Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege133 Structured version   Visualization version   GIF version

Theorem frege133 44009
Description: If the procedure 𝑅 is single-valued and if 𝑀 and 𝑌 follow 𝑋 in the 𝑅-sequence, then 𝑌 belongs to the 𝑅-sequence beginning with 𝑀 or precedes 𝑀 in the 𝑅-sequence. Proposition 133 of [Frege1879] p. 86. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege133.x 𝑋𝑈
frege133.y 𝑌𝑉
frege133.m 𝑀𝑊
frege133.r 𝑅𝑆
Assertion
Ref Expression
frege133 (Fun 𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))))

Proof of Theorem frege133
StepHypRef Expression
1 frege133.x . . 3 𝑋𝑈
2 frege133.y . . 3 𝑌𝑉
3 frege133.r . . 3 𝑅𝑆
4 fvex 6919 . . . . 5 (t+‘𝑅) ∈ V
54cnvex 7947 . . . 4 (t+‘𝑅) ∈ V
6 imaexg 7935 . . . 4 ((t+‘𝑅) ∈ V → ((t+‘𝑅) “ {𝑀}) ∈ V)
75, 6ax-mp 5 . . 3 ((t+‘𝑅) “ {𝑀}) ∈ V
8 imaundir 6170 . . . 4 (((t+‘𝑅) ∪ I ) “ {𝑀}) = (((t+‘𝑅) “ {𝑀}) ∪ ( I “ {𝑀}))
9 imaexg 7935 . . . . . 6 ((t+‘𝑅) ∈ V → ((t+‘𝑅) “ {𝑀}) ∈ V)
104, 9ax-mp 5 . . . . 5 ((t+‘𝑅) “ {𝑀}) ∈ V
11 imai 6092 . . . . . 6 ( I “ {𝑀}) = {𝑀}
12 snex 5436 . . . . . 6 {𝑀} ∈ V
1311, 12eqeltri 2837 . . . . 5 ( I “ {𝑀}) ∈ V
1410, 13unex 7764 . . . 4 (((t+‘𝑅) “ {𝑀}) ∪ ( I “ {𝑀})) ∈ V
158, 14eqeltri 2837 . . 3 (((t+‘𝑅) ∪ I ) “ {𝑀}) ∈ V
161, 2, 3, 7, 15frege83 43959 . 2 (𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))))
17 frege133.m . . . . . . . 8 𝑀𝑊
1817elexi 3503 . . . . . . 7 𝑀 ∈ V
191elexi 3503 . . . . . . 7 𝑋 ∈ V
2018, 19elimasn 6108 . . . . . 6 (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ⟨𝑀, 𝑋⟩ ∈ (t+‘𝑅))
21 df-br 5144 . . . . . 6 (𝑀(t+‘𝑅)𝑋 ↔ ⟨𝑀, 𝑋⟩ ∈ (t+‘𝑅))
2218, 19brcnv 5893 . . . . . 6 (𝑀(t+‘𝑅)𝑋𝑋(t+‘𝑅)𝑀)
2320, 21, 223bitr2i 299 . . . . 5 (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) ↔ 𝑋(t+‘𝑅)𝑀)
24 elun 4153 . . . . . . 7 (𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ∨ 𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})))
25 df-or 849 . . . . . . 7 ((𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ∨ 𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑌 ∈ ((t+‘𝑅) “ {𝑀}) → 𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})))
262elexi 3503 . . . . . . . . . . 11 𝑌 ∈ V
2718, 26elimasn 6108 . . . . . . . . . 10 (𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ⟨𝑀, 𝑌⟩ ∈ (t+‘𝑅))
28 df-br 5144 . . . . . . . . . 10 (𝑀(t+‘𝑅)𝑌 ↔ ⟨𝑀, 𝑌⟩ ∈ (t+‘𝑅))
2918, 26brcnv 5893 . . . . . . . . . 10 (𝑀(t+‘𝑅)𝑌𝑌(t+‘𝑅)𝑀)
3027, 28, 293bitr2i 299 . . . . . . . . 9 (𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ↔ 𝑌(t+‘𝑅)𝑀)
3130notbii 320 . . . . . . . 8 𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ¬ 𝑌(t+‘𝑅)𝑀)
3218, 26elimasn 6108 . . . . . . . . 9 (𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ ⟨𝑀, 𝑌⟩ ∈ ((t+‘𝑅) ∪ I ))
33 df-br 5144 . . . . . . . . 9 (𝑀((t+‘𝑅) ∪ I )𝑌 ↔ ⟨𝑀, 𝑌⟩ ∈ ((t+‘𝑅) ∪ I ))
3432, 33bitr4i 278 . . . . . . . 8 (𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ 𝑀((t+‘𝑅) ∪ I )𝑌)
3531, 34imbi12i 350 . . . . . . 7 ((¬ 𝑌 ∈ ((t+‘𝑅) “ {𝑀}) → 𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))
3624, 25, 353bitri 297 . . . . . 6 (𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))
3736imbi2i 336 . . . . 5 ((𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) ↔ (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))
3823, 37imbi12i 350 . . . 4 ((𝑋 ∈ ((t+‘𝑅) “ {𝑀}) → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) ↔ (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))))
3938imbi2i 336 . . 3 ((𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))))) ↔ (𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))))
4017, 3frege132 44008 . . 3 ((𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))) → (Fun 𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))))
4139, 40sylbi 217 . 2 ((𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))))) → (Fun 𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))))
4216, 41ax-mp 5 1 (Fun 𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 848  wcel 2108  Vcvv 3480  cun 3949  {csn 4626  cop 4632   class class class wbr 5143   I cid 5577  ccnv 5684  cima 5688  Fun wfun 6555  cfv 6561  t+ctcl 15024   hereditary whe 43785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-frege1 43803  ax-frege2 43804  ax-frege8 43822  ax-frege28 43843  ax-frege31 43847  ax-frege41 43858  ax-frege52a 43870  ax-frege52c 43901  ax-frege58b 43914
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-trcl 15026  df-relexp 15059  df-he 43786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator