Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c7lem1 Structured version   Visualization version   GIF version

Theorem aks6d1c7lem1 42153
Description: The last set of inequalities of Claim 7 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. (Contributed by metakunt, 12-May-2025.)
Hypotheses
Ref Expression
aks6d1c7lem1.1 (𝜑𝑃 ∈ ℙ)
aks6d1c7lem1.2 (𝜑𝑅 ∈ ℕ)
aks6d1c7lem1.3 (𝜑𝑁 ∈ (ℤ‘3))
aks6d1c7lem1.4 (𝜑𝑃𝑁)
aks6d1c7lem1.5 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c7lem1.6 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c7lem1.7 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c7lem1.8 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c7lem1.9 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
aks6d1c7lem1.10 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
Assertion
Ref Expression
aks6d1c7lem1 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((𝐷 + 𝐴)C(𝐷 − 1)))
Distinct variable groups:   𝑘,𝑁,𝑙   𝑃,𝑘,𝑙   𝜑,𝑘,𝑙
Allowed substitution hints:   𝐴(𝑘,𝑙)   𝐷(𝑘,𝑙)   𝑅(𝑘,𝑙)   𝐸(𝑘,𝑙)   𝐿(𝑘,𝑙)

Proof of Theorem aks6d1c7lem1
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 aks6d1c7lem1.3 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘3))
2 eluzelz 12745 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
31, 2syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
4 0red 11118 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
5 3re 12208 . . . . . . . . . . 11 3 ∈ ℝ
65a1i 11 . . . . . . . . . 10 (𝜑 → 3 ∈ ℝ)
73zred 12580 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
8 3pos 12233 . . . . . . . . . . 11 0 < 3
98a1i 11 . . . . . . . . . 10 (𝜑 → 0 < 3)
10 eluzle 12748 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
111, 10syl 17 . . . . . . . . . 10 (𝜑 → 3 ≤ 𝑁)
124, 6, 7, 9, 11ltletrd 11276 . . . . . . . . 9 (𝜑 → 0 < 𝑁)
133, 12jca 511 . . . . . . . 8 (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁))
14 elnnz 12481 . . . . . . . 8 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
1513, 14sylibr 234 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
1615nnred 12143 . . . . . 6 (𝜑𝑁 ∈ ℝ)
17 aks6d1c7lem1.8 . . . . . . . . . . . . 13 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
1817a1i 11 . . . . . . . . . . . 12 (𝜑𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
19 aks6d1c7lem1.1 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℙ)
20 aks6d1c7lem1.4 . . . . . . . . . . . . 13 (𝜑𝑃𝑁)
21 aks6d1c7lem1.2 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℕ)
22 aks6d1c7lem1.5 . . . . . . . . . . . . 13 (𝜑 → (𝑁 gcd 𝑅) = 1)
23 aks6d1c7lem1.6 . . . . . . . . . . . . 13 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
24 aks6d1c7lem1.7 . . . . . . . . . . . . 13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
25 eqid 2729 . . . . . . . . . . . . 13 (ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅)
2615, 19, 20, 21, 22, 23, 24, 25hashscontpowcl 42093 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0)
2718, 26eqeltrd 2828 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℕ0)
2827nn0red 12446 . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ)
2927nn0ge0d 12448 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐷)
3028, 29resqrtcld 15325 . . . . . . . . 9 (𝜑 → (√‘𝐷) ∈ ℝ)
3130flcld 13702 . . . . . . . 8 (𝜑 → (⌊‘(√‘𝐷)) ∈ ℤ)
3228, 29sqrtge0d 15328 . . . . . . . . 9 (𝜑 → 0 ≤ (√‘𝐷))
33 0zd 12483 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
34 flge 13709 . . . . . . . . . 10 (((√‘𝐷) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ (√‘𝐷) ↔ 0 ≤ (⌊‘(√‘𝐷))))
3530, 33, 34syl2anc 584 . . . . . . . . 9 (𝜑 → (0 ≤ (√‘𝐷) ↔ 0 ≤ (⌊‘(√‘𝐷))))
3632, 35mpbid 232 . . . . . . . 8 (𝜑 → 0 ≤ (⌊‘(√‘𝐷)))
3731, 36jca 511 . . . . . . 7 (𝜑 → ((⌊‘(√‘𝐷)) ∈ ℤ ∧ 0 ≤ (⌊‘(√‘𝐷))))
38 elnn0z 12484 . . . . . . 7 ((⌊‘(√‘𝐷)) ∈ ℕ0 ↔ ((⌊‘(√‘𝐷)) ∈ ℤ ∧ 0 ≤ (⌊‘(√‘𝐷))))
3937, 38sylibr 234 . . . . . 6 (𝜑 → (⌊‘(√‘𝐷)) ∈ ℕ0)
4016, 39reexpcld 14070 . . . . 5 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) ∈ ℝ)
41 2re 12202 . . . . . . . . . . . . . . 15 2 ∈ ℝ
4241a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ)
43 2pos 12231 . . . . . . . . . . . . . . 15 0 < 2
4443a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 2)
4515nngt0d 12177 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
46 1ne2 12331 . . . . . . . . . . . . . . . 16 1 ≠ 2
4746necomi 2979 . . . . . . . . . . . . . . 15 2 ≠ 1
4847a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 1)
4942, 44, 16, 45, 48relogbcld 41946 . . . . . . . . . . . . 13 (𝜑 → (2 logb 𝑁) ∈ ℝ)
5018, 28eqeltrrd 2829 . . . . . . . . . . . . . 14 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ)
5129, 18breqtrd 5118 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
5250, 51resqrtcld 15325 . . . . . . . . . . . . 13 (𝜑 → (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℝ)
5349, 52remulcld 11145 . . . . . . . . . . . 12 (𝜑 → ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℝ)
5453flcld 13702 . . . . . . . . . . 11 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℤ)
55 1red 11116 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
56 0le1 11643 . . . . . . . . . . . . . . 15 0 ≤ 1
5756a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 1)
5842recnd 11143 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℂ)
594, 44gtned 11251 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ≠ 0)
60 logbid1 26676 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 2) = 1)
6158, 59, 48, 60syl3anc 1373 . . . . . . . . . . . . . . . 16 (𝜑 → (2 logb 2) = 1)
6261eqcomd 2735 . . . . . . . . . . . . . . 15 (𝜑 → 1 = (2 logb 2))
63 2z 12507 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
6463a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℤ)
6542leidd 11686 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≤ 2)
66 1nn0 12400 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℕ0
6741, 66nn0addge1i 12432 . . . . . . . . . . . . . . . . . . 19 2 ≤ (2 + 1)
68 2p1e3 12265 . . . . . . . . . . . . . . . . . . 19 (2 + 1) = 3
6967, 68breqtri 5117 . . . . . . . . . . . . . . . . . 18 2 ≤ 3
7069a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ≤ 3)
7142, 6, 7, 70, 11letrd 11273 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≤ 𝑁)
7264, 65, 42, 44, 7, 12, 71logblebd 41949 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 2) ≤ (2 logb 𝑁))
7362, 72eqbrtrd 5114 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ (2 logb 𝑁))
744, 55, 49, 57, 73letrd 11273 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (2 logb 𝑁))
7550, 51sqrtge0d 15328 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
7649, 52, 74, 75mulge0d 11697 . . . . . . . . . . . 12 (𝜑 → 0 ≤ ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
77 flge 13709 . . . . . . . . . . . . 13 ((((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ↔ 0 ≤ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
7853, 33, 77syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (0 ≤ ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ↔ 0 ≤ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
7976, 78mpbid 232 . . . . . . . . . . 11 (𝜑 → 0 ≤ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
8054, 79jca 511 . . . . . . . . . 10 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℤ ∧ 0 ≤ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
81 elnn0z 12484 . . . . . . . . . 10 ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℕ0 ↔ ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℤ ∧ 0 ≤ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
8280, 81sylibr 234 . . . . . . . . 9 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℕ0)
8366a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℕ0)
8482, 83nn0addcld 12449 . . . . . . . 8 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ∈ ℕ0)
8521phicld 16683 . . . . . . . . . . . . . 14 (𝜑 → (ϕ‘𝑅) ∈ ℕ)
8685nnred 12143 . . . . . . . . . . . . 13 (𝜑 → (ϕ‘𝑅) ∈ ℝ)
8785nnnn0d 12445 . . . . . . . . . . . . . 14 (𝜑 → (ϕ‘𝑅) ∈ ℕ0)
8887nn0ge0d 12448 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (ϕ‘𝑅))
8986, 88resqrtcld 15325 . . . . . . . . . . . 12 (𝜑 → (√‘(ϕ‘𝑅)) ∈ ℝ)
9089, 49remulcld 11145 . . . . . . . . . . 11 (𝜑 → ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ)
9190flcld 13702 . . . . . . . . . 10 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ)
9286, 88sqrtge0d 15328 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (√‘(ϕ‘𝑅)))
9389, 49, 92, 74mulge0d 11697 . . . . . . . . . . 11 (𝜑 → 0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
94 flge 13709 . . . . . . . . . . . 12 ((((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
9590, 33, 94syl2anc 584 . . . . . . . . . . 11 (𝜑 → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
9693, 95mpbid 232 . . . . . . . . . 10 (𝜑 → 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))
9791, 96jca 511 . . . . . . . . 9 (𝜑 → ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
98 elnn0z 12484 . . . . . . . . 9 ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0 ↔ ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
9997, 98sylibr 234 . . . . . . . 8 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0)
10084, 99nn0addcld 12449 . . . . . . 7 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) ∈ ℕ0)
10154peano2zd 12583 . . . . . . . 8 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ∈ ℤ)
102 1zzd 12506 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
103102znegcld 12582 . . . . . . . 8 (𝜑 → -1 ∈ ℤ)
104101, 103zaddcld 12584 . . . . . . 7 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1) ∈ ℤ)
105 bccl 14229 . . . . . . 7 (((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) ∈ ℕ0 ∧ (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1) ∈ ℤ) → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1)) ∈ ℕ0)
106100, 104, 105syl2anc 584 . . . . . 6 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1)) ∈ ℕ0)
107106nn0red 12446 . . . . 5 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1)) ∈ ℝ)
10826, 99nn0addcld 12449 . . . . . . 7 (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) ∈ ℕ0)
10926nn0zd 12497 . . . . . . . 8 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℤ)
110109, 103zaddcld 12584 . . . . . . 7 (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1) ∈ ℤ)
111 bccl 14229 . . . . . . 7 ((((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) ∈ ℕ0 ∧ ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1) ∈ ℤ) → (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1)) ∈ ℕ0)
112108, 110, 111syl2anc 584 . . . . . 6 (𝜑 → (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1)) ∈ ℕ0)
113112nn0red 12446 . . . . 5 (𝜑 → (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1)) ∈ ℝ)
11452, 49remulcld 11145 . . . . . . . . . . . . 13 (𝜑 → ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)) ∈ ℝ)
115114flcld 13702 . . . . . . . . . . . 12 (𝜑 → (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))) ∈ ℤ)
11652, 49, 75, 74mulge0d 11697 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))
117 flge 13709 . . . . . . . . . . . . . 14 ((((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))))
118114, 33, 117syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (0 ≤ ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))))
119116, 118mpbid 232 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))))
120115, 119jca 511 . . . . . . . . . . 11 (𝜑 → ((⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))))
121 elnn0z 12484 . . . . . . . . . . 11 ((⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))) ∈ ℕ0 ↔ ((⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))))
122120, 121sylibr 234 . . . . . . . . . 10 (𝜑 → (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))) ∈ ℕ0)
12384, 122nn0addcld 12449 . . . . . . . . 9 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))) ∈ ℕ0)
124 bccl 14229 . . . . . . . . 9 (((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))) ∈ ℕ0 ∧ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℤ) → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℕ0)
125123, 54, 124syl2anc 584 . . . . . . . 8 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℕ0)
126125nn0red 12446 . . . . . . 7 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℝ)
127 bccl 14229 . . . . . . . . 9 (((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) ∈ ℕ0 ∧ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℤ) → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℕ0)
128100, 54, 127syl2anc 584 . . . . . . . 8 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℕ0)
129128nn0red 12446 . . . . . . 7 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℝ)
13042, 84reexpcld 14070 . . . . . . . . . . 11 (𝜑 → (2↑((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)) ∈ ℝ)
131 2nn0 12401 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
132131a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℕ0)
133132, 82nn0mulcld 12450 . . . . . . . . . . . . . 14 (𝜑 → (2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℕ0)
134133, 83nn0addcld 12449 . . . . . . . . . . . . 13 (𝜑 → ((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1) ∈ ℕ0)
135 bccl 14229 . . . . . . . . . . . . 13 ((((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1) ∈ ℕ0 ∧ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℤ) → (((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℕ0)
136134, 54, 135syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℕ0)
137136nn0red 12446 . . . . . . . . . . 11 (𝜑 → (((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℝ)
1384, 42, 44ltled 11264 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 2)
13942, 138, 53recxpcld 26630 . . . . . . . . . . . . 13 (𝜑 → (2↑𝑐((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℝ)
140 reflcl 13700 . . . . . . . . . . . . . . . 16 (((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℝ → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℝ)
14153, 140syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℝ)
142141, 55readdcld 11144 . . . . . . . . . . . . . 14 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ∈ ℝ)
14342, 138, 142recxpcld 26630 . . . . . . . . . . . . 13 (𝜑 → (2↑𝑐((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)) ∈ ℝ)
144 1le2 12332 . . . . . . . . . . . . . . . . . 18 1 ≤ 2
145144a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≤ 2)
14655, 42, 7, 145, 71letrd 11273 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ≤ 𝑁)
147 reflcl 13700 . . . . . . . . . . . . . . . . 17 ((√‘𝐷) ∈ ℝ → (⌊‘(√‘𝐷)) ∈ ℝ)
14830, 147syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘(√‘𝐷)) ∈ ℝ)
14918fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (𝜑 → (√‘𝐷) = (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
150149fveq2d 6826 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘(√‘𝐷)) = (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
151 flle 13703 . . . . . . . . . . . . . . . . . 18 ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℝ → (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
15252, 151syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
153150, 152eqbrtrd 5114 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘(√‘𝐷)) ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
1547, 146, 148, 52, 153cxplead 26628 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑐(⌊‘(√‘𝐷))) ≤ (𝑁𝑐(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
1557recnd 11143 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℂ)
1564, 12gtned 11251 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ≠ 0)
157155, 156, 31cxpexpzd 26618 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑐(⌊‘(√‘𝐷))) = (𝑁↑(⌊‘(√‘𝐷))))
15859, 48nelprd 4609 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ 2 ∈ {0, 1})
15958, 158eldifd 3914 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ∈ (ℂ ∖ {0, 1}))
160156neneqd 2930 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ 𝑁 = 0)
161 elsng 4591 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (𝑁 ∈ {0} ↔ 𝑁 = 0))
16215, 161syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑁 ∈ {0} ↔ 𝑁 = 0))
163160, 162mtbird 325 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ 𝑁 ∈ {0})
164155, 163eldifd 3914 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ (ℂ ∖ {0}))
165 cxplogb 26694 . . . . . . . . . . . . . . . . . 18 ((2 ∈ (ℂ ∖ {0, 1}) ∧ 𝑁 ∈ (ℂ ∖ {0})) → (2↑𝑐(2 logb 𝑁)) = 𝑁)
166159, 164, 165syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (2↑𝑐(2 logb 𝑁)) = 𝑁)
167166eqcomd 2735 . . . . . . . . . . . . . . . 16 (𝜑𝑁 = (2↑𝑐(2 logb 𝑁)))
168167oveq1d 7364 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑐(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) = ((2↑𝑐(2 logb 𝑁))↑𝑐(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
169154, 157, 1683brtr3d 5123 . . . . . . . . . . . . . 14 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) ≤ ((2↑𝑐(2 logb 𝑁))↑𝑐(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
17042, 44elrpd 12934 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℝ+)
17152recnd 11143 . . . . . . . . . . . . . . 15 (𝜑 → (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℂ)
172 cxpmul 26595 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ+ ∧ (2 logb 𝑁) ∈ ℝ ∧ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℂ) → (2↑𝑐((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) = ((2↑𝑐(2 logb 𝑁))↑𝑐(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
173170, 49, 171, 172syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → (2↑𝑐((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) = ((2↑𝑐(2 logb 𝑁))↑𝑐(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
174169, 173breqtrrd 5120 . . . . . . . . . . . . 13 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) ≤ (2↑𝑐((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
175 fllep1 13705 . . . . . . . . . . . . . . 15 (((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℝ → ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ≤ ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1))
17653, 175syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ≤ ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1))
17755, 42, 145, 48leneltd 11270 . . . . . . . . . . . . . . 15 (𝜑 → 1 < 2)
17884nn0red 12446 . . . . . . . . . . . . . . 15 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ∈ ℝ)
17942, 177, 53, 178cxpled 26627 . . . . . . . . . . . . . 14 (𝜑 → (((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ≤ ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ↔ (2↑𝑐((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ≤ (2↑𝑐((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1))))
180176, 179mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (2↑𝑐((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ≤ (2↑𝑐((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)))
18140, 139, 143, 174, 180letrd 11273 . . . . . . . . . . . 12 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) ≤ (2↑𝑐((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)))
182 cxpexpz 26574 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ∈ ℤ) → (2↑𝑐((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)) = (2↑((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)))
18358, 59, 101, 182syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (2↑𝑐((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)) = (2↑((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)))
184181, 183breqtrd 5118 . . . . . . . . . . 11 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) ≤ (2↑((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)))
18549, 49jca 511 . . . . . . . . . . . . . . 15 (𝜑 → ((2 logb 𝑁) ∈ ℝ ∧ (2 logb 𝑁) ∈ ℝ))
186 remulcl 11094 . . . . . . . . . . . . . . 15 (((2 logb 𝑁) ∈ ℝ ∧ (2 logb 𝑁) ∈ ℝ) → ((2 logb 𝑁) · (2 logb 𝑁)) ∈ ℝ)
187185, 186syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 𝑁) · (2 logb 𝑁)) ∈ ℝ)
188 reflcl 13700 . . . . . . . . . . . . . 14 (((2 logb 𝑁) · (2 logb 𝑁)) ∈ ℝ → (⌊‘((2 logb 𝑁) · (2 logb 𝑁))) ∈ ℝ)
189187, 188syl 17 . . . . . . . . . . . . 13 (𝜑 → (⌊‘((2 logb 𝑁) · (2 logb 𝑁))) ∈ ℝ)
19082nn0red 12446 . . . . . . . . . . . . 13 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℝ)
19142, 44, 6, 9, 48relogbcld 41946 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 logb 3) ∈ ℝ)
192191resqcld 14032 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 logb 3)↑2) ∈ ℝ)
19349recnd 11143 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2 logb 𝑁) ∈ ℂ)
194193sqvald 14050 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 logb 𝑁)↑2) = ((2 logb 𝑁) · (2 logb 𝑁)))
195194, 187eqeltrd 2828 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 logb 𝑁)↑2) ∈ ℝ)
196 3lexlogpow2ineq2 42032 . . . . . . . . . . . . . . . . . . 19 (2 < ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < 3)
197196simpli 483 . . . . . . . . . . . . . . . . . 18 2 < ((2 logb 3)↑2)
198197a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 < ((2 logb 3)↑2))
19942, 192, 198ltled 11264 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≤ ((2 logb 3)↑2))
2006, 42, 59redivcld 11952 . . . . . . . . . . . . . . . . . 18 (𝜑 → (3 / 2) ∈ ℝ)
201 2rp 12898 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ+
202201a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 2 ∈ ℝ+)
2034, 6, 9ltled 11264 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ 3)
2046, 202, 203divge0d 12977 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (3 / 2))
205 3lexlogpow2ineq1 42031 . . . . . . . . . . . . . . . . . . . . 21 ((3 / 2) < (2 logb 3) ∧ (2 logb 3) < (5 / 3))
206205simpli 483 . . . . . . . . . . . . . . . . . . . 20 (3 / 2) < (2 logb 3)
207206a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (3 / 2) < (2 logb 3))
208200, 191, 207ltled 11264 . . . . . . . . . . . . . . . . . 18 (𝜑 → (3 / 2) ≤ (2 logb 3))
2094, 200, 191, 204, 208letrd 11273 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ (2 logb 3))
21064, 65, 6, 9, 7, 12, 11logblebd 41949 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 logb 3) ≤ (2 logb 𝑁))
211191, 49, 132, 209, 210leexp1ad 14083 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 logb 3)↑2) ≤ ((2 logb 𝑁)↑2))
21242, 192, 195, 199, 211letrd 11273 . . . . . . . . . . . . . . 15 (𝜑 → 2 ≤ ((2 logb 𝑁)↑2))
213212, 194breqtrd 5118 . . . . . . . . . . . . . 14 (𝜑 → 2 ≤ ((2 logb 𝑁) · (2 logb 𝑁)))
214 flge 13709 . . . . . . . . . . . . . . 15 ((((2 logb 𝑁) · (2 logb 𝑁)) ∈ ℝ ∧ 2 ∈ ℤ) → (2 ≤ ((2 logb 𝑁) · (2 logb 𝑁)) ↔ 2 ≤ (⌊‘((2 logb 𝑁) · (2 logb 𝑁)))))
215187, 64, 214syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (2 ≤ ((2 logb 𝑁) · (2 logb 𝑁)) ↔ 2 ≤ (⌊‘((2 logb 𝑁) · (2 logb 𝑁)))))
216213, 215mpbid 232 . . . . . . . . . . . . 13 (𝜑 → 2 ≤ (⌊‘((2 logb 𝑁) · (2 logb 𝑁))))
21749, 49remulcld 11145 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 𝑁) · (2 logb 𝑁)) ∈ ℝ)
218 aks6d1c7lem1.10 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
21915, 19, 20, 21, 22, 23, 24, 25, 218aks6d1c3 42096 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2 logb 𝑁)↑2) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
220171sqvald 14050 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))↑2) = ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
22126nn0cnd 12447 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℂ)
222221msqsqrtd 15350 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
223220, 222eqtr2d 2765 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) = ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))↑2))
224219, 223breqtrd 5118 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 logb 𝑁)↑2) < ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))↑2))
22549, 52, 74, 75lt2sqd 14163 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 logb 𝑁) < (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ↔ ((2 logb 𝑁)↑2) < ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))↑2)))
226224, 225mpbird 257 . . . . . . . . . . . . . . . 16 (𝜑 → (2 logb 𝑁) < (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
22749, 52, 226ltled 11264 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 𝑁) ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
22849, 52, 49, 74, 227lemul2ad 12065 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 𝑁) · (2 logb 𝑁)) ≤ ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
229 flwordi 13716 . . . . . . . . . . . . . 14 ((((2 logb 𝑁) · (2 logb 𝑁)) ∈ ℝ ∧ ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℝ ∧ ((2 logb 𝑁) · (2 logb 𝑁)) ≤ ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) → (⌊‘((2 logb 𝑁) · (2 logb 𝑁))) ≤ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
230217, 53, 228, 229syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (⌊‘((2 logb 𝑁) · (2 logb 𝑁))) ≤ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
23142, 189, 190, 216, 230letrd 11273 . . . . . . . . . . . 12 (𝜑 → 2 ≤ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
23254, 2312ap1caineq 42118 . . . . . . . . . . 11 (𝜑 → (2↑((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)) < (((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
23340, 130, 137, 184, 232lelttrd 11274 . . . . . . . . . 10 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < (((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
23482nn0cnd 12447 . . . . . . . . . . . . 13 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℂ)
2352342timesd 12367 . . . . . . . . . . . 12 (𝜑 → (2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) = ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
236235oveq1d 7364 . . . . . . . . . . 11 (𝜑 → ((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1) = (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1))
237236oveq1d 7364 . . . . . . . . . 10 (𝜑 → (((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) = ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
238233, 237breqtrd 5118 . . . . . . . . 9 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
239 1cnd 11110 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
240234, 234, 239addassd 11137 . . . . . . . . . . 11 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1) = ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)))
24184nn0cnd 12447 . . . . . . . . . . . 12 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ∈ ℂ)
242234, 241addcomd 11318 . . . . . . . . . . 11 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)) = (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
243240, 242eqtrd 2764 . . . . . . . . . 10 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1) = (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
244243oveq1d 7364 . . . . . . . . 9 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) = ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
245238, 244breqtrd 5118 . . . . . . . 8 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
246193, 171mulcomd 11136 . . . . . . . . . . 11 (𝜑 → ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) = ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))
247246fveq2d 6826 . . . . . . . . . 10 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) = (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))))
248247oveq2d 7365 . . . . . . . . 9 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) = (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))))
249248oveq1d 7364 . . . . . . . 8 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) = ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
250245, 249breqtrd 5118 . . . . . . 7 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
251122nn0red 12446 . . . . . . . . 9 (𝜑 → (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))) ∈ ℝ)
25299nn0red 12446 . . . . . . . . 9 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℝ)
25317, 27eqeltrrid 2833 . . . . . . . . . . . . 13 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0)
254253nn0red 12446 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ)
255253nn0ge0d 12448 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
256254, 255resqrtcld 15325 . . . . . . . . . . 11 (𝜑 → (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℝ)
257256, 49remulcld 11145 . . . . . . . . . 10 (𝜑 → ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)) ∈ ℝ)
25815, 19, 20, 21, 22, 23, 24aks6d1c4 42097 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (ϕ‘𝑅))
25950, 51, 86, 88sqrtled 15334 . . . . . . . . . . . 12 (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (ϕ‘𝑅) ↔ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ≤ (√‘(ϕ‘𝑅))))
260258, 259mpbid 232 . . . . . . . . . . 11 (𝜑 → (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ≤ (√‘(ϕ‘𝑅)))
261256, 89, 49, 74, 260lemul1ad 12064 . . . . . . . . . 10 (𝜑 → ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)) ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
262 flwordi 13716 . . . . . . . . . 10 ((((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)) ∈ ℝ ∧ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ ∧ ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)) ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) → (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))) ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))
263257, 90, 261, 262syl3anc 1373 . . . . . . . . 9 (𝜑 → (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))) ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))
264251, 252, 142, 263leadd2dd 11735 . . . . . . . 8 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))) ≤ (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
265123, 100, 54, 264bcled 42151 . . . . . . 7 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ≤ ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
26640, 126, 129, 250, 265ltletrd 11276 . . . . . 6 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
267234, 239pncand 11476 . . . . . . . . 9 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) − 1) = (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
268267eqcomd 2735 . . . . . . . 8 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) = (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) − 1))
269241, 239negsubd 11481 . . . . . . . . 9 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1) = (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) − 1))
270269eqcomd 2735 . . . . . . . 8 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) − 1) = (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1))
271268, 270eqtrd 2764 . . . . . . 7 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) = (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1))
272271oveq2d 7365 . . . . . 6 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) = ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1)))
273266, 272breqtrd 5118 . . . . 5 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1)))
27421nnnn0d 12445 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 ∈ ℕ0)
27525zncrng 21451 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℕ0 → (ℤ/nℤ‘𝑅) ∈ CRing)
276274, 275syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ℤ/nℤ‘𝑅) ∈ CRing)
277 crngring 20130 . . . . . . . . . . . . . . . . . . . 20 ((ℤ/nℤ‘𝑅) ∈ CRing → (ℤ/nℤ‘𝑅) ∈ Ring)
27824zrhrhm 21418 . . . . . . . . . . . . . . . . . . . 20 ((ℤ/nℤ‘𝑅) ∈ Ring → 𝐿 ∈ (ℤring RingHom (ℤ/nℤ‘𝑅)))
279 zringbas 21360 . . . . . . . . . . . . . . . . . . . . 21 ℤ = (Base‘ℤring)
280 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (Base‘(ℤ/nℤ‘𝑅)) = (Base‘(ℤ/nℤ‘𝑅))
281279, 280rhmf 20370 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ (ℤring RingHom (ℤ/nℤ‘𝑅)) → 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))
282276, 277, 278, 2814syl 19 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))
283282ffnd 6653 . . . . . . . . . . . . . . . . . 18 (𝜑𝐿 Fn ℤ)
28415, 19, 20, 23aks6d1c2p1 42091 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℕ)
285 nnssz 12493 . . . . . . . . . . . . . . . . . . . . . 22 ℕ ⊆ ℤ
286285a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ℕ ⊆ ℤ)
287284, 286fssd 6669 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℤ)
288 frn 6659 . . . . . . . . . . . . . . . . . . . 20 (𝐸:(ℕ0 × ℕ0)⟶ℤ → ran 𝐸 ⊆ ℤ)
289287, 288syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran 𝐸 ⊆ ℤ)
290284ffnd 6653 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐸 Fn (ℕ0 × ℕ0))
291 fnima 6612 . . . . . . . . . . . . . . . . . . . . 21 (𝐸 Fn (ℕ0 × ℕ0) → (𝐸 “ (ℕ0 × ℕ0)) = ran 𝐸)
292290, 291syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐸 “ (ℕ0 × ℕ0)) = ran 𝐸)
293292sseq1d 3967 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ ↔ ran 𝐸 ⊆ ℤ))
294289, 293mpbird 257 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ)
295 vex 3440 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑘 ∈ V
296 vex 3440 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑙 ∈ V
297295, 296op1std 7934 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = ⟨𝑘, 𝑙⟩ → (1st𝑣) = 𝑘)
298297oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = ⟨𝑘, 𝑙⟩ → (𝑃↑(1st𝑣)) = (𝑃𝑘))
299295, 296op2ndd 7935 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = ⟨𝑘, 𝑙⟩ → (2nd𝑣) = 𝑙)
300299oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = ⟨𝑘, 𝑙⟩ → ((𝑁 / 𝑃)↑(2nd𝑣)) = ((𝑁 / 𝑃)↑𝑙))
301298, 300oveq12d 7367 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = ⟨𝑘, 𝑙⟩ → ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))) = ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
302301mpompt 7463 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
303302eqcomi 2738 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))))
30423, 303eqtri 2752 . . . . . . . . . . . . . . . . . . . . 21 𝐸 = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))))
305304a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐸 = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))))
306 c0ex 11109 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ V
307306, 306op1std 7934 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = ⟨0, 0⟩ → (1st𝑣) = 0)
308307adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑣 = ⟨0, 0⟩) → (1st𝑣) = 0)
309308oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑣 = ⟨0, 0⟩) → (𝑃↑(1st𝑣)) = (𝑃↑0))
310306, 306op2ndd 7935 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = ⟨0, 0⟩ → (2nd𝑣) = 0)
311310adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑣 = ⟨0, 0⟩) → (2nd𝑣) = 0)
312311oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑣 = ⟨0, 0⟩) → ((𝑁 / 𝑃)↑(2nd𝑣)) = ((𝑁 / 𝑃)↑0))
313309, 312oveq12d 7367 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑣 = ⟨0, 0⟩) → ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))) = ((𝑃↑0) · ((𝑁 / 𝑃)↑0)))
314 prmnn 16585 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31519, 314syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑃 ∈ ℕ)
316315nncnd 12144 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑃 ∈ ℂ)
317316exp0d 14047 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑃↑0) = 1)
318315nnne0d 12178 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑃 ≠ 0)
319155, 316, 318divcld 11900 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑁 / 𝑃) ∈ ℂ)
320319exp0d 14047 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝑁 / 𝑃)↑0) = 1)
321317, 320oveq12d 7367 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑃↑0) · ((𝑁 / 𝑃)↑0)) = (1 · 1))
322239mulridd 11132 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 · 1) = 1)
323321, 322eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑃↑0) · ((𝑁 / 𝑃)↑0)) = 1)
324323adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑣 = ⟨0, 0⟩) → ((𝑃↑0) · ((𝑁 / 𝑃)↑0)) = 1)
325313, 324eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑣 = ⟨0, 0⟩) → ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))) = 1)
326 0nn0 12399 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℕ0
327326a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ∈ ℕ0)
328327, 327opelxpd 5658 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ⟨0, 0⟩ ∈ (ℕ0 × ℕ0))
329 1nn 12139 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℕ
330329a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 1 ∈ ℕ)
331305, 325, 328, 330fvmptd 6937 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐸‘⟨0, 0⟩) = 1)
332 ssidd 3959 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ℕ0 × ℕ0) ⊆ (ℕ0 × ℕ0))
333 fnfvima 7169 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 Fn (ℕ0 × ℕ0) ∧ (ℕ0 × ℕ0) ⊆ (ℕ0 × ℕ0) ∧ ⟨0, 0⟩ ∈ (ℕ0 × ℕ0)) → (𝐸‘⟨0, 0⟩) ∈ (𝐸 “ (ℕ0 × ℕ0)))
334290, 332, 328, 333syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐸‘⟨0, 0⟩) ∈ (𝐸 “ (ℕ0 × ℕ0)))
335331, 334eqeltrrd 2829 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ (𝐸 “ (ℕ0 × ℕ0)))
336 fnfvima 7169 . . . . . . . . . . . . . . . . . 18 ((𝐿 Fn ℤ ∧ (𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ ∧ 1 ∈ (𝐸 “ (ℕ0 × ℕ0))) → (𝐿‘1) ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
337283, 294, 335, 336syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐿‘1) ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
33824a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅)))
339 fvexd 6837 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℤRHom‘(ℤ/nℤ‘𝑅)) ∈ V)
340338, 339eqeltrd 2828 . . . . . . . . . . . . . . . . . 18 (𝜑𝐿 ∈ V)
341340imaexd 7849 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ V)
342337, 341hashelne0d 14275 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) = 0)
343342neqned 2932 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≠ 0)
34426, 343jca 511 . . . . . . . . . . . . . 14 (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0 ∧ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≠ 0))
345 elnnne0 12398 . . . . . . . . . . . . . 14 ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ ↔ ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0 ∧ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≠ 0))
346344, 345sylibr 234 . . . . . . . . . . . . 13 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ)
347346nnrpd 12935 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ+)
348347rpsqrtcld 15319 . . . . . . . . . . 11 (𝜑 → (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℝ+)
34949, 52, 348, 226ltmul1dd 12992 . . . . . . . . . 10 (𝜑 → ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) < ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
35050, 51, 50, 51sqrtmuld 15332 . . . . . . . . . . 11 (𝜑 → (√‘((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) · (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) = ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
351350eqcomd 2735 . . . . . . . . . 10 (𝜑 → ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) = (√‘((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) · (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
352349, 351breqtrd 5118 . . . . . . . . 9 (𝜑 → ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) < (√‘((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) · (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
353350, 222eqtrd 2764 . . . . . . . . 9 (𝜑 → (√‘((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) · (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
354352, 353breqtrd 5118 . . . . . . . 8 (𝜑 → ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
355 fllt 13710 . . . . . . . . 9 ((((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℝ ∧ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℤ) → (((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ↔ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
35653, 109, 355syl2anc 584 . . . . . . . 8 (𝜑 → (((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ↔ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
357354, 356mpbid 232 . . . . . . 7 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
35854, 109zltp1led 41952 . . . . . . 7 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ↔ ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ≤ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
359357, 358mpbid 232 . . . . . 6 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ≤ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
36055renegcld 11547 . . . . . . 7 (𝜑 → -1 ∈ ℝ)
361 df-neg 11350 . . . . . . . . 9 -1 = (0 − 1)
362361a1i 11 . . . . . . . 8 (𝜑 → -1 = (0 − 1))
3634lem1d 12058 . . . . . . . 8 (𝜑 → (0 − 1) ≤ 0)
364362, 363eqbrtrd 5114 . . . . . . 7 (𝜑 → -1 ≤ 0)
365360, 4, 252, 364, 96letrd 11273 . . . . . 6 (𝜑 → -1 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))
36684, 26, 99, 103, 359, 365bcle2d 42152 . . . . 5 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1)) ≤ (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1)))
36740, 107, 113, 273, 366ltletrd 11276 . . . 4 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1)))
368221, 239negsubd 11481 . . . . 5 (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1) = ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) − 1))
369368oveq2d 7365 . . . 4 (𝜑 → (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1)) = (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) − 1)))
370367, 369breqtrd 5118 . . 3 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) − 1)))
371 aks6d1c7lem1.9 . . . . . . 7 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
372371eqcomi 2738 . . . . . 6 (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) = 𝐴
373372a1i 11 . . . . 5 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) = 𝐴)
374373oveq2d 7365 . . . 4 (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) = ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + 𝐴))
375374oveq1d 7364 . . 3 (𝜑 → (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) − 1)) = (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + 𝐴)C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) − 1)))
376370, 375breqtrd 5118 . 2 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + 𝐴)C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) − 1)))
37718eqcomd 2735 . . . 4 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) = 𝐷)
378377oveq1d 7364 . . 3 (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + 𝐴) = (𝐷 + 𝐴))
379377oveq1d 7364 . . 3 (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) − 1) = (𝐷 − 1))
380378, 379oveq12d 7367 . 2 (𝜑 → (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + 𝐴)C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) − 1)) = ((𝐷 + 𝐴)C(𝐷 − 1)))
381376, 380breqtrd 5118 1 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((𝐷 + 𝐴)C(𝐷 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436  cdif 3900  wss 3903  {csn 4577  {cpr 4579  cop 4583   class class class wbr 5092  cmpt 5173   × cxp 5617  ran crn 5620  cima 5622   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  cmin 11347  -cneg 11348   / cdiv 11777  cn 12128  2c2 12183  3c3 12184  5c5 12186  0cn0 12384  cz 12471  cuz 12735  +crp 12893  cfl 13694  cexp 13968  Ccbc 14209  chash 14237  csqrt 15140  cdvds 16163   gcd cgcd 16405  cprime 16582  odcodz 16674  ϕcphi 16675  Basecbs 17120  Ringcrg 20118  CRingccrg 20119   RingHom crh 20354  ringczring 21353  ℤRHomczrh 21406  ℤ/nczn 21409  𝑐ccxp 26462   logb clogb 26672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-ec 8627  df-qs 8631  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-prod 15811  df-fallfac 15914  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-dvds 16164  df-gcd 16406  df-prm 16583  df-odz 16676  df-phi 16677  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-qus 17413  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-nsg 19003  df-eqg 19004  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-lmod 20765  df-lss 20835  df-lsp 20875  df-sra 21077  df-rgmod 21078  df-lidl 21115  df-rsp 21116  df-2idl 21157  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-zring 21354  df-zrh 21410  df-zn 21413  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463  df-cxp 26464  df-logb 26673
This theorem is referenced by:  aks6d1c7lem2  42154
  Copyright terms: Public domain W3C validator