Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c7lem1 Structured version   Visualization version   GIF version

Theorem aks6d1c7lem1 42161
Description: The last set of inequalities of Claim 7 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. (Contributed by metakunt, 12-May-2025.)
Hypotheses
Ref Expression
aks6d1c7lem1.1 (𝜑𝑃 ∈ ℙ)
aks6d1c7lem1.2 (𝜑𝑅 ∈ ℕ)
aks6d1c7lem1.3 (𝜑𝑁 ∈ (ℤ‘3))
aks6d1c7lem1.4 (𝜑𝑃𝑁)
aks6d1c7lem1.5 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c7lem1.6 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c7lem1.7 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c7lem1.8 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c7lem1.9 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
aks6d1c7lem1.10 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
Assertion
Ref Expression
aks6d1c7lem1 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((𝐷 + 𝐴)C(𝐷 − 1)))
Distinct variable groups:   𝑘,𝑁,𝑙   𝑃,𝑘,𝑙   𝜑,𝑘,𝑙
Allowed substitution hints:   𝐴(𝑘,𝑙)   𝐷(𝑘,𝑙)   𝑅(𝑘,𝑙)   𝐸(𝑘,𝑙)   𝐿(𝑘,𝑙)

Proof of Theorem aks6d1c7lem1
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 aks6d1c7lem1.3 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘3))
2 eluzelz 12885 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
31, 2syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
4 0red 11261 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
5 3re 12343 . . . . . . . . . . 11 3 ∈ ℝ
65a1i 11 . . . . . . . . . 10 (𝜑 → 3 ∈ ℝ)
73zred 12719 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
8 3pos 12368 . . . . . . . . . . 11 0 < 3
98a1i 11 . . . . . . . . . 10 (𝜑 → 0 < 3)
10 eluzle 12888 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
111, 10syl 17 . . . . . . . . . 10 (𝜑 → 3 ≤ 𝑁)
124, 6, 7, 9, 11ltletrd 11418 . . . . . . . . 9 (𝜑 → 0 < 𝑁)
133, 12jca 511 . . . . . . . 8 (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁))
14 elnnz 12620 . . . . . . . 8 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
1513, 14sylibr 234 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
1615nnred 12278 . . . . . 6 (𝜑𝑁 ∈ ℝ)
17 aks6d1c7lem1.8 . . . . . . . . . . . . 13 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
1817a1i 11 . . . . . . . . . . . 12 (𝜑𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
19 aks6d1c7lem1.1 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℙ)
20 aks6d1c7lem1.4 . . . . . . . . . . . . 13 (𝜑𝑃𝑁)
21 aks6d1c7lem1.2 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℕ)
22 aks6d1c7lem1.5 . . . . . . . . . . . . 13 (𝜑 → (𝑁 gcd 𝑅) = 1)
23 aks6d1c7lem1.6 . . . . . . . . . . . . 13 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
24 aks6d1c7lem1.7 . . . . . . . . . . . . 13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
25 eqid 2734 . . . . . . . . . . . . 13 (ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅)
2615, 19, 20, 21, 22, 23, 24, 25hashscontpowcl 42101 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0)
2718, 26eqeltrd 2838 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℕ0)
2827nn0red 12585 . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ)
2927nn0ge0d 12587 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐷)
3028, 29resqrtcld 15452 . . . . . . . . 9 (𝜑 → (√‘𝐷) ∈ ℝ)
3130flcld 13834 . . . . . . . 8 (𝜑 → (⌊‘(√‘𝐷)) ∈ ℤ)
3228, 29sqrtge0d 15455 . . . . . . . . 9 (𝜑 → 0 ≤ (√‘𝐷))
33 0zd 12622 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
34 flge 13841 . . . . . . . . . 10 (((√‘𝐷) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ (√‘𝐷) ↔ 0 ≤ (⌊‘(√‘𝐷))))
3530, 33, 34syl2anc 584 . . . . . . . . 9 (𝜑 → (0 ≤ (√‘𝐷) ↔ 0 ≤ (⌊‘(√‘𝐷))))
3632, 35mpbid 232 . . . . . . . 8 (𝜑 → 0 ≤ (⌊‘(√‘𝐷)))
3731, 36jca 511 . . . . . . 7 (𝜑 → ((⌊‘(√‘𝐷)) ∈ ℤ ∧ 0 ≤ (⌊‘(√‘𝐷))))
38 elnn0z 12623 . . . . . . 7 ((⌊‘(√‘𝐷)) ∈ ℕ0 ↔ ((⌊‘(√‘𝐷)) ∈ ℤ ∧ 0 ≤ (⌊‘(√‘𝐷))))
3937, 38sylibr 234 . . . . . 6 (𝜑 → (⌊‘(√‘𝐷)) ∈ ℕ0)
4016, 39reexpcld 14199 . . . . 5 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) ∈ ℝ)
41 2re 12337 . . . . . . . . . . . . . . 15 2 ∈ ℝ
4241a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ)
43 2pos 12366 . . . . . . . . . . . . . . 15 0 < 2
4443a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 2)
4515nngt0d 12312 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
46 1ne2 12471 . . . . . . . . . . . . . . . 16 1 ≠ 2
4746necomi 2992 . . . . . . . . . . . . . . 15 2 ≠ 1
4847a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 1)
4942, 44, 16, 45, 48relogbcld 41954 . . . . . . . . . . . . 13 (𝜑 → (2 logb 𝑁) ∈ ℝ)
5018, 28eqeltrrd 2839 . . . . . . . . . . . . . 14 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ)
5129, 18breqtrd 5173 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
5250, 51resqrtcld 15452 . . . . . . . . . . . . 13 (𝜑 → (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℝ)
5349, 52remulcld 11288 . . . . . . . . . . . 12 (𝜑 → ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℝ)
5453flcld 13834 . . . . . . . . . . 11 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℤ)
55 1red 11259 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
56 0le1 11783 . . . . . . . . . . . . . . 15 0 ≤ 1
5756a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 1)
5842recnd 11286 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℂ)
594, 44gtned 11393 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ≠ 0)
60 logbid1 26825 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 2) = 1)
6158, 59, 48, 60syl3anc 1370 . . . . . . . . . . . . . . . 16 (𝜑 → (2 logb 2) = 1)
6261eqcomd 2740 . . . . . . . . . . . . . . 15 (𝜑 → 1 = (2 logb 2))
63 2z 12646 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
6463a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℤ)
6542leidd 11826 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≤ 2)
66 1nn0 12539 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℕ0
6741, 66nn0addge1i 12571 . . . . . . . . . . . . . . . . . . 19 2 ≤ (2 + 1)
68 2p1e3 12405 . . . . . . . . . . . . . . . . . . 19 (2 + 1) = 3
6967, 68breqtri 5172 . . . . . . . . . . . . . . . . . 18 2 ≤ 3
7069a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ≤ 3)
7142, 6, 7, 70, 11letrd 11415 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≤ 𝑁)
7264, 65, 42, 44, 7, 12, 71logblebd 41957 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 2) ≤ (2 logb 𝑁))
7362, 72eqbrtrd 5169 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ (2 logb 𝑁))
744, 55, 49, 57, 73letrd 11415 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (2 logb 𝑁))
7550, 51sqrtge0d 15455 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
7649, 52, 74, 75mulge0d 11837 . . . . . . . . . . . 12 (𝜑 → 0 ≤ ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
77 flge 13841 . . . . . . . . . . . . 13 ((((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ↔ 0 ≤ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
7853, 33, 77syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (0 ≤ ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ↔ 0 ≤ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
7976, 78mpbid 232 . . . . . . . . . . 11 (𝜑 → 0 ≤ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
8054, 79jca 511 . . . . . . . . . 10 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℤ ∧ 0 ≤ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
81 elnn0z 12623 . . . . . . . . . 10 ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℕ0 ↔ ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℤ ∧ 0 ≤ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
8280, 81sylibr 234 . . . . . . . . 9 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℕ0)
8366a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℕ0)
8482, 83nn0addcld 12588 . . . . . . . 8 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ∈ ℕ0)
8521phicld 16805 . . . . . . . . . . . . . 14 (𝜑 → (ϕ‘𝑅) ∈ ℕ)
8685nnred 12278 . . . . . . . . . . . . 13 (𝜑 → (ϕ‘𝑅) ∈ ℝ)
8785nnnn0d 12584 . . . . . . . . . . . . . 14 (𝜑 → (ϕ‘𝑅) ∈ ℕ0)
8887nn0ge0d 12587 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (ϕ‘𝑅))
8986, 88resqrtcld 15452 . . . . . . . . . . . 12 (𝜑 → (√‘(ϕ‘𝑅)) ∈ ℝ)
9089, 49remulcld 11288 . . . . . . . . . . 11 (𝜑 → ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ)
9190flcld 13834 . . . . . . . . . 10 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ)
9286, 88sqrtge0d 15455 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (√‘(ϕ‘𝑅)))
9389, 49, 92, 74mulge0d 11837 . . . . . . . . . . 11 (𝜑 → 0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
94 flge 13841 . . . . . . . . . . . 12 ((((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
9590, 33, 94syl2anc 584 . . . . . . . . . . 11 (𝜑 → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
9693, 95mpbid 232 . . . . . . . . . 10 (𝜑 → 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))
9791, 96jca 511 . . . . . . . . 9 (𝜑 → ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
98 elnn0z 12623 . . . . . . . . 9 ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0 ↔ ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
9997, 98sylibr 234 . . . . . . . 8 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0)
10084, 99nn0addcld 12588 . . . . . . 7 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) ∈ ℕ0)
10154peano2zd 12722 . . . . . . . 8 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ∈ ℤ)
102 1zzd 12645 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
103102znegcld 12721 . . . . . . . 8 (𝜑 → -1 ∈ ℤ)
104101, 103zaddcld 12723 . . . . . . 7 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1) ∈ ℤ)
105 bccl 14357 . . . . . . 7 (((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) ∈ ℕ0 ∧ (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1) ∈ ℤ) → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1)) ∈ ℕ0)
106100, 104, 105syl2anc 584 . . . . . 6 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1)) ∈ ℕ0)
107106nn0red 12585 . . . . 5 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1)) ∈ ℝ)
10826, 99nn0addcld 12588 . . . . . . 7 (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) ∈ ℕ0)
10926nn0zd 12636 . . . . . . . 8 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℤ)
110109, 103zaddcld 12723 . . . . . . 7 (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1) ∈ ℤ)
111 bccl 14357 . . . . . . 7 ((((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) ∈ ℕ0 ∧ ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1) ∈ ℤ) → (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1)) ∈ ℕ0)
112108, 110, 111syl2anc 584 . . . . . 6 (𝜑 → (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1)) ∈ ℕ0)
113112nn0red 12585 . . . . 5 (𝜑 → (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1)) ∈ ℝ)
11452, 49remulcld 11288 . . . . . . . . . . . . 13 (𝜑 → ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)) ∈ ℝ)
115114flcld 13834 . . . . . . . . . . . 12 (𝜑 → (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))) ∈ ℤ)
11652, 49, 75, 74mulge0d 11837 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))
117 flge 13841 . . . . . . . . . . . . . 14 ((((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))))
118114, 33, 117syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (0 ≤ ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))))
119116, 118mpbid 232 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))))
120115, 119jca 511 . . . . . . . . . . 11 (𝜑 → ((⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))))
121 elnn0z 12623 . . . . . . . . . . 11 ((⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))) ∈ ℕ0 ↔ ((⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))))
122120, 121sylibr 234 . . . . . . . . . 10 (𝜑 → (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))) ∈ ℕ0)
12384, 122nn0addcld 12588 . . . . . . . . 9 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))) ∈ ℕ0)
124 bccl 14357 . . . . . . . . 9 (((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))) ∈ ℕ0 ∧ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℤ) → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℕ0)
125123, 54, 124syl2anc 584 . . . . . . . 8 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℕ0)
126125nn0red 12585 . . . . . . 7 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℝ)
127 bccl 14357 . . . . . . . . 9 (((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) ∈ ℕ0 ∧ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℤ) → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℕ0)
128100, 54, 127syl2anc 584 . . . . . . . 8 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℕ0)
129128nn0red 12585 . . . . . . 7 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℝ)
13042, 84reexpcld 14199 . . . . . . . . . . 11 (𝜑 → (2↑((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)) ∈ ℝ)
131 2nn0 12540 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
132131a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℕ0)
133132, 82nn0mulcld 12589 . . . . . . . . . . . . . 14 (𝜑 → (2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℕ0)
134133, 83nn0addcld 12588 . . . . . . . . . . . . 13 (𝜑 → ((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1) ∈ ℕ0)
135 bccl 14357 . . . . . . . . . . . . 13 ((((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1) ∈ ℕ0 ∧ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℤ) → (((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℕ0)
136134, 54, 135syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℕ0)
137136nn0red 12585 . . . . . . . . . . 11 (𝜑 → (((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ∈ ℝ)
1384, 42, 44ltled 11406 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 2)
13942, 138, 53recxpcld 26779 . . . . . . . . . . . . 13 (𝜑 → (2↑𝑐((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℝ)
140 reflcl 13832 . . . . . . . . . . . . . . . 16 (((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℝ → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℝ)
14153, 140syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℝ)
142141, 55readdcld 11287 . . . . . . . . . . . . . 14 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ∈ ℝ)
14342, 138, 142recxpcld 26779 . . . . . . . . . . . . 13 (𝜑 → (2↑𝑐((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)) ∈ ℝ)
144 1le2 12472 . . . . . . . . . . . . . . . . . 18 1 ≤ 2
145144a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≤ 2)
14655, 42, 7, 145, 71letrd 11415 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ≤ 𝑁)
147 reflcl 13832 . . . . . . . . . . . . . . . . 17 ((√‘𝐷) ∈ ℝ → (⌊‘(√‘𝐷)) ∈ ℝ)
14830, 147syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘(√‘𝐷)) ∈ ℝ)
14918fveq2d 6910 . . . . . . . . . . . . . . . . . 18 (𝜑 → (√‘𝐷) = (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
150149fveq2d 6910 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘(√‘𝐷)) = (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
151 flle 13835 . . . . . . . . . . . . . . . . . 18 ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℝ → (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
15252, 151syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
153150, 152eqbrtrd 5169 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘(√‘𝐷)) ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
1547, 146, 148, 52, 153cxplead 26777 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑐(⌊‘(√‘𝐷))) ≤ (𝑁𝑐(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
1557recnd 11286 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℂ)
1564, 12gtned 11393 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ≠ 0)
157155, 156, 31cxpexpzd 26767 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑐(⌊‘(√‘𝐷))) = (𝑁↑(⌊‘(√‘𝐷))))
15859, 48nelprd 4661 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ 2 ∈ {0, 1})
15958, 158eldifd 3973 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ∈ (ℂ ∖ {0, 1}))
160156neneqd 2942 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ 𝑁 = 0)
161 elsng 4644 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (𝑁 ∈ {0} ↔ 𝑁 = 0))
16215, 161syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑁 ∈ {0} ↔ 𝑁 = 0))
163160, 162mtbird 325 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ 𝑁 ∈ {0})
164155, 163eldifd 3973 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ (ℂ ∖ {0}))
165 cxplogb 26843 . . . . . . . . . . . . . . . . . 18 ((2 ∈ (ℂ ∖ {0, 1}) ∧ 𝑁 ∈ (ℂ ∖ {0})) → (2↑𝑐(2 logb 𝑁)) = 𝑁)
166159, 164, 165syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (2↑𝑐(2 logb 𝑁)) = 𝑁)
167166eqcomd 2740 . . . . . . . . . . . . . . . 16 (𝜑𝑁 = (2↑𝑐(2 logb 𝑁)))
168167oveq1d 7445 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑐(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) = ((2↑𝑐(2 logb 𝑁))↑𝑐(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
169154, 157, 1683brtr3d 5178 . . . . . . . . . . . . . 14 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) ≤ ((2↑𝑐(2 logb 𝑁))↑𝑐(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
17042, 44elrpd 13071 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℝ+)
17152recnd 11286 . . . . . . . . . . . . . . 15 (𝜑 → (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℂ)
172 cxpmul 26744 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ+ ∧ (2 logb 𝑁) ∈ ℝ ∧ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℂ) → (2↑𝑐((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) = ((2↑𝑐(2 logb 𝑁))↑𝑐(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
173170, 49, 171, 172syl3anc 1370 . . . . . . . . . . . . . 14 (𝜑 → (2↑𝑐((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) = ((2↑𝑐(2 logb 𝑁))↑𝑐(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
174169, 173breqtrrd 5175 . . . . . . . . . . . . 13 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) ≤ (2↑𝑐((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
175 fllep1 13837 . . . . . . . . . . . . . . 15 (((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℝ → ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ≤ ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1))
17653, 175syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ≤ ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1))
17755, 42, 145, 48leneltd 11412 . . . . . . . . . . . . . . 15 (𝜑 → 1 < 2)
17884nn0red 12585 . . . . . . . . . . . . . . 15 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ∈ ℝ)
17942, 177, 53, 178cxpled 26776 . . . . . . . . . . . . . 14 (𝜑 → (((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ≤ ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ↔ (2↑𝑐((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ≤ (2↑𝑐((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1))))
180176, 179mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (2↑𝑐((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ≤ (2↑𝑐((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)))
18140, 139, 143, 174, 180letrd 11415 . . . . . . . . . . . 12 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) ≤ (2↑𝑐((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)))
182 cxpexpz 26723 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ∈ ℤ) → (2↑𝑐((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)) = (2↑((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)))
18358, 59, 101, 182syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → (2↑𝑐((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)) = (2↑((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)))
184181, 183breqtrd 5173 . . . . . . . . . . 11 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) ≤ (2↑((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)))
18549, 49jca 511 . . . . . . . . . . . . . . 15 (𝜑 → ((2 logb 𝑁) ∈ ℝ ∧ (2 logb 𝑁) ∈ ℝ))
186 remulcl 11237 . . . . . . . . . . . . . . 15 (((2 logb 𝑁) ∈ ℝ ∧ (2 logb 𝑁) ∈ ℝ) → ((2 logb 𝑁) · (2 logb 𝑁)) ∈ ℝ)
187185, 186syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 𝑁) · (2 logb 𝑁)) ∈ ℝ)
188 reflcl 13832 . . . . . . . . . . . . . 14 (((2 logb 𝑁) · (2 logb 𝑁)) ∈ ℝ → (⌊‘((2 logb 𝑁) · (2 logb 𝑁))) ∈ ℝ)
189187, 188syl 17 . . . . . . . . . . . . 13 (𝜑 → (⌊‘((2 logb 𝑁) · (2 logb 𝑁))) ∈ ℝ)
19082nn0red 12585 . . . . . . . . . . . . 13 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℝ)
19142, 44, 6, 9, 48relogbcld 41954 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 logb 3) ∈ ℝ)
192191resqcld 14161 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 logb 3)↑2) ∈ ℝ)
19349recnd 11286 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2 logb 𝑁) ∈ ℂ)
194193sqvald 14179 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 logb 𝑁)↑2) = ((2 logb 𝑁) · (2 logb 𝑁)))
195194, 187eqeltrd 2838 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 logb 𝑁)↑2) ∈ ℝ)
196 3lexlogpow2ineq2 42040 . . . . . . . . . . . . . . . . . . 19 (2 < ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < 3)
197196simpli 483 . . . . . . . . . . . . . . . . . 18 2 < ((2 logb 3)↑2)
198197a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 < ((2 logb 3)↑2))
19942, 192, 198ltled 11406 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≤ ((2 logb 3)↑2))
2006, 42, 59redivcld 12092 . . . . . . . . . . . . . . . . . 18 (𝜑 → (3 / 2) ∈ ℝ)
201 2rp 13036 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ+
202201a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 2 ∈ ℝ+)
2034, 6, 9ltled 11406 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ 3)
2046, 202, 203divge0d 13114 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (3 / 2))
205 3lexlogpow2ineq1 42039 . . . . . . . . . . . . . . . . . . . . 21 ((3 / 2) < (2 logb 3) ∧ (2 logb 3) < (5 / 3))
206205simpli 483 . . . . . . . . . . . . . . . . . . . 20 (3 / 2) < (2 logb 3)
207206a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (3 / 2) < (2 logb 3))
208200, 191, 207ltled 11406 . . . . . . . . . . . . . . . . . 18 (𝜑 → (3 / 2) ≤ (2 logb 3))
2094, 200, 191, 204, 208letrd 11415 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ (2 logb 3))
21064, 65, 6, 9, 7, 12, 11logblebd 41957 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 logb 3) ≤ (2 logb 𝑁))
211191, 49, 132, 209, 210leexp1ad 41953 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 logb 3)↑2) ≤ ((2 logb 𝑁)↑2))
21242, 192, 195, 199, 211letrd 11415 . . . . . . . . . . . . . . 15 (𝜑 → 2 ≤ ((2 logb 𝑁)↑2))
213212, 194breqtrd 5173 . . . . . . . . . . . . . 14 (𝜑 → 2 ≤ ((2 logb 𝑁) · (2 logb 𝑁)))
214 flge 13841 . . . . . . . . . . . . . . 15 ((((2 logb 𝑁) · (2 logb 𝑁)) ∈ ℝ ∧ 2 ∈ ℤ) → (2 ≤ ((2 logb 𝑁) · (2 logb 𝑁)) ↔ 2 ≤ (⌊‘((2 logb 𝑁) · (2 logb 𝑁)))))
215187, 64, 214syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (2 ≤ ((2 logb 𝑁) · (2 logb 𝑁)) ↔ 2 ≤ (⌊‘((2 logb 𝑁) · (2 logb 𝑁)))))
216213, 215mpbid 232 . . . . . . . . . . . . 13 (𝜑 → 2 ≤ (⌊‘((2 logb 𝑁) · (2 logb 𝑁))))
21749, 49remulcld 11288 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 𝑁) · (2 logb 𝑁)) ∈ ℝ)
218 aks6d1c7lem1.10 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
21915, 19, 20, 21, 22, 23, 24, 25, 218aks6d1c3 42104 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2 logb 𝑁)↑2) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
220171sqvald 14179 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))↑2) = ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
22126nn0cnd 12586 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℂ)
222221msqsqrtd 15475 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
223220, 222eqtr2d 2775 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) = ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))↑2))
224219, 223breqtrd 5173 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 logb 𝑁)↑2) < ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))↑2))
22549, 52, 74, 75lt2sqd 14291 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 logb 𝑁) < (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ↔ ((2 logb 𝑁)↑2) < ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))↑2)))
226224, 225mpbird 257 . . . . . . . . . . . . . . . 16 (𝜑 → (2 logb 𝑁) < (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
22749, 52, 226ltled 11406 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 𝑁) ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
22849, 52, 49, 74, 227lemul2ad 12205 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 𝑁) · (2 logb 𝑁)) ≤ ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
229 flwordi 13848 . . . . . . . . . . . . . 14 ((((2 logb 𝑁) · (2 logb 𝑁)) ∈ ℝ ∧ ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℝ ∧ ((2 logb 𝑁) · (2 logb 𝑁)) ≤ ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) → (⌊‘((2 logb 𝑁) · (2 logb 𝑁))) ≤ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
230217, 53, 228, 229syl3anc 1370 . . . . . . . . . . . . 13 (𝜑 → (⌊‘((2 logb 𝑁) · (2 logb 𝑁))) ≤ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
23142, 189, 190, 216, 230letrd 11415 . . . . . . . . . . . 12 (𝜑 → 2 ≤ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
23254, 2312ap1caineq 42126 . . . . . . . . . . 11 (𝜑 → (2↑((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)) < (((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
23340, 130, 137, 184, 232lelttrd 11416 . . . . . . . . . 10 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < (((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
23482nn0cnd 12586 . . . . . . . . . . . . 13 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) ∈ ℂ)
2352342timesd 12506 . . . . . . . . . . . 12 (𝜑 → (2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) = ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
236235oveq1d 7445 . . . . . . . . . . 11 (𝜑 → ((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1) = (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1))
237236oveq1d 7445 . . . . . . . . . 10 (𝜑 → (((2 · (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) = ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
238233, 237breqtrd 5173 . . . . . . . . 9 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
239 1cnd 11253 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
240234, 234, 239addassd 11280 . . . . . . . . . . 11 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1) = ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)))
24184nn0cnd 12586 . . . . . . . . . . . 12 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ∈ ℂ)
242234, 241addcomd 11460 . . . . . . . . . . 11 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1)) = (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
243240, 242eqtrd 2774 . . . . . . . . . 10 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1) = (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
244243oveq1d 7445 . . . . . . . . 9 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) + 1)C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) = ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
245238, 244breqtrd 5173 . . . . . . . 8 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
246193, 171mulcomd 11279 . . . . . . . . . . 11 (𝜑 → ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) = ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))
247246fveq2d 6910 . . . . . . . . . 10 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) = (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))))
248247oveq2d 7446 . . . . . . . . 9 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) = (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))))
249248oveq1d 7445 . . . . . . . 8 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) = ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
250245, 249breqtrd 5173 . . . . . . 7 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
251122nn0red 12585 . . . . . . . . 9 (𝜑 → (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))) ∈ ℝ)
25299nn0red 12585 . . . . . . . . 9 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℝ)
25317, 27eqeltrrid 2843 . . . . . . . . . . . . 13 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0)
254253nn0red 12585 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ)
255253nn0ge0d 12587 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
256254, 255resqrtcld 15452 . . . . . . . . . . 11 (𝜑 → (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℝ)
257256, 49remulcld 11288 . . . . . . . . . 10 (𝜑 → ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)) ∈ ℝ)
25815, 19, 20, 21, 22, 23, 24aks6d1c4 42105 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (ϕ‘𝑅))
25950, 51, 86, 88sqrtled 15461 . . . . . . . . . . . 12 (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (ϕ‘𝑅) ↔ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ≤ (√‘(ϕ‘𝑅))))
260258, 259mpbid 232 . . . . . . . . . . 11 (𝜑 → (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ≤ (√‘(ϕ‘𝑅)))
261256, 89, 49, 74, 260lemul1ad 12204 . . . . . . . . . 10 (𝜑 → ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)) ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
262 flwordi 13848 . . . . . . . . . 10 ((((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)) ∈ ℝ ∧ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ ∧ ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)) ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) → (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))) ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))
263257, 90, 261, 262syl3anc 1370 . . . . . . . . 9 (𝜑 → (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))) ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))
264251, 252, 142, 263leadd2dd 11875 . . . . . . . 8 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁)))) ≤ (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
265123, 100, 54, 264bcled 42159 . . . . . . 7 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) ≤ ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
26640, 126, 129, 250, 265ltletrd 11418 . . . . . 6 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))))
267234, 239pncand 11618 . . . . . . . . 9 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) − 1) = (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
268267eqcomd 2740 . . . . . . . 8 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) = (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) − 1))
269241, 239negsubd 11623 . . . . . . . . 9 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1) = (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) − 1))
270269eqcomd 2740 . . . . . . . 8 (𝜑 → (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) − 1) = (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1))
271268, 270eqtrd 2774 . . . . . . 7 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) = (((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1))
272271oveq2d 7446 . . . . . 6 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))) = ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1)))
273266, 272breqtrd 5173 . . . . 5 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1)))
27421nnnn0d 12584 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 ∈ ℕ0)
27525zncrng 21580 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℕ0 → (ℤ/nℤ‘𝑅) ∈ CRing)
276274, 275syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ℤ/nℤ‘𝑅) ∈ CRing)
277 crngring 20262 . . . . . . . . . . . . . . . . . . . 20 ((ℤ/nℤ‘𝑅) ∈ CRing → (ℤ/nℤ‘𝑅) ∈ Ring)
27824zrhrhm 21539 . . . . . . . . . . . . . . . . . . . 20 ((ℤ/nℤ‘𝑅) ∈ Ring → 𝐿 ∈ (ℤring RingHom (ℤ/nℤ‘𝑅)))
279 zringbas 21481 . . . . . . . . . . . . . . . . . . . . 21 ℤ = (Base‘ℤring)
280 eqid 2734 . . . . . . . . . . . . . . . . . . . . 21 (Base‘(ℤ/nℤ‘𝑅)) = (Base‘(ℤ/nℤ‘𝑅))
281279, 280rhmf 20501 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ (ℤring RingHom (ℤ/nℤ‘𝑅)) → 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))
282276, 277, 278, 2814syl 19 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))
283282ffnd 6737 . . . . . . . . . . . . . . . . . 18 (𝜑𝐿 Fn ℤ)
28415, 19, 20, 23aks6d1c2p1 42099 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℕ)
285 nnssz 12632 . . . . . . . . . . . . . . . . . . . . . 22 ℕ ⊆ ℤ
286285a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ℕ ⊆ ℤ)
287284, 286fssd 6753 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℤ)
288 frn 6743 . . . . . . . . . . . . . . . . . . . 20 (𝐸:(ℕ0 × ℕ0)⟶ℤ → ran 𝐸 ⊆ ℤ)
289287, 288syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran 𝐸 ⊆ ℤ)
290284ffnd 6737 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐸 Fn (ℕ0 × ℕ0))
291 fnima 6698 . . . . . . . . . . . . . . . . . . . . 21 (𝐸 Fn (ℕ0 × ℕ0) → (𝐸 “ (ℕ0 × ℕ0)) = ran 𝐸)
292290, 291syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐸 “ (ℕ0 × ℕ0)) = ran 𝐸)
293292sseq1d 4026 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ ↔ ran 𝐸 ⊆ ℤ))
294289, 293mpbird 257 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ)
295 vex 3481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑘 ∈ V
296 vex 3481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑙 ∈ V
297295, 296op1std 8022 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = ⟨𝑘, 𝑙⟩ → (1st𝑣) = 𝑘)
298297oveq2d 7446 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = ⟨𝑘, 𝑙⟩ → (𝑃↑(1st𝑣)) = (𝑃𝑘))
299295, 296op2ndd 8023 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = ⟨𝑘, 𝑙⟩ → (2nd𝑣) = 𝑙)
300299oveq2d 7446 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = ⟨𝑘, 𝑙⟩ → ((𝑁 / 𝑃)↑(2nd𝑣)) = ((𝑁 / 𝑃)↑𝑙))
301298, 300oveq12d 7448 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = ⟨𝑘, 𝑙⟩ → ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))) = ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
302301mpompt 7546 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
303302eqcomi 2743 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))))
30423, 303eqtri 2762 . . . . . . . . . . . . . . . . . . . . 21 𝐸 = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))))
305304a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐸 = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))))
306 c0ex 11252 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ V
307306, 306op1std 8022 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = ⟨0, 0⟩ → (1st𝑣) = 0)
308307adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑣 = ⟨0, 0⟩) → (1st𝑣) = 0)
309308oveq2d 7446 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑣 = ⟨0, 0⟩) → (𝑃↑(1st𝑣)) = (𝑃↑0))
310306, 306op2ndd 8023 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = ⟨0, 0⟩ → (2nd𝑣) = 0)
311310adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑣 = ⟨0, 0⟩) → (2nd𝑣) = 0)
312311oveq2d 7446 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑣 = ⟨0, 0⟩) → ((𝑁 / 𝑃)↑(2nd𝑣)) = ((𝑁 / 𝑃)↑0))
313309, 312oveq12d 7448 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑣 = ⟨0, 0⟩) → ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))) = ((𝑃↑0) · ((𝑁 / 𝑃)↑0)))
314 prmnn 16707 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31519, 314syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑃 ∈ ℕ)
316315nncnd 12279 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑃 ∈ ℂ)
317316exp0d 14176 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑃↑0) = 1)
318315nnne0d 12313 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑃 ≠ 0)
319155, 316, 318divcld 12040 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑁 / 𝑃) ∈ ℂ)
320319exp0d 14176 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝑁 / 𝑃)↑0) = 1)
321317, 320oveq12d 7448 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑃↑0) · ((𝑁 / 𝑃)↑0)) = (1 · 1))
322239mulridd 11275 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 · 1) = 1)
323321, 322eqtrd 2774 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑃↑0) · ((𝑁 / 𝑃)↑0)) = 1)
324323adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑣 = ⟨0, 0⟩) → ((𝑃↑0) · ((𝑁 / 𝑃)↑0)) = 1)
325313, 324eqtrd 2774 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑣 = ⟨0, 0⟩) → ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))) = 1)
326 0nn0 12538 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℕ0
327326a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ∈ ℕ0)
328327, 327opelxpd 5727 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ⟨0, 0⟩ ∈ (ℕ0 × ℕ0))
329 1nn 12274 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℕ
330329a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 1 ∈ ℕ)
331305, 325, 328, 330fvmptd 7022 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐸‘⟨0, 0⟩) = 1)
332 ssidd 4018 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ℕ0 × ℕ0) ⊆ (ℕ0 × ℕ0))
333 fnfvima 7252 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 Fn (ℕ0 × ℕ0) ∧ (ℕ0 × ℕ0) ⊆ (ℕ0 × ℕ0) ∧ ⟨0, 0⟩ ∈ (ℕ0 × ℕ0)) → (𝐸‘⟨0, 0⟩) ∈ (𝐸 “ (ℕ0 × ℕ0)))
334290, 332, 328, 333syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐸‘⟨0, 0⟩) ∈ (𝐸 “ (ℕ0 × ℕ0)))
335331, 334eqeltrrd 2839 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ (𝐸 “ (ℕ0 × ℕ0)))
336 fnfvima 7252 . . . . . . . . . . . . . . . . . 18 ((𝐿 Fn ℤ ∧ (𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ ∧ 1 ∈ (𝐸 “ (ℕ0 × ℕ0))) → (𝐿‘1) ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
337283, 294, 335, 336syl3anc 1370 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐿‘1) ∈ (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
33824a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅)))
339 fvexd 6921 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℤRHom‘(ℤ/nℤ‘𝑅)) ∈ V)
340338, 339eqeltrd 2838 . . . . . . . . . . . . . . . . . 18 (𝜑𝐿 ∈ V)
341340imaexd 7938 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ V)
342337, 341hashelne0d 14403 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) = 0)
343342neqned 2944 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≠ 0)
34426, 343jca 511 . . . . . . . . . . . . . 14 (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0 ∧ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≠ 0))
345 elnnne0 12537 . . . . . . . . . . . . . 14 ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ ↔ ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0 ∧ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≠ 0))
346344, 345sylibr 234 . . . . . . . . . . . . 13 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ)
347346nnrpd 13072 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ+)
348347rpsqrtcld 15446 . . . . . . . . . . 11 (𝜑 → (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℝ+)
34949, 52, 348, 226ltmul1dd 13129 . . . . . . . . . 10 (𝜑 → ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) < ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
35050, 51, 50, 51sqrtmuld 15459 . . . . . . . . . . 11 (𝜑 → (√‘((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) · (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) = ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
351350eqcomd 2740 . . . . . . . . . 10 (𝜑 → ((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) = (√‘((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) · (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
352349, 351breqtrd 5173 . . . . . . . . 9 (𝜑 → ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) < (√‘((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) · (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
353350, 222eqtrd 2774 . . . . . . . . 9 (𝜑 → (√‘((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) · (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
354352, 353breqtrd 5173 . . . . . . . 8 (𝜑 → ((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
355 fllt 13842 . . . . . . . . 9 ((((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℝ ∧ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℤ) → (((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ↔ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
35653, 109, 355syl2anc 584 . . . . . . . 8 (𝜑 → (((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ↔ (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
357354, 356mpbid 232 . . . . . . 7 (𝜑 → (⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
35854, 109zltp1led 41960 . . . . . . 7 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ↔ ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ≤ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
359357, 358mpbid 232 . . . . . 6 (𝜑 → ((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) ≤ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
36055renegcld 11687 . . . . . . 7 (𝜑 → -1 ∈ ℝ)
361 df-neg 11492 . . . . . . . . 9 -1 = (0 − 1)
362361a1i 11 . . . . . . . 8 (𝜑 → -1 = (0 − 1))
3634lem1d 12198 . . . . . . . 8 (𝜑 → (0 − 1) ≤ 0)
364362, 363eqbrtrd 5169 . . . . . . 7 (𝜑 → -1 ≤ 0)
365360, 4, 252, 364, 96letrd 11415 . . . . . 6 (𝜑 → -1 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))
36684, 26, 99, 103, 359, 365bcle2d 42160 . . . . 5 (𝜑 → ((((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C(((⌊‘((2 logb 𝑁) · (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))) + 1) + -1)) ≤ (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1)))
36740, 107, 113, 273, 366ltletrd 11418 . . . 4 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1)))
368221, 239negsubd 11623 . . . . 5 (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1) = ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) − 1))
369368oveq2d 7446 . . . 4 (𝜑 → (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + -1)) = (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) − 1)))
370367, 369breqtrd 5173 . . 3 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) − 1)))
371 aks6d1c7lem1.9 . . . . . . 7 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
372371eqcomi 2743 . . . . . 6 (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) = 𝐴
373372a1i 11 . . . . 5 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) = 𝐴)
374373oveq2d 7446 . . . 4 (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))) = ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + 𝐴))
375374oveq1d 7445 . . 3 (𝜑 → (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) − 1)) = (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + 𝐴)C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) − 1)))
376370, 375breqtrd 5173 . 2 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + 𝐴)C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) − 1)))
37718eqcomd 2740 . . . 4 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) = 𝐷)
378377oveq1d 7445 . . 3 (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + 𝐴) = (𝐷 + 𝐴))
379377oveq1d 7445 . . 3 (𝜑 → ((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) − 1) = (𝐷 − 1))
380378, 379oveq12d 7448 . 2 (𝜑 → (((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) + 𝐴)C((♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) − 1)) = ((𝐷 + 𝐴)C(𝐷 − 1)))
381376, 380breqtrd 5173 1 (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((𝐷 + 𝐴)C(𝐷 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  Vcvv 3477  cdif 3959  wss 3962  {csn 4630  {cpr 4632  cop 4636   class class class wbr 5147  cmpt 5230   × cxp 5686  ran crn 5689  cima 5691   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  cmpo 7432  1st c1st 8010  2nd c2nd 8011  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489  -cneg 11490   / cdiv 11917  cn 12263  2c2 12318  3c3 12319  5c5 12321  0cn0 12523  cz 12610  cuz 12875  +crp 13031  cfl 13826  cexp 14098  Ccbc 14337  chash 14365  csqrt 15268  cdvds 16286   gcd cgcd 16527  cprime 16704  odcodz 16796  ϕcphi 16797  Basecbs 17244  Ringcrg 20250  CRingccrg 20251   RingHom crh 20485  ringczring 21474  ℤRHomczrh 21527  ℤ/nczn 21530  𝑐ccxp 26611   logb clogb 26821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231  ax-mulf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-ec 8745  df-qs 8749  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-prod 15936  df-fallfac 16039  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-dvds 16287  df-gcd 16528  df-prm 16705  df-odz 16798  df-phi 16799  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-qus 17555  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mulg 19098  df-subg 19153  df-nsg 19154  df-eqg 19155  df-ghm 19243  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-rhm 20488  df-subrng 20562  df-subrg 20586  df-lmod 20876  df-lss 20947  df-lsp 20987  df-sra 21189  df-rgmod 21190  df-lidl 21235  df-rsp 21236  df-2idl 21277  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-zring 21475  df-zrh 21531  df-zn 21534  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916  df-log 26612  df-cxp 26613  df-logb 26822
This theorem is referenced by:  aks6d1c7lem2  42162
  Copyright terms: Public domain W3C validator