Step | Hyp | Ref
| Expression |
1 | | aks6d1c7lem1.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘3)) |
2 | | eluzelz 12865 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℤ) |
3 | 1, 2 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℤ) |
4 | | 0red 11249 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈
ℝ) |
5 | | 3re 12325 |
. . . . . . . . . . 11
⊢ 3 ∈
ℝ |
6 | 5 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 3 ∈
ℝ) |
7 | 3 | zred 12699 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℝ) |
8 | | 3pos 12350 |
. . . . . . . . . . 11
⊢ 0 <
3 |
9 | 8 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 0 < 3) |
10 | | eluzle 12868 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘3) → 3 ≤ 𝑁) |
11 | 1, 10 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 3 ≤ 𝑁) |
12 | 4, 6, 7, 9, 11 | ltletrd 11406 |
. . . . . . . . 9
⊢ (𝜑 → 0 < 𝑁) |
13 | 3, 12 | jca 510 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁)) |
14 | | elnnz 12601 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 <
𝑁)) |
15 | 13, 14 | sylibr 233 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) |
16 | 15 | nnred 12260 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℝ) |
17 | | aks6d1c7lem1.8 |
. . . . . . . . . . . . 13
⊢ 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) |
18 | 17 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) |
19 | | aks6d1c7lem1.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∈ ℙ) |
20 | | aks6d1c7lem1.4 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∥ 𝑁) |
21 | | aks6d1c7lem1.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈ ℕ) |
22 | | aks6d1c7lem1.5 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
23 | | aks6d1c7lem1.6 |
. . . . . . . . . . . . 13
⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
24 | | aks6d1c7lem1.7 |
. . . . . . . . . . . . 13
⊢ 𝐿 =
(ℤRHom‘(ℤ/nℤ‘𝑅)) |
25 | | eqid 2725 |
. . . . . . . . . . . . 13
⊢
(ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅) |
26 | 15, 19, 20, 21, 22, 23, 24, 25 | hashscontpowcl 41723 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ∈ ℕ0) |
27 | 18, 26 | eqeltrd 2825 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈
ℕ0) |
28 | 27 | nn0red 12566 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ ℝ) |
29 | 27 | nn0ge0d 12568 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ 𝐷) |
30 | 28, 29 | resqrtcld 15400 |
. . . . . . . . 9
⊢ (𝜑 → (√‘𝐷) ∈
ℝ) |
31 | 30 | flcld 13799 |
. . . . . . . 8
⊢ (𝜑 →
(⌊‘(√‘𝐷)) ∈ ℤ) |
32 | 28, 29 | sqrtge0d 15403 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤
(√‘𝐷)) |
33 | | 0zd 12603 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈
ℤ) |
34 | | flge 13806 |
. . . . . . . . . 10
⊢
(((√‘𝐷)
∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ (√‘𝐷) ↔ 0 ≤
(⌊‘(√‘𝐷)))) |
35 | 30, 33, 34 | syl2anc 582 |
. . . . . . . . 9
⊢ (𝜑 → (0 ≤
(√‘𝐷) ↔ 0
≤ (⌊‘(√‘𝐷)))) |
36 | 32, 35 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤
(⌊‘(√‘𝐷))) |
37 | 31, 36 | jca 510 |
. . . . . . 7
⊢ (𝜑 →
((⌊‘(√‘𝐷)) ∈ ℤ ∧ 0 ≤
(⌊‘(√‘𝐷)))) |
38 | | elnn0z 12604 |
. . . . . . 7
⊢
((⌊‘(√‘𝐷)) ∈ ℕ0 ↔
((⌊‘(√‘𝐷)) ∈ ℤ ∧ 0 ≤
(⌊‘(√‘𝐷)))) |
39 | 37, 38 | sylibr 233 |
. . . . . 6
⊢ (𝜑 →
(⌊‘(√‘𝐷)) ∈
ℕ0) |
40 | 16, 39 | reexpcld 14163 |
. . . . 5
⊢ (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) ∈
ℝ) |
41 | | 2re 12319 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℝ |
42 | 41 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 2 ∈
ℝ) |
43 | | 2pos 12348 |
. . . . . . . . . . . . . . 15
⊢ 0 <
2 |
44 | 43 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 2) |
45 | 15 | nngt0d 12294 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 𝑁) |
46 | | 1ne2 12453 |
. . . . . . . . . . . . . . . 16
⊢ 1 ≠
2 |
47 | 46 | necomi 2984 |
. . . . . . . . . . . . . . 15
⊢ 2 ≠
1 |
48 | 47 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 2 ≠ 1) |
49 | 42, 44, 16, 45, 48 | relogbcld 41575 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (2 logb 𝑁) ∈
ℝ) |
50 | 18, 28 | eqeltrrd 2826 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ∈ ℝ) |
51 | 29, 18 | breqtrd 5175 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ≤
(♯‘(𝐿 “
(𝐸 “
(ℕ0 × ℕ0))))) |
52 | 50, 51 | resqrtcld 15400 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ∈ ℝ) |
53 | 49, 52 | remulcld 11276 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℝ) |
54 | 53 | flcld 13799 |
. . . . . . . . . . 11
⊢ (𝜑 → (⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) ∈ ℤ) |
55 | | 1red 11247 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈
ℝ) |
56 | | 0le1 11769 |
. . . . . . . . . . . . . . 15
⊢ 0 ≤
1 |
57 | 56 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ≤ 1) |
58 | 42 | recnd 11274 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 2 ∈
ℂ) |
59 | 4, 44 | gtned 11381 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 2 ≠ 0) |
60 | | logbid1 26745 |
. . . . . . . . . . . . . . . . 17
⊢ ((2
∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 2) =
1) |
61 | 58, 59, 48, 60 | syl3anc 1368 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (2 logb 2) =
1) |
62 | 61 | eqcomd 2731 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 = (2 logb
2)) |
63 | | 2z 12627 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℤ |
64 | 63 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 2 ∈
ℤ) |
65 | 42 | leidd 11812 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 2 ≤ 2) |
66 | | 1nn0 12521 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 ∈
ℕ0 |
67 | 41, 66 | nn0addge1i 12553 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ≤ (2
+ 1) |
68 | | 2p1e3 12387 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2 + 1) =
3 |
69 | 67, 68 | breqtri 5174 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ≤
3 |
70 | 69 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 2 ≤ 3) |
71 | 42, 6, 7, 70, 11 | letrd 11403 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 2 ≤ 𝑁) |
72 | 64, 65, 42, 44, 7, 12, 71 | logblebd 41578 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (2 logb 2) ≤
(2 logb 𝑁)) |
73 | 62, 72 | eqbrtrd 5171 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ≤ (2 logb
𝑁)) |
74 | 4, 55, 49, 57, 73 | letrd 11403 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ≤ (2 logb
𝑁)) |
75 | 50, 51 | sqrtge0d 15403 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ≤
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) |
76 | 49, 52, 74, 75 | mulge0d 11823 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ≤ ((2 logb
𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) |
77 | | flge 13806 |
. . . . . . . . . . . . 13
⊢ ((((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤
((2 logb 𝑁)
· (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ↔ 0 ≤ (⌊‘((2 logb
𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))))) |
78 | 53, 33, 77 | syl2anc 582 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0 ≤ ((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ↔ 0 ≤ (⌊‘((2 logb
𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))))) |
79 | 76, 78 | mpbid 231 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ≤ (⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) |
80 | 54, 79 | jca 510 |
. . . . . . . . . 10
⊢ (𝜑 → ((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) ∈ ℤ ∧ 0 ≤ (⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))))) |
81 | | elnn0z 12604 |
. . . . . . . . . 10
⊢
((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) ∈ ℕ0 ↔
((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) ∈ ℤ ∧ 0 ≤ (⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))))) |
82 | 80, 81 | sylibr 233 |
. . . . . . . . 9
⊢ (𝜑 → (⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) ∈ ℕ0) |
83 | 66 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℕ0) |
84 | 82, 83 | nn0addcld 12569 |
. . . . . . . 8
⊢ (𝜑 → ((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) ∈ ℕ0) |
85 | 21 | phicld 16744 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (ϕ‘𝑅) ∈
ℕ) |
86 | 85 | nnred 12260 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ϕ‘𝑅) ∈
ℝ) |
87 | 85 | nnnn0d 12565 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (ϕ‘𝑅) ∈
ℕ0) |
88 | 87 | nn0ge0d 12568 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ≤ (ϕ‘𝑅)) |
89 | 86, 88 | resqrtcld 15400 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(√‘(ϕ‘𝑅)) ∈ ℝ) |
90 | 89, 49 | remulcld 11276 |
. . . . . . . . . . 11
⊢ (𝜑 →
((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈
ℝ) |
91 | 90 | flcld 13799 |
. . . . . . . . . 10
⊢ (𝜑 →
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈
ℤ) |
92 | 86, 88 | sqrtge0d 15403 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ≤
(√‘(ϕ‘𝑅))) |
93 | 89, 49, 92, 74 | mulge0d 11823 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ≤
((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) |
94 | | flge 13806 |
. . . . . . . . . . . 12
⊢
((((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ ∧ 0 ∈
ℤ) → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))) |
95 | 90, 33, 94 | syl2anc 582 |
. . . . . . . . . . 11
⊢ (𝜑 → (0 ≤
((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))) |
96 | 93, 95 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) |
97 | 91, 96 | jca 510 |
. . . . . . . . 9
⊢ (𝜑 →
((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))) |
98 | | elnn0z 12604 |
. . . . . . . . 9
⊢
((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0
↔ ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))) |
99 | 97, 98 | sylibr 233 |
. . . . . . . 8
⊢ (𝜑 →
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈
ℕ0) |
100 | 84, 99 | nn0addcld 12569 |
. . . . . . 7
⊢ (𝜑 → (((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) ∈
ℕ0) |
101 | 54 | peano2zd 12702 |
. . . . . . . 8
⊢ (𝜑 → ((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) ∈ ℤ) |
102 | | 1zzd 12626 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℤ) |
103 | 102 | znegcld 12701 |
. . . . . . . 8
⊢ (𝜑 → -1 ∈
ℤ) |
104 | 101, 103 | zaddcld 12703 |
. . . . . . 7
⊢ (𝜑 → (((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) + -1) ∈ ℤ) |
105 | | bccl 14317 |
. . . . . . 7
⊢
(((((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) ∈ ℕ0
∧ (((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) + -1) ∈ ℤ) →
((((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) + -1)) ∈
ℕ0) |
106 | 100, 104,
105 | syl2anc 582 |
. . . . . 6
⊢ (𝜑 → ((((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) + -1)) ∈
ℕ0) |
107 | 106 | nn0red 12566 |
. . . . 5
⊢ (𝜑 → ((((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) + -1)) ∈ ℝ) |
108 | 26, 99 | nn0addcld 12569 |
. . . . . . 7
⊢ (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb
𝑁)))) ∈
ℕ0) |
109 | 26 | nn0zd 12617 |
. . . . . . . 8
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ∈ ℤ) |
110 | 109, 103 | zaddcld 12703 |
. . . . . . 7
⊢ (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) + -1) ∈ ℤ) |
111 | | bccl 14317 |
. . . . . . 7
⊢
((((♯‘(𝐿
“ (𝐸 “
(ℕ0 × ℕ0)))) +
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) ∈ ℕ0
∧ ((♯‘(𝐿
“ (𝐸 “
(ℕ0 × ℕ0)))) + -1) ∈ ℤ)
→ (((♯‘(𝐿
“ (𝐸 “
(ℕ0 × ℕ0)))) +
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) + -1)) ∈ ℕ0) |
112 | 108, 110,
111 | syl2anc 582 |
. . . . . 6
⊢ (𝜑 → (((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb
𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) + -1)) ∈ ℕ0) |
113 | 112 | nn0red 12566 |
. . . . 5
⊢ (𝜑 → (((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb
𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) + -1)) ∈ ℝ) |
114 | 52, 49 | remulcld 11276 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁)) ∈ ℝ) |
115 | 114 | flcld 13799 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁))) ∈ ℤ) |
116 | 52, 49, 75, 74 | mulge0d 11823 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ≤
((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁))) |
117 | | flge 13806 |
. . . . . . . . . . . . . 14
⊢
((((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁)) ∈ ℝ ∧ 0 ∈ ℤ)
→ (0 ≤ ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁)) ↔ 0 ≤
(⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁))))) |
118 | 114, 33, 117 | syl2anc 582 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0 ≤
((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁)) ↔ 0 ≤
(⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁))))) |
119 | 116, 118 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ≤
(⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁)))) |
120 | 115, 119 | jca 510 |
. . . . . . . . . . 11
⊢ (𝜑 →
((⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤
(⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁))))) |
121 | | elnn0z 12604 |
. . . . . . . . . . 11
⊢
((⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁))) ∈ ℕ0 ↔
((⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤
(⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁))))) |
122 | 120, 121 | sylibr 233 |
. . . . . . . . . 10
⊢ (𝜑 →
(⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁))) ∈
ℕ0) |
123 | 84, 122 | nn0addcld 12569 |
. . . . . . . . 9
⊢ (𝜑 → (((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁)))) ∈
ℕ0) |
124 | | bccl 14317 |
. . . . . . . . 9
⊢
(((((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁)))) ∈ ℕ0 ∧
(⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) ∈ ℤ) → ((((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁))))C(⌊‘((2 logb
𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) ∈ ℕ0) |
125 | 123, 54, 124 | syl2anc 582 |
. . . . . . . 8
⊢ (𝜑 → ((((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁))))C(⌊‘((2 logb
𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) ∈ ℕ0) |
126 | 125 | nn0red 12566 |
. . . . . . 7
⊢ (𝜑 → ((((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁))))C(⌊‘((2 logb
𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) ∈ ℝ) |
127 | | bccl 14317 |
. . . . . . . . 9
⊢
(((((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) ∈ ℕ0
∧ (⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) ∈ ℤ) → ((((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) ∈ ℕ0) |
128 | 100, 54, 127 | syl2anc 582 |
. . . . . . . 8
⊢ (𝜑 → ((((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) ∈ ℕ0) |
129 | 128 | nn0red 12566 |
. . . . . . 7
⊢ (𝜑 → ((((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) ∈ ℝ) |
130 | 42, 84 | reexpcld 14163 |
. . . . . . . . . . 11
⊢ (𝜑 →
(2↑((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1)) ∈ ℝ) |
131 | | 2nn0 12522 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℕ0 |
132 | 131 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 2 ∈
ℕ0) |
133 | 132, 82 | nn0mulcld 12570 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (2 ·
(⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) ∈ ℕ0) |
134 | 133, 83 | nn0addcld 12569 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((2 ·
(⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) + 1) ∈ ℕ0) |
135 | | bccl 14317 |
. . . . . . . . . . . . 13
⊢ ((((2
· (⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) + 1) ∈ ℕ0 ∧
(⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) ∈ ℤ) → (((2 ·
(⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) ∈ ℕ0) |
136 | 134, 54, 135 | syl2anc 582 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((2 ·
(⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) ∈ ℕ0) |
137 | 136 | nn0red 12566 |
. . . . . . . . . . 11
⊢ (𝜑 → (((2 ·
(⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) ∈ ℝ) |
138 | 4, 42, 44 | ltled 11394 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ≤ 2) |
139 | 42, 138, 53 | recxpcld 26702 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(2↑𝑐((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) ∈ ℝ) |
140 | | reflcl 13797 |
. . . . . . . . . . . . . . . 16
⊢ (((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℝ → (⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) ∈ ℝ) |
141 | 53, 140 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) ∈ ℝ) |
142 | 141, 55 | readdcld 11275 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) ∈ ℝ) |
143 | 42, 138, 142 | recxpcld 26702 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(2↑𝑐((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1)) ∈ ℝ) |
144 | | 1le2 12454 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ≤
2 |
145 | 144 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 1 ≤ 2) |
146 | 55, 42, 7, 145, 71 | letrd 11403 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 1 ≤ 𝑁) |
147 | | reflcl 13797 |
. . . . . . . . . . . . . . . . 17
⊢
((√‘𝐷)
∈ ℝ → (⌊‘(√‘𝐷)) ∈ ℝ) |
148 | 30, 147 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
(⌊‘(√‘𝐷)) ∈ ℝ) |
149 | 18 | fveq2d 6900 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (√‘𝐷) =
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) |
150 | 149 | fveq2d 6900 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
(⌊‘(√‘𝐷)) =
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) |
151 | | flle 13800 |
. . . . . . . . . . . . . . . . . 18
⊢
((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ∈ ℝ →
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) |
152 | 52, 151 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) |
153 | 150, 152 | eqbrtrd 5171 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
(⌊‘(√‘𝐷)) ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) |
154 | 7, 146, 148, 52, 153 | cxplead 26700 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁↑𝑐(⌊‘(√‘𝐷))) ≤ (𝑁↑𝑐(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) |
155 | 7 | recnd 11274 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ ℂ) |
156 | 4, 12 | gtned 11381 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ≠ 0) |
157 | 155, 156,
31 | cxpexpzd 26690 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁↑𝑐(⌊‘(√‘𝐷))) = (𝑁↑(⌊‘(√‘𝐷)))) |
158 | 59, 48 | nelprd 4661 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ¬ 2 ∈ {0,
1}) |
159 | 58, 158 | eldifd 3955 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 2 ∈ (ℂ ∖
{0, 1})) |
160 | 156 | neneqd 2934 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ¬ 𝑁 = 0) |
161 | | elsng 4644 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ → (𝑁 ∈ {0} ↔ 𝑁 = 0)) |
162 | 15, 161 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑁 ∈ {0} ↔ 𝑁 = 0)) |
163 | 160, 162 | mtbird 324 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ¬ 𝑁 ∈ {0}) |
164 | 155, 163 | eldifd 3955 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑁 ∈ (ℂ ∖
{0})) |
165 | | cxplogb 26763 |
. . . . . . . . . . . . . . . . . 18
⊢ ((2
∈ (ℂ ∖ {0, 1}) ∧ 𝑁 ∈ (ℂ ∖ {0})) →
(2↑𝑐(2 logb 𝑁)) = 𝑁) |
166 | 159, 164,
165 | syl2anc 582 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
(2↑𝑐(2 logb 𝑁)) = 𝑁) |
167 | 166 | eqcomd 2731 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 = (2↑𝑐(2
logb 𝑁))) |
168 | 167 | oveq1d 7434 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁↑𝑐(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) = ((2↑𝑐(2 logb 𝑁))↑𝑐(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) |
169 | 154, 157,
168 | 3brtr3d 5180 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) ≤
((2↑𝑐(2 logb 𝑁))↑𝑐(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) |
170 | 42, 44 | elrpd 13048 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 2 ∈
ℝ+) |
171 | 52 | recnd 11274 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 →
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ∈ ℂ) |
172 | | cxpmul 26667 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℝ+ ∧ (2 logb 𝑁) ∈ ℝ ∧
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ∈ ℂ) → (2↑𝑐((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) = ((2↑𝑐(2 logb
𝑁))↑𝑐(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) |
173 | 170, 49, 171, 172 | syl3anc 1368 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(2↑𝑐((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) = ((2↑𝑐(2 logb
𝑁))↑𝑐(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) |
174 | 169, 173 | breqtrrd 5177 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) ≤
(2↑𝑐((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) |
175 | | fllep1 13802 |
. . . . . . . . . . . . . . 15
⊢ (((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℝ → ((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ≤ ((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1)) |
176 | 53, 175 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ≤ ((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1)) |
177 | 55, 42, 145, 48 | leneltd 11400 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 < 2) |
178 | 84 | nn0red 12566 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) ∈ ℝ) |
179 | 42, 177, 53, 178 | cxpled 26699 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ≤ ((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) ↔ (2↑𝑐((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) ≤ (2↑𝑐((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1)))) |
180 | 176, 179 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(2↑𝑐((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) ≤ (2↑𝑐((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1))) |
181 | 40, 139, 143, 174, 180 | letrd 11403 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) ≤
(2↑𝑐((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1))) |
182 | | cxpexpz 26646 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℂ ∧ 2 ≠ 0 ∧ ((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) ∈ ℤ) →
(2↑𝑐((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1)) = (2↑((⌊‘((2 logb
𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1))) |
183 | 58, 59, 101, 182 | syl3anc 1368 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(2↑𝑐((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1)) = (2↑((⌊‘((2 logb
𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1))) |
184 | 181, 183 | breqtrd 5175 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) ≤
(2↑((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1))) |
185 | 49, 49 | jca 510 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((2 logb 𝑁) ∈ ℝ ∧ (2
logb 𝑁) ∈
ℝ)) |
186 | | remulcl 11225 |
. . . . . . . . . . . . . . 15
⊢ (((2
logb 𝑁) ∈
ℝ ∧ (2 logb 𝑁) ∈ ℝ) → ((2 logb
𝑁) · (2
logb 𝑁)) ∈
ℝ) |
187 | 185, 186 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((2 logb 𝑁) · (2 logb
𝑁)) ∈
ℝ) |
188 | | reflcl 13797 |
. . . . . . . . . . . . . 14
⊢ (((2
logb 𝑁) ·
(2 logb 𝑁))
∈ ℝ → (⌊‘((2 logb 𝑁) · (2 logb 𝑁))) ∈
ℝ) |
189 | 187, 188 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (⌊‘((2
logb 𝑁) ·
(2 logb 𝑁)))
∈ ℝ) |
190 | 82 | nn0red 12566 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) ∈ ℝ) |
191 | 42, 44, 6, 9, 48 | relogbcld 41575 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (2 logb 3)
∈ ℝ) |
192 | 191 | resqcld 14125 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((2 logb
3)↑2) ∈ ℝ) |
193 | 49 | recnd 11274 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (2 logb 𝑁) ∈
ℂ) |
194 | 193 | sqvald 14143 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((2 logb 𝑁)↑2) = ((2 logb
𝑁) · (2
logb 𝑁))) |
195 | 194, 187 | eqeltrd 2825 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((2 logb 𝑁)↑2) ∈
ℝ) |
196 | | 3lexlogpow2ineq2 41662 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2 <
((2 logb 3)↑2) ∧ ((2 logb 3)↑2) <
3) |
197 | 196 | simpli 482 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 <
((2 logb 3)↑2) |
198 | 197 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 2 < ((2 logb
3)↑2)) |
199 | 42, 192, 198 | ltled 11394 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 2 ≤ ((2 logb
3)↑2)) |
200 | 6, 42, 59 | redivcld 12075 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (3 / 2) ∈
ℝ) |
201 | | 2rp 13014 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℝ+ |
202 | 201 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 2 ∈
ℝ+) |
203 | 4, 6, 9 | ltled 11394 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 0 ≤ 3) |
204 | 6, 202, 203 | divge0d 13091 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 0 ≤ (3 /
2)) |
205 | | 3lexlogpow2ineq1 41661 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((3 / 2)
< (2 logb 3) ∧ (2 logb 3) < (5 /
3)) |
206 | 205 | simpli 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (3 / 2)
< (2 logb 3) |
207 | 206 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (3 / 2) < (2
logb 3)) |
208 | 200, 191,
207 | ltled 11394 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (3 / 2) ≤ (2
logb 3)) |
209 | 4, 200, 191, 204, 208 | letrd 11403 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 0 ≤ (2 logb
3)) |
210 | 64, 65, 6, 9, 7, 12,
11 | logblebd 41578 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (2 logb 3) ≤
(2 logb 𝑁)) |
211 | 191, 49, 132, 209, 210 | leexp1ad 41574 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((2 logb
3)↑2) ≤ ((2 logb 𝑁)↑2)) |
212 | 42, 192, 195, 199, 211 | letrd 11403 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 2 ≤ ((2 logb
𝑁)↑2)) |
213 | 212, 194 | breqtrd 5175 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 2 ≤ ((2 logb
𝑁) · (2
logb 𝑁))) |
214 | | flge 13806 |
. . . . . . . . . . . . . . 15
⊢ ((((2
logb 𝑁) ·
(2 logb 𝑁))
∈ ℝ ∧ 2 ∈ ℤ) → (2 ≤ ((2 logb 𝑁) · (2 logb
𝑁)) ↔ 2 ≤
(⌊‘((2 logb 𝑁) · (2 logb 𝑁))))) |
215 | 187, 64, 214 | syl2anc 582 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (2 ≤ ((2
logb 𝑁) ·
(2 logb 𝑁))
↔ 2 ≤ (⌊‘((2 logb 𝑁) · (2 logb 𝑁))))) |
216 | 213, 215 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 2 ≤ (⌊‘((2
logb 𝑁) ·
(2 logb 𝑁)))) |
217 | 49, 49 | remulcld 11276 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((2 logb 𝑁) · (2 logb
𝑁)) ∈
ℝ) |
218 | | aks6d1c7lem1.10 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((2 logb 𝑁)↑2) <
((odℤ‘𝑅)‘𝑁)) |
219 | 15, 19, 20, 21, 22, 23, 24, 25, 218 | aks6d1c3 41726 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((2 logb 𝑁)↑2) <
(♯‘(𝐿 “
(𝐸 “
(ℕ0 × ℕ0))))) |
220 | 171 | sqvald 14143 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 →
((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))↑2) = ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) |
221 | 26 | nn0cnd 12567 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ∈ ℂ) |
222 | 221 | msqsqrtd 15423 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 →
((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) = (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) |
223 | 220, 222 | eqtr2d 2766 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) = ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))↑2)) |
224 | 219, 223 | breqtrd 5175 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((2 logb 𝑁)↑2) <
((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))↑2)) |
225 | 49, 52, 74, 75 | lt2sqd 14254 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((2 logb 𝑁) <
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ↔ ((2 logb 𝑁)↑2) <
((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))↑2))) |
226 | 224, 225 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (2 logb 𝑁) <
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) |
227 | 49, 52, 226 | ltled 11394 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (2 logb 𝑁) ≤
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) |
228 | 49, 52, 49, 74, 227 | lemul2ad 12187 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((2 logb 𝑁) · (2 logb
𝑁)) ≤ ((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) |
229 | | flwordi 13813 |
. . . . . . . . . . . . . 14
⊢ ((((2
logb 𝑁) ·
(2 logb 𝑁))
∈ ℝ ∧ ((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℝ ∧ ((2 logb 𝑁) · (2 logb
𝑁)) ≤ ((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) → (⌊‘((2 logb 𝑁) · (2 logb
𝑁))) ≤
(⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) |
230 | 217, 53, 228, 229 | syl3anc 1368 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (⌊‘((2
logb 𝑁) ·
(2 logb 𝑁)))
≤ (⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) |
231 | 42, 189, 190, 216, 230 | letrd 11403 |
. . . . . . . . . . . 12
⊢ (𝜑 → 2 ≤ (⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) |
232 | 54, 231 | 2ap1caineq 41748 |
. . . . . . . . . . 11
⊢ (𝜑 →
(2↑((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1)) < (((2 · (⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))))) |
233 | 40, 130, 137, 184, 232 | lelttrd 11404 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < (((2 ·
(⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))))) |
234 | 82 | nn0cnd 12567 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) ∈ ℂ) |
235 | 234 | 2timesd 12488 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2 ·
(⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) = ((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + (⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))))) |
236 | 235 | oveq1d 7434 |
. . . . . . . . . . 11
⊢ (𝜑 → ((2 ·
(⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) + 1) = (((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + (⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) + 1)) |
237 | 236 | oveq1d 7434 |
. . . . . . . . . 10
⊢ (𝜑 → (((2 ·
(⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) = ((((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + (⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))))) |
238 | 233, 237 | breqtrd 5175 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + (⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))))) |
239 | | 1cnd 11241 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℂ) |
240 | 234, 234,
239 | addassd 11268 |
. . . . . . . . . . 11
⊢ (𝜑 → (((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + (⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) + 1) = ((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + ((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1))) |
241 | 84 | nn0cnd 12567 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) ∈ ℂ) |
242 | 234, 241 | addcomd 11448 |
. . . . . . . . . . 11
⊢ (𝜑 → ((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + ((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1)) = (((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) + (⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))))) |
243 | 240, 242 | eqtrd 2765 |
. . . . . . . . . 10
⊢ (𝜑 → (((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + (⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) + 1) = (((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) + (⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))))) |
244 | 243 | oveq1d 7434 |
. . . . . . . . 9
⊢ (𝜑 → ((((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + (⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) = ((((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) + (⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))))C(⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))))) |
245 | 238, 244 | breqtrd 5175 |
. . . . . . . 8
⊢ (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) + (⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))))C(⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))))) |
246 | 193, 171 | mulcomd 11267 |
. . . . . . . . . . 11
⊢ (𝜑 → ((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) = ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁))) |
247 | 246 | fveq2d 6900 |
. . . . . . . . . 10
⊢ (𝜑 → (⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) =
(⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁)))) |
248 | 247 | oveq2d 7435 |
. . . . . . . . 9
⊢ (𝜑 → (((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) + (⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) = (((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁))))) |
249 | 248 | oveq1d 7434 |
. . . . . . . 8
⊢ (𝜑 → ((((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) + (⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))))C(⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) = ((((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁))))C(⌊‘((2 logb
𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))))) |
250 | 245, 249 | breqtrd 5175 |
. . . . . . 7
⊢ (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁))))C(⌊‘((2 logb
𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))))) |
251 | 122 | nn0red 12566 |
. . . . . . . . 9
⊢ (𝜑 →
(⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁))) ∈ ℝ) |
252 | 99 | nn0red 12566 |
. . . . . . . . 9
⊢ (𝜑 →
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈
ℝ) |
253 | 17, 27 | eqeltrrid 2830 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ∈ ℕ0) |
254 | 253 | nn0red 12566 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ∈ ℝ) |
255 | 253 | nn0ge0d 12568 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ≤
(♯‘(𝐿 “
(𝐸 “
(ℕ0 × ℕ0))))) |
256 | 254, 255 | resqrtcld 15400 |
. . . . . . . . . . 11
⊢ (𝜑 →
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ∈ ℝ) |
257 | 256, 49 | remulcld 11276 |
. . . . . . . . . 10
⊢ (𝜑 →
((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁)) ∈ ℝ) |
258 | 15, 19, 20, 21, 22, 23, 24 | aks6d1c4 41727 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ≤ (ϕ‘𝑅)) |
259 | 50, 51, 86, 88 | sqrtled 15409 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ≤ (ϕ‘𝑅) ↔
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ≤ (√‘(ϕ‘𝑅)))) |
260 | 258, 259 | mpbid 231 |
. . . . . . . . . . 11
⊢ (𝜑 →
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ≤ (√‘(ϕ‘𝑅))) |
261 | 256, 89, 49, 74, 260 | lemul1ad 12186 |
. . . . . . . . . 10
⊢ (𝜑 →
((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁)) ≤ ((√‘(ϕ‘𝑅)) · (2 logb
𝑁))) |
262 | | flwordi 13813 |
. . . . . . . . . 10
⊢
((((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁)) ∈ ℝ ∧
((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ ∧
((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁)) ≤ ((√‘(ϕ‘𝑅)) · (2 logb
𝑁))) →
(⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁))) ≤
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) |
263 | 257, 90, 261, 262 | syl3anc 1368 |
. . . . . . . . 9
⊢ (𝜑 →
(⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁))) ≤
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) |
264 | 251, 252,
142, 263 | leadd2dd 11861 |
. . . . . . . 8
⊢ (𝜑 → (((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁)))) ≤ (((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))) |
265 | 123, 100,
54, 264 | bcled 41781 |
. . . . . . 7
⊢ (𝜑 → ((((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (2 logb 𝑁))))C(⌊‘((2 logb
𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) ≤ ((((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))))) |
266 | 40, 126, 129, 250, 265 | ltletrd 11406 |
. . . . . 6
⊢ (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))))) |
267 | 234, 239 | pncand 11604 |
. . . . . . . . 9
⊢ (𝜑 → (((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) − 1) = (⌊‘((2 logb
𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) |
268 | 267 | eqcomd 2731 |
. . . . . . . 8
⊢ (𝜑 → (⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) = (((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) − 1)) |
269 | 241, 239 | negsubd 11609 |
. . . . . . . . 9
⊢ (𝜑 → (((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) + -1) = (((⌊‘((2 logb
𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) − 1)) |
270 | 269 | eqcomd 2731 |
. . . . . . . 8
⊢ (𝜑 → (((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) − 1) = (((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) + -1)) |
271 | 268, 270 | eqtrd 2765 |
. . . . . . 7
⊢ (𝜑 → (⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) = (((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) + -1)) |
272 | 271 | oveq2d 7435 |
. . . . . 6
⊢ (𝜑 → ((((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) = ((((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) + -1))) |
273 | 266, 272 | breqtrd 5175 |
. . . . 5
⊢ (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) + -1))) |
274 | 21 | nnnn0d 12565 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑅 ∈
ℕ0) |
275 | 25 | zncrng 21495 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑅 ∈ ℕ0
→ (ℤ/nℤ‘𝑅) ∈ CRing) |
276 | 274, 275 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 →
(ℤ/nℤ‘𝑅) ∈ CRing) |
277 | | crngring 20197 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((ℤ/nℤ‘𝑅) ∈ CRing →
(ℤ/nℤ‘𝑅) ∈ Ring) |
278 | 24 | zrhrhm 21454 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((ℤ/nℤ‘𝑅) ∈ Ring → 𝐿 ∈ (ℤring RingHom
(ℤ/nℤ‘𝑅))) |
279 | | zringbas 21396 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℤ =
(Base‘ℤring) |
280 | | eqid 2725 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(Base‘(ℤ/nℤ‘𝑅)) =
(Base‘(ℤ/nℤ‘𝑅)) |
281 | 279, 280 | rhmf 20436 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐿 ∈ (ℤring
RingHom (ℤ/nℤ‘𝑅)) → 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅))) |
282 | 276, 277,
278, 281 | 4syl 19 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅))) |
283 | 282 | ffnd 6724 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐿 Fn ℤ) |
284 | 15, 19, 20, 23 | aks6d1c2p1 41721 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐸:(ℕ0 ×
ℕ0)⟶ℕ) |
285 | | nnssz 12613 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ℕ
⊆ ℤ |
286 | 285 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ℕ ⊆
ℤ) |
287 | 284, 286 | fssd 6740 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐸:(ℕ0 ×
ℕ0)⟶ℤ) |
288 | | frn 6730 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐸:(ℕ0 ×
ℕ0)⟶ℤ → ran 𝐸 ⊆ ℤ) |
289 | 287, 288 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ran 𝐸 ⊆ ℤ) |
290 | 284 | ffnd 6724 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐸 Fn (ℕ0 ×
ℕ0)) |
291 | | fnima 6686 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐸 Fn (ℕ0 ×
ℕ0) → (𝐸 “ (ℕ0 ×
ℕ0)) = ran 𝐸) |
292 | 290, 291 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐸 “ (ℕ0 ×
ℕ0)) = ran 𝐸) |
293 | 292 | sseq1d 4008 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝐸 “ (ℕ0 ×
ℕ0)) ⊆ ℤ ↔ ran 𝐸 ⊆ ℤ)) |
294 | 289, 293 | mpbird 256 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐸 “ (ℕ0 ×
ℕ0)) ⊆ ℤ) |
295 | | vex 3465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝑘 ∈ V |
296 | | vex 3465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝑙 ∈ V |
297 | 295, 296 | op1std 8004 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑣 = 〈𝑘, 𝑙〉 → (1st ‘𝑣) = 𝑘) |
298 | 297 | oveq2d 7435 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑣 = 〈𝑘, 𝑙〉 → (𝑃↑(1st ‘𝑣)) = (𝑃↑𝑘)) |
299 | 295, 296 | op2ndd 8005 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑣 = 〈𝑘, 𝑙〉 → (2nd ‘𝑣) = 𝑙) |
300 | 299 | oveq2d 7435 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑣 = 〈𝑘, 𝑙〉 → ((𝑁 / 𝑃)↑(2nd ‘𝑣)) = ((𝑁 / 𝑃)↑𝑙)) |
301 | 298, 300 | oveq12d 7437 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑣 = 〈𝑘, 𝑙〉 → ((𝑃↑(1st ‘𝑣)) · ((𝑁 / 𝑃)↑(2nd ‘𝑣))) = ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
302 | 301 | mpompt 7534 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 ∈ (ℕ0
× ℕ0) ↦ ((𝑃↑(1st ‘𝑣)) · ((𝑁 / 𝑃)↑(2nd ‘𝑣)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
303 | 302 | eqcomi 2734 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ ℕ0,
𝑙 ∈
ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) = (𝑣 ∈ (ℕ0 ×
ℕ0) ↦ ((𝑃↑(1st ‘𝑣)) · ((𝑁 / 𝑃)↑(2nd ‘𝑣)))) |
304 | 23, 303 | eqtri 2753 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐸 = (𝑣 ∈ (ℕ0 ×
ℕ0) ↦ ((𝑃↑(1st ‘𝑣)) · ((𝑁 / 𝑃)↑(2nd ‘𝑣)))) |
305 | 304 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐸 = (𝑣 ∈ (ℕ0 ×
ℕ0) ↦ ((𝑃↑(1st ‘𝑣)) · ((𝑁 / 𝑃)↑(2nd ‘𝑣))))) |
306 | | c0ex 11240 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 0 ∈
V |
307 | 306, 306 | op1std 8004 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑣 = 〈0, 0〉 →
(1st ‘𝑣) =
0) |
308 | 307 | adantl 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑣 = 〈0, 0〉) → (1st
‘𝑣) =
0) |
309 | 308 | oveq2d 7435 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑣 = 〈0, 0〉) → (𝑃↑(1st
‘𝑣)) = (𝑃↑0)) |
310 | 306, 306 | op2ndd 8005 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑣 = 〈0, 0〉 →
(2nd ‘𝑣) =
0) |
311 | 310 | adantl 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑣 = 〈0, 0〉) → (2nd
‘𝑣) =
0) |
312 | 311 | oveq2d 7435 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑣 = 〈0, 0〉) → ((𝑁 / 𝑃)↑(2nd ‘𝑣)) = ((𝑁 / 𝑃)↑0)) |
313 | 309, 312 | oveq12d 7437 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑣 = 〈0, 0〉) → ((𝑃↑(1st
‘𝑣)) · ((𝑁 / 𝑃)↑(2nd ‘𝑣))) = ((𝑃↑0) · ((𝑁 / 𝑃)↑0))) |
314 | | prmnn 16648 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
315 | 19, 314 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑃 ∈ ℕ) |
316 | 315 | nncnd 12261 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑃 ∈ ℂ) |
317 | 316 | exp0d 14140 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑃↑0) = 1) |
318 | 315 | nnne0d 12295 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑃 ≠ 0) |
319 | 155, 316,
318 | divcld 12023 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑁 / 𝑃) ∈ ℂ) |
320 | 319 | exp0d 14140 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ((𝑁 / 𝑃)↑0) = 1) |
321 | 317, 320 | oveq12d 7437 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑃↑0) · ((𝑁 / 𝑃)↑0)) = (1 ·
1)) |
322 | 239 | mulridd 11263 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (1 · 1) =
1) |
323 | 321, 322 | eqtrd 2765 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((𝑃↑0) · ((𝑁 / 𝑃)↑0)) = 1) |
324 | 323 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑣 = 〈0, 0〉) → ((𝑃↑0) · ((𝑁 / 𝑃)↑0)) = 1) |
325 | 313, 324 | eqtrd 2765 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑣 = 〈0, 0〉) → ((𝑃↑(1st
‘𝑣)) · ((𝑁 / 𝑃)↑(2nd ‘𝑣))) = 1) |
326 | | 0nn0 12520 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ∈
ℕ0 |
327 | 326 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 0 ∈
ℕ0) |
328 | 327, 327 | opelxpd 5717 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 〈0, 0〉 ∈
(ℕ0 × ℕ0)) |
329 | | 1nn 12256 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ∈
ℕ |
330 | 329 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 1 ∈
ℕ) |
331 | 305, 325,
328, 330 | fvmptd 7011 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐸‘〈0, 0〉) =
1) |
332 | | ssidd 4000 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (ℕ0
× ℕ0) ⊆ (ℕ0 ×
ℕ0)) |
333 | | fnfvima 7245 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐸 Fn (ℕ0 ×
ℕ0) ∧ (ℕ0 × ℕ0)
⊆ (ℕ0 × ℕ0) ∧ 〈0,
0〉 ∈ (ℕ0 × ℕ0)) → (𝐸‘〈0, 0〉) ∈
(𝐸 “
(ℕ0 × ℕ0))) |
334 | 290, 332,
328, 333 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐸‘〈0, 0〉) ∈ (𝐸 “ (ℕ0
× ℕ0))) |
335 | 331, 334 | eqeltrrd 2826 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 1 ∈ (𝐸 “ (ℕ0
× ℕ0))) |
336 | | fnfvima 7245 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐿 Fn ℤ ∧ (𝐸 “ (ℕ0
× ℕ0)) ⊆ ℤ ∧ 1 ∈ (𝐸 “ (ℕ0 ×
ℕ0))) → (𝐿‘1) ∈ (𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) |
337 | 283, 294,
335, 336 | syl3anc 1368 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐿‘1) ∈ (𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) |
338 | 24 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐿 =
(ℤRHom‘(ℤ/nℤ‘𝑅))) |
339 | | fvexd 6911 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 →
(ℤRHom‘(ℤ/nℤ‘𝑅)) ∈ V) |
340 | 338, 339 | eqeltrd 2825 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐿 ∈ V) |
341 | 340 | imaexd 7924 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))) ∈ V) |
342 | 337, 341 | hashelne0d 14363 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ¬
(♯‘(𝐿 “
(𝐸 “
(ℕ0 × ℕ0)))) = 0) |
343 | 342 | neqned 2936 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ≠ 0) |
344 | 26, 343 | jca 510 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ∈ ℕ0 ∧ (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ≠ 0)) |
345 | | elnnne0 12519 |
. . . . . . . . . . . . . 14
⊢
((♯‘(𝐿
“ (𝐸 “
(ℕ0 × ℕ0)))) ∈ ℕ ↔
((♯‘(𝐿 “
(𝐸 “
(ℕ0 × ℕ0)))) ∈ ℕ0
∧ (♯‘(𝐿
“ (𝐸 “
(ℕ0 × ℕ0)))) ≠ 0)) |
346 | 344, 345 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ∈ ℕ) |
347 | 346 | nnrpd 13049 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ∈ ℝ+) |
348 | 347 | rpsqrtcld 15394 |
. . . . . . . . . . 11
⊢ (𝜑 →
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ∈ ℝ+) |
349 | 49, 52, 348, 226 | ltmul1dd 13106 |
. . . . . . . . . 10
⊢ (𝜑 → ((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) < ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) |
350 | 50, 51, 50, 51 | sqrtmuld 15407 |
. . . . . . . . . . 11
⊢ (𝜑 →
(√‘((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) · (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) = ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) |
351 | 350 | eqcomd 2731 |
. . . . . . . . . 10
⊢ (𝜑 →
((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) = (√‘((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) · (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) |
352 | 349, 351 | breqtrd 5175 |
. . . . . . . . 9
⊢ (𝜑 → ((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) < (√‘((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) · (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) |
353 | 350, 222 | eqtrd 2765 |
. . . . . . . . 9
⊢ (𝜑 →
(√‘((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) · (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) = (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) |
354 | 352, 353 | breqtrd 5175 |
. . . . . . . 8
⊢ (𝜑 → ((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) |
355 | | fllt 13807 |
. . . . . . . . 9
⊢ ((((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℝ ∧ (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ∈ ℤ) → (((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ↔ (⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) |
356 | 53, 109, 355 | syl2anc 582 |
. . . . . . . 8
⊢ (𝜑 → (((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ↔ (⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) |
357 | 354, 356 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → (⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) |
358 | 54, 109 | zltp1led 41582 |
. . . . . . 7
⊢ (𝜑 → ((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ↔ ((⌊‘((2 logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) ≤ (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) |
359 | 357, 358 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → ((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) ≤ (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) |
360 | 55 | renegcld 11673 |
. . . . . . 7
⊢ (𝜑 → -1 ∈
ℝ) |
361 | | df-neg 11479 |
. . . . . . . . 9
⊢ -1 = (0
− 1) |
362 | 361 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → -1 = (0 −
1)) |
363 | 4 | lem1d 12180 |
. . . . . . . 8
⊢ (𝜑 → (0 − 1) ≤
0) |
364 | 362, 363 | eqbrtrd 5171 |
. . . . . . 7
⊢ (𝜑 → -1 ≤
0) |
365 | 360, 4, 252, 364, 96 | letrd 11403 |
. . . . . 6
⊢ (𝜑 → -1 ≤
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) |
366 | 84, 26, 99, 103, 359, 365 | bcle2d 41782 |
. . . . 5
⊢ (𝜑 → ((((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) +
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(((⌊‘((2
logb 𝑁) ·
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) + 1) + -1)) ≤ (((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb
𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) + -1))) |
367 | 40, 107, 113, 273, 366 | ltletrd 11406 |
. . . 4
⊢ (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < (((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb
𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) + -1))) |
368 | 221, 239 | negsubd 11609 |
. . . . 5
⊢ (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) + -1) = ((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) − 1)) |
369 | 368 | oveq2d 7435 |
. . . 4
⊢ (𝜑 → (((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb
𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) + -1)) = (((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb
𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) − 1))) |
370 | 367, 369 | breqtrd 5175 |
. . 3
⊢ (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < (((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb
𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) − 1))) |
371 | | aks6d1c7lem1.9 |
. . . . . . 7
⊢ 𝐴 =
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) |
372 | 371 | eqcomi 2734 |
. . . . . 6
⊢
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) = 𝐴 |
373 | 372 | a1i 11 |
. . . . 5
⊢ (𝜑 →
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) = 𝐴) |
374 | 373 | oveq2d 7435 |
. . . 4
⊢ (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb
𝑁)))) =
((♯‘(𝐿 “
(𝐸 “
(ℕ0 × ℕ0)))) + 𝐴)) |
375 | 374 | oveq1d 7434 |
. . 3
⊢ (𝜑 → (((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb
𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) − 1)) = (((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) + 𝐴)C((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) − 1))) |
376 | 370, 375 | breqtrd 5175 |
. 2
⊢ (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < (((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) + 𝐴)C((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) − 1))) |
377 | 18 | eqcomd 2731 |
. . . 4
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) = 𝐷) |
378 | 377 | oveq1d 7434 |
. . 3
⊢ (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) + 𝐴) = (𝐷 + 𝐴)) |
379 | 377 | oveq1d 7434 |
. . 3
⊢ (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) − 1) = (𝐷 − 1)) |
380 | 378, 379 | oveq12d 7437 |
. 2
⊢ (𝜑 → (((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) + 𝐴)C((♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) − 1)) = ((𝐷 + 𝐴)C(𝐷 − 1))) |
381 | 376, 380 | breqtrd 5175 |
1
⊢ (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((𝐷 + 𝐴)C(𝐷 − 1))) |