrd 2828 . . . . . . . . . . . . . . . . . 18 (𝜑𝐿 ∈ V)
341340imaexd 7892 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ V)
342337, 341hashelne0d 14333 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) = 0)
343342neqned 2932 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≠ 0)
34426, 343jca 511 . . . . . . . . . . . . . 14 (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0 ∧ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≠ 0))
345 elnnne0 12456 . . . . . . . . . . . . . 14 ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ ↔ ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0 ∧ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≠ 0))
346344, 345sylibr 234 . . . . . . . . . . . . 13 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ)
347346nnrpd 12993 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ+)
348347rpsqrtcld 15378 . . . . . . . . . . 11 (𝜑 → (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℝ+)
34949, 52, 348, 226ltmul1dd 13050 . . . . . . . . . 10 (𝜑 → ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) < ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
35050, 51, 50, 51sqrtmuld 15391 . . . . . . . . . . 11 (𝜑 → (√‘((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) · (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) = ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
351350eqcomd 2735 . . . . . . . . . 10 (𝜑 → ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) = (√‘((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) · (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
352349, 351breqtrd 5133 . . . . . . . . 9 (𝜑 → ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) < (√‘((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) · (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
353350, 222eqtrd 2764 . . . . . . . . 9 (𝜑 → (√‘((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) · (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
354352, 353breqtrd 5133 . . . . . . . 8 (𝜑 → ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
355 fllt 13768 . . . . . . . . 9 ((((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℝ ∧ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℤ) → (((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ↔ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
35653, 109, 355syl2anc 584 . . . . . . . 8 (𝜑 → (((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ↔ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
357354, 356mpbid 232 . . . . . . 7 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
35854, 109zltp1led 41967 . . . . . . 7 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ↔ ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ≤ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
359357, 358mpbid 232 . . . . . 6 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ≤ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
36055renegcld 11605 . . . . . . 7 (𝜑 → -1 ∈ ℝ)
361 df-neg 11408 . . . . . . . . 9 -1 = (0 − 1)
362361a1i 11 . . . . . . . 8 (𝜑 → -1 = (0 − 1))
3634lem1d 12116 . . . . . . . 8 (𝜑 → (0 − 1) ≤ 0)
364362, 363eqbrtrd 5129 . . . . . . 7 (𝜑 → -1 ≤ 0)
365360, 4, 252, 364, 96letrd 11331 . . . . . 6 (𝜑 → -1 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))
36684, 26, 99, 103, 359, 365bcle2d 42167 . . . . 5 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1)) ≤ (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1)))
36740, 107, 113, 273, 366ltletrd 11334 . . . 4 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1)))
368221, 239negsubd 11539 . . . . 5 (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1) = ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) − 1))
369368oveq2d 7403 . . . 4 (𝜑 → (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1)) = (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) − 1)))
370367, 369breqtrd 5133 . . 3 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) − 1)))
371 aks6d1c7lem1.9 . . . . . . 7 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
372371eqcomi 2738 . . . . . 6 (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) = 𝐴
373372a1i 11 . . . . 5 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) = 𝐴)
374373oveq2d 7403 . . . 4 (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) = ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + 𝐴))
375374oveq1d 7402 . . 3 (𝜑 → (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) − 1)) = (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + 𝐴)C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) − 1)))
376370, 375breqtrd 5133 . 2 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + 𝐴)C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) − 1)))
37718eqcomd 2735 . . . 4 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) = 𝐷)
378377oveq1d 7402 . . 3 (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + 𝐴) = (𝐷 + 𝐴))
379377oveq1d 7402 . . 3 (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) − 1) = (𝐷 − 1))
380378, 379oveq12d 7405 . 2 (𝜑 → (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + 𝐴)C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) − 1)) = ((𝐷 + 𝐴)C(𝐷 − 1)))
381376, 380breqtrd 5133 1 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((𝐷 + 𝐴)C(𝐷 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  cdif 3911  wss 3914  {csn 4589  {cpr 4591  cop 4595   class class class wbr 5107  cmpt 5188   × cxp 5636  ran crn 5639  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  1st c1st 7966  2nd c2nd 7967  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  5c5 12244  0cn0 12442  cz 12529  cuz 12793  +crp 12951  cfl 13752  cexp 14026  Ccbc 14267  chash 14295  csqrt 15199  cdvds 16222   gcd cgcd 16464  cprime 16641  odcodz 16733  ϕcphi 16734  Basecbs 17179  Ringcrg 20142  CRingccrg 20143   RingHom crh 20378  ringczring 21356  ℤRHomczrh 21409  ℤ/nczn 21412  𝑐ccxp 26464   logb clogb 26674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-prod 15870  df-fallfac 15973  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-dvds 16223  df-gcd 16465  df-prm 16642  df-odz 16735  df-phi 16736  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-qus 17472  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-nsg 19056  df-eqg 19057  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-2idl 21160  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-zn 21416  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466  df-logb 26675
This theorem is referenced by:  aks6d1c7lem2  42169
  Copyright terms: Public domain W3C validator