Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege133 Structured version   Visualization version   GIF version

Theorem frege133 43979
Description: If the procedure 𝑅 is single-valued and if 𝑀 and 𝑌 follow 𝑋 in the 𝑅-sequence, then 𝑌 belongs to the 𝑅-sequence beginning with 𝑀 or precedes 𝑀 in the 𝑅-sequence. Proposition 133 of [Frege1879] p. 86. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege133.x 𝑋𝑈
frege133.y 𝑌𝑉
frege133.m 𝑀𝑊
frege133.r 𝑅𝑆
Assertion
Ref Expression
frege133 (Fun 𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))))

Proof of Theorem frege133
StepHypRef Expression
1 frege133.x . . 3 𝑋𝑈
2 frege133.y . . 3 𝑌𝑉
3 frege133.r . . 3 𝑅𝑆
4 fvex 6835 . . . . 5 (t+‘𝑅) ∈ V
54cnvex 7858 . . . 4 (t+‘𝑅) ∈ V
6 imaexg 7846 . . . 4 ((t+‘𝑅) ∈ V → ((t+‘𝑅) “ {𝑀}) ∈ V)
75, 6ax-mp 5 . . 3 ((t+‘𝑅) “ {𝑀}) ∈ V
8 imaundir 6099 . . . 4 (((t+‘𝑅) ∪ I ) “ {𝑀}) = (((t+‘𝑅) “ {𝑀}) ∪ ( I “ {𝑀}))
9 imaexg 7846 . . . . . 6 ((t+‘𝑅) ∈ V → ((t+‘𝑅) “ {𝑀}) ∈ V)
104, 9ax-mp 5 . . . . 5 ((t+‘𝑅) “ {𝑀}) ∈ V
11 imai 6025 . . . . . 6 ( I “ {𝑀}) = {𝑀}
12 snex 5375 . . . . . 6 {𝑀} ∈ V
1311, 12eqeltri 2824 . . . . 5 ( I “ {𝑀}) ∈ V
1410, 13unex 7680 . . . 4 (((t+‘𝑅) “ {𝑀}) ∪ ( I “ {𝑀})) ∈ V
158, 14eqeltri 2824 . . 3 (((t+‘𝑅) ∪ I ) “ {𝑀}) ∈ V
161, 2, 3, 7, 15frege83 43929 . 2 (𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))))
17 frege133.m . . . . . . . 8 𝑀𝑊
1817elexi 3459 . . . . . . 7 𝑀 ∈ V
191elexi 3459 . . . . . . 7 𝑋 ∈ V
2018, 19elimasn 6041 . . . . . 6 (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ⟨𝑀, 𝑋⟩ ∈ (t+‘𝑅))
21 df-br 5093 . . . . . 6 (𝑀(t+‘𝑅)𝑋 ↔ ⟨𝑀, 𝑋⟩ ∈ (t+‘𝑅))
2218, 19brcnv 5825 . . . . . 6 (𝑀(t+‘𝑅)𝑋𝑋(t+‘𝑅)𝑀)
2320, 21, 223bitr2i 299 . . . . 5 (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) ↔ 𝑋(t+‘𝑅)𝑀)
24 elun 4104 . . . . . . 7 (𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ∨ 𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})))
25 df-or 848 . . . . . . 7 ((𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ∨ 𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑌 ∈ ((t+‘𝑅) “ {𝑀}) → 𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})))
262elexi 3459 . . . . . . . . . . 11 𝑌 ∈ V
2718, 26elimasn 6041 . . . . . . . . . 10 (𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ⟨𝑀, 𝑌⟩ ∈ (t+‘𝑅))
28 df-br 5093 . . . . . . . . . 10 (𝑀(t+‘𝑅)𝑌 ↔ ⟨𝑀, 𝑌⟩ ∈ (t+‘𝑅))
2918, 26brcnv 5825 . . . . . . . . . 10 (𝑀(t+‘𝑅)𝑌𝑌(t+‘𝑅)𝑀)
3027, 28, 293bitr2i 299 . . . . . . . . 9 (𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ↔ 𝑌(t+‘𝑅)𝑀)
3130notbii 320 . . . . . . . 8 𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ¬ 𝑌(t+‘𝑅)𝑀)
3218, 26elimasn 6041 . . . . . . . . 9 (𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ ⟨𝑀, 𝑌⟩ ∈ ((t+‘𝑅) ∪ I ))
33 df-br 5093 . . . . . . . . 9 (𝑀((t+‘𝑅) ∪ I )𝑌 ↔ ⟨𝑀, 𝑌⟩ ∈ ((t+‘𝑅) ∪ I ))
3432, 33bitr4i 278 . . . . . . . 8 (𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ 𝑀((t+‘𝑅) ∪ I )𝑌)
3531, 34imbi12i 350 . . . . . . 7 ((¬ 𝑌 ∈ ((t+‘𝑅) “ {𝑀}) → 𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))
3624, 25, 353bitri 297 . . . . . 6 (𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))
3736imbi2i 336 . . . . 5 ((𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) ↔ (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))
3823, 37imbi12i 350 . . . 4 ((𝑋 ∈ ((t+‘𝑅) “ {𝑀}) → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) ↔ (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))))
3938imbi2i 336 . . 3 ((𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))))) ↔ (𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))))
4017, 3frege132 43978 . . 3 ((𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))) → (Fun 𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))))
4139, 40sylbi 217 . 2 ((𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))))) → (Fun 𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))))
4216, 41ax-mp 5 1 (Fun 𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847  wcel 2109  Vcvv 3436  cun 3901  {csn 4577  cop 4583   class class class wbr 5092   I cid 5513  ccnv 5618  cima 5622  Fun wfun 6476  cfv 6482  t+ctcl 14892   hereditary whe 43755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-frege1 43773  ax-frege2 43774  ax-frege8 43792  ax-frege28 43813  ax-frege31 43817  ax-frege41 43828  ax-frege52a 43840  ax-frege52c 43871  ax-frege58b 43884
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-seq 13909  df-trcl 14894  df-relexp 14927  df-he 43756
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator