Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege133 Structured version   Visualization version   GIF version

Theorem frege133 44099
Description: If the procedure 𝑅 is single-valued and if 𝑀 and 𝑌 follow 𝑋 in the 𝑅-sequence, then 𝑌 belongs to the 𝑅-sequence beginning with 𝑀 or precedes 𝑀 in the 𝑅-sequence. Proposition 133 of [Frege1879] p. 86. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege133.x 𝑋𝑈
frege133.y 𝑌𝑉
frege133.m 𝑀𝑊
frege133.r 𝑅𝑆
Assertion
Ref Expression
frege133 (Fun 𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))))

Proof of Theorem frege133
StepHypRef Expression
1 frege133.x . . 3 𝑋𝑈
2 frege133.y . . 3 𝑌𝑉
3 frege133.r . . 3 𝑅𝑆
4 fvex 6835 . . . . 5 (t+‘𝑅) ∈ V
54cnvex 7855 . . . 4 (t+‘𝑅) ∈ V
6 imaexg 7843 . . . 4 ((t+‘𝑅) ∈ V → ((t+‘𝑅) “ {𝑀}) ∈ V)
75, 6ax-mp 5 . . 3 ((t+‘𝑅) “ {𝑀}) ∈ V
8 imaundir 6097 . . . 4 (((t+‘𝑅) ∪ I ) “ {𝑀}) = (((t+‘𝑅) “ {𝑀}) ∪ ( I “ {𝑀}))
9 imaexg 7843 . . . . . 6 ((t+‘𝑅) ∈ V → ((t+‘𝑅) “ {𝑀}) ∈ V)
104, 9ax-mp 5 . . . . 5 ((t+‘𝑅) “ {𝑀}) ∈ V
11 imai 6022 . . . . . 6 ( I “ {𝑀}) = {𝑀}
12 snex 5372 . . . . . 6 {𝑀} ∈ V
1311, 12eqeltri 2827 . . . . 5 ( I “ {𝑀}) ∈ V
1410, 13unex 7677 . . . 4 (((t+‘𝑅) “ {𝑀}) ∪ ( I “ {𝑀})) ∈ V
158, 14eqeltri 2827 . . 3 (((t+‘𝑅) ∪ I ) “ {𝑀}) ∈ V
161, 2, 3, 7, 15frege83 44049 . 2 (𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))))
17 frege133.m . . . . . . . 8 𝑀𝑊
1817elexi 3459 . . . . . . 7 𝑀 ∈ V
191elexi 3459 . . . . . . 7 𝑋 ∈ V
2018, 19elimasn 6038 . . . . . 6 (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ⟨𝑀, 𝑋⟩ ∈ (t+‘𝑅))
21 df-br 5090 . . . . . 6 (𝑀(t+‘𝑅)𝑋 ↔ ⟨𝑀, 𝑋⟩ ∈ (t+‘𝑅))
2218, 19brcnv 5821 . . . . . 6 (𝑀(t+‘𝑅)𝑋𝑋(t+‘𝑅)𝑀)
2320, 21, 223bitr2i 299 . . . . 5 (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) ↔ 𝑋(t+‘𝑅)𝑀)
24 elun 4100 . . . . . . 7 (𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ∨ 𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})))
25 df-or 848 . . . . . . 7 ((𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ∨ 𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑌 ∈ ((t+‘𝑅) “ {𝑀}) → 𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})))
262elexi 3459 . . . . . . . . . . 11 𝑌 ∈ V
2718, 26elimasn 6038 . . . . . . . . . 10 (𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ⟨𝑀, 𝑌⟩ ∈ (t+‘𝑅))
28 df-br 5090 . . . . . . . . . 10 (𝑀(t+‘𝑅)𝑌 ↔ ⟨𝑀, 𝑌⟩ ∈ (t+‘𝑅))
2918, 26brcnv 5821 . . . . . . . . . 10 (𝑀(t+‘𝑅)𝑌𝑌(t+‘𝑅)𝑀)
3027, 28, 293bitr2i 299 . . . . . . . . 9 (𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ↔ 𝑌(t+‘𝑅)𝑀)
3130notbii 320 . . . . . . . 8 𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ¬ 𝑌(t+‘𝑅)𝑀)
3218, 26elimasn 6038 . . . . . . . . 9 (𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ ⟨𝑀, 𝑌⟩ ∈ ((t+‘𝑅) ∪ I ))
33 df-br 5090 . . . . . . . . 9 (𝑀((t+‘𝑅) ∪ I )𝑌 ↔ ⟨𝑀, 𝑌⟩ ∈ ((t+‘𝑅) ∪ I ))
3432, 33bitr4i 278 . . . . . . . 8 (𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ 𝑀((t+‘𝑅) ∪ I )𝑌)
3531, 34imbi12i 350 . . . . . . 7 ((¬ 𝑌 ∈ ((t+‘𝑅) “ {𝑀}) → 𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))
3624, 25, 353bitri 297 . . . . . 6 (𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))
3736imbi2i 336 . . . . 5 ((𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) ↔ (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))
3823, 37imbi12i 350 . . . 4 ((𝑋 ∈ ((t+‘𝑅) “ {𝑀}) → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) ↔ (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))))
3938imbi2i 336 . . 3 ((𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))))) ↔ (𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))))
4017, 3frege132 44098 . . 3 ((𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))) → (Fun 𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))))
4139, 40sylbi 217 . 2 ((𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))))) → (Fun 𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))))
4216, 41ax-mp 5 1 (Fun 𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847  wcel 2111  Vcvv 3436  cun 3895  {csn 4573  cop 4579   class class class wbr 5089   I cid 5508  ccnv 5613  cima 5617  Fun wfun 6475  cfv 6481  t+ctcl 14892   hereditary whe 43875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-frege1 43893  ax-frege2 43894  ax-frege8 43912  ax-frege28 43933  ax-frege31 43937  ax-frege41 43948  ax-frege52a 43960  ax-frege52c 43991  ax-frege58b 44004
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-seq 13909  df-trcl 14894  df-relexp 14927  df-he 43876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator