Proof of Theorem frege133
| Step | Hyp | Ref
| Expression |
| 1 | | frege133.x |
. . 3
⊢ 𝑋 ∈ 𝑈 |
| 2 | | frege133.y |
. . 3
⊢ 𝑌 ∈ 𝑉 |
| 3 | | frege133.r |
. . 3
⊢ 𝑅 ∈ 𝑆 |
| 4 | | fvex 6919 |
. . . . 5
⊢
(t+‘𝑅) ∈
V |
| 5 | 4 | cnvex 7947 |
. . . 4
⊢ ◡(t+‘𝑅) ∈ V |
| 6 | | imaexg 7935 |
. . . 4
⊢ (◡(t+‘𝑅) ∈ V → (◡(t+‘𝑅) “ {𝑀}) ∈ V) |
| 7 | 5, 6 | ax-mp 5 |
. . 3
⊢ (◡(t+‘𝑅) “ {𝑀}) ∈ V |
| 8 | | imaundir 6170 |
. . . 4
⊢
(((t+‘𝑅) ∪
I ) “ {𝑀}) =
(((t+‘𝑅) “
{𝑀}) ∪ ( I “
{𝑀})) |
| 9 | | imaexg 7935 |
. . . . . 6
⊢
((t+‘𝑅) ∈
V → ((t+‘𝑅)
“ {𝑀}) ∈
V) |
| 10 | 4, 9 | ax-mp 5 |
. . . . 5
⊢
((t+‘𝑅)
“ {𝑀}) ∈
V |
| 11 | | imai 6092 |
. . . . . 6
⊢ ( I
“ {𝑀}) = {𝑀} |
| 12 | | snex 5436 |
. . . . . 6
⊢ {𝑀} ∈ V |
| 13 | 11, 12 | eqeltri 2837 |
. . . . 5
⊢ ( I
“ {𝑀}) ∈
V |
| 14 | 10, 13 | unex 7764 |
. . . 4
⊢
(((t+‘𝑅)
“ {𝑀}) ∪ ( I
“ {𝑀})) ∈
V |
| 15 | 8, 14 | eqeltri 2837 |
. . 3
⊢
(((t+‘𝑅) ∪
I ) “ {𝑀}) ∈
V |
| 16 | 1, 2, 3, 7, 15 | frege83 43959 |
. 2
⊢ (𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋 ∈ (◡(t+‘𝑅) “ {𝑀}) → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))))) |
| 17 | | frege133.m |
. . . . . . . 8
⊢ 𝑀 ∈ 𝑊 |
| 18 | 17 | elexi 3503 |
. . . . . . 7
⊢ 𝑀 ∈ V |
| 19 | 1 | elexi 3503 |
. . . . . . 7
⊢ 𝑋 ∈ V |
| 20 | 18, 19 | elimasn 6108 |
. . . . . 6
⊢ (𝑋 ∈ (◡(t+‘𝑅) “ {𝑀}) ↔ 〈𝑀, 𝑋〉 ∈ ◡(t+‘𝑅)) |
| 21 | | df-br 5144 |
. . . . . 6
⊢ (𝑀◡(t+‘𝑅)𝑋 ↔ 〈𝑀, 𝑋〉 ∈ ◡(t+‘𝑅)) |
| 22 | 18, 19 | brcnv 5893 |
. . . . . 6
⊢ (𝑀◡(t+‘𝑅)𝑋 ↔ 𝑋(t+‘𝑅)𝑀) |
| 23 | 20, 21, 22 | 3bitr2i 299 |
. . . . 5
⊢ (𝑋 ∈ (◡(t+‘𝑅) “ {𝑀}) ↔ 𝑋(t+‘𝑅)𝑀) |
| 24 | | elun 4153 |
. . . . . . 7
⊢ (𝑌 ∈ ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (𝑌 ∈ (◡(t+‘𝑅) “ {𝑀}) ∨ 𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}))) |
| 25 | | df-or 849 |
. . . . . . 7
⊢ ((𝑌 ∈ (◡(t+‘𝑅) “ {𝑀}) ∨ 𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑌 ∈ (◡(t+‘𝑅) “ {𝑀}) → 𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}))) |
| 26 | 2 | elexi 3503 |
. . . . . . . . . . 11
⊢ 𝑌 ∈ V |
| 27 | 18, 26 | elimasn 6108 |
. . . . . . . . . 10
⊢ (𝑌 ∈ (◡(t+‘𝑅) “ {𝑀}) ↔ 〈𝑀, 𝑌〉 ∈ ◡(t+‘𝑅)) |
| 28 | | df-br 5144 |
. . . . . . . . . 10
⊢ (𝑀◡(t+‘𝑅)𝑌 ↔ 〈𝑀, 𝑌〉 ∈ ◡(t+‘𝑅)) |
| 29 | 18, 26 | brcnv 5893 |
. . . . . . . . . 10
⊢ (𝑀◡(t+‘𝑅)𝑌 ↔ 𝑌(t+‘𝑅)𝑀) |
| 30 | 27, 28, 29 | 3bitr2i 299 |
. . . . . . . . 9
⊢ (𝑌 ∈ (◡(t+‘𝑅) “ {𝑀}) ↔ 𝑌(t+‘𝑅)𝑀) |
| 31 | 30 | notbii 320 |
. . . . . . . 8
⊢ (¬
𝑌 ∈ (◡(t+‘𝑅) “ {𝑀}) ↔ ¬ 𝑌(t+‘𝑅)𝑀) |
| 32 | 18, 26 | elimasn 6108 |
. . . . . . . . 9
⊢ (𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ 〈𝑀, 𝑌〉 ∈ ((t+‘𝑅) ∪ I )) |
| 33 | | df-br 5144 |
. . . . . . . . 9
⊢ (𝑀((t+‘𝑅) ∪ I )𝑌 ↔ 〈𝑀, 𝑌〉 ∈ ((t+‘𝑅) ∪ I )) |
| 34 | 32, 33 | bitr4i 278 |
. . . . . . . 8
⊢ (𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ 𝑀((t+‘𝑅) ∪ I )𝑌) |
| 35 | 31, 34 | imbi12i 350 |
. . . . . . 7
⊢ ((¬
𝑌 ∈ (◡(t+‘𝑅) “ {𝑀}) → 𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑌(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑌)) |
| 36 | 24, 25, 35 | 3bitri 297 |
. . . . . 6
⊢ (𝑌 ∈ ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑌(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑌)) |
| 37 | 36 | imbi2i 336 |
. . . . 5
⊢ ((𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) ↔ (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑌))) |
| 38 | 23, 37 | imbi12i 350 |
. . . 4
⊢ ((𝑋 ∈ (◡(t+‘𝑅) “ {𝑀}) → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) ↔ (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑌)))) |
| 39 | 38 | imbi2i 336 |
. . 3
⊢ ((𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋 ∈ (◡(t+‘𝑅) “ {𝑀}) → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))))) ↔ (𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑌))))) |
| 40 | 17, 3 | frege132 44008 |
. . 3
⊢ ((𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑌)))) → (Fun ◡◡𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑌))))) |
| 41 | 39, 40 | sylbi 217 |
. 2
⊢ ((𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋 ∈ (◡(t+‘𝑅) “ {𝑀}) → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))))) → (Fun ◡◡𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑌))))) |
| 42 | 16, 41 | ax-mp 5 |
1
⊢ (Fun
◡◡𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑌)))) |