Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnnumch3 Structured version   Visualization version   GIF version

Theorem dnnumch3 40788
Description: Define an injection from a set into the ordinals using a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
dnnumch.f 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
dnnumch.a (𝜑𝐴𝑉)
dnnumch.g (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
Assertion
Ref Expression
dnnumch3 (𝜑 → (𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1→On)
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐹(𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem dnnumch3
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5978 . . . . 5 (𝐹 “ {𝑥}) ⊆ dom 𝐹
2 dnnumch.f . . . . . . 7 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
32tfr1 8199 . . . . . 6 𝐹 Fn On
43fndmi 6521 . . . . 5 dom 𝐹 = On
51, 4sseqtri 3953 . . . 4 (𝐹 “ {𝑥}) ⊆ On
6 dnnumch.a . . . . . . 7 (𝜑𝐴𝑉)
7 dnnumch.g . . . . . . 7 (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
82, 6, 7dnnumch2 40786 . . . . . 6 (𝜑𝐴 ⊆ ran 𝐹)
98sselda 3917 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ran 𝐹)
10 inisegn0 5995 . . . . 5 (𝑥 ∈ ran 𝐹 ↔ (𝐹 “ {𝑥}) ≠ ∅)
119, 10sylib 217 . . . 4 ((𝜑𝑥𝐴) → (𝐹 “ {𝑥}) ≠ ∅)
12 oninton 7622 . . . 4 (((𝐹 “ {𝑥}) ⊆ On ∧ (𝐹 “ {𝑥}) ≠ ∅) → (𝐹 “ {𝑥}) ∈ On)
135, 11, 12sylancr 586 . . 3 ((𝜑𝑥𝐴) → (𝐹 “ {𝑥}) ∈ On)
1413fmpttd 6971 . 2 (𝜑 → (𝑥𝐴 (𝐹 “ {𝑥})):𝐴⟶On)
152, 6, 7dnnumch3lem 40787 . . . . . 6 ((𝜑𝑣𝐴) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = (𝐹 “ {𝑣}))
1615adantrr 713 . . . . 5 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = (𝐹 “ {𝑣}))
172, 6, 7dnnumch3lem 40787 . . . . . 6 ((𝜑𝑤𝐴) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) = (𝐹 “ {𝑤}))
1817adantrl 712 . . . . 5 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) = (𝐹 “ {𝑤}))
1916, 18eqeq12d 2754 . . . 4 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → (((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) ↔ (𝐹 “ {𝑣}) = (𝐹 “ {𝑤})))
20 fveq2 6756 . . . . . . 7 ( (𝐹 “ {𝑣}) = (𝐹 “ {𝑤}) → (𝐹 (𝐹 “ {𝑣})) = (𝐹 (𝐹 “ {𝑤})))
2120adantl 481 . . . . . 6 (((𝜑 ∧ (𝑣𝐴𝑤𝐴)) ∧ (𝐹 “ {𝑣}) = (𝐹 “ {𝑤})) → (𝐹 (𝐹 “ {𝑣})) = (𝐹 (𝐹 “ {𝑤})))
22 cnvimass 5978 . . . . . . . . . . 11 (𝐹 “ {𝑣}) ⊆ dom 𝐹
2322, 4sseqtri 3953 . . . . . . . . . 10 (𝐹 “ {𝑣}) ⊆ On
248sselda 3917 . . . . . . . . . . 11 ((𝜑𝑣𝐴) → 𝑣 ∈ ran 𝐹)
25 inisegn0 5995 . . . . . . . . . . 11 (𝑣 ∈ ran 𝐹 ↔ (𝐹 “ {𝑣}) ≠ ∅)
2624, 25sylib 217 . . . . . . . . . 10 ((𝜑𝑣𝐴) → (𝐹 “ {𝑣}) ≠ ∅)
27 onint 7617 . . . . . . . . . 10 (((𝐹 “ {𝑣}) ⊆ On ∧ (𝐹 “ {𝑣}) ≠ ∅) → (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑣}))
2823, 26, 27sylancr 586 . . . . . . . . 9 ((𝜑𝑣𝐴) → (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑣}))
29 fniniseg 6919 . . . . . . . . . . 11 (𝐹 Fn On → ( (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑣}) ↔ ( (𝐹 “ {𝑣}) ∈ On ∧ (𝐹 (𝐹 “ {𝑣})) = 𝑣)))
303, 29ax-mp 5 . . . . . . . . . 10 ( (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑣}) ↔ ( (𝐹 “ {𝑣}) ∈ On ∧ (𝐹 (𝐹 “ {𝑣})) = 𝑣))
3130simprbi 496 . . . . . . . . 9 ( (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑣}) → (𝐹 (𝐹 “ {𝑣})) = 𝑣)
3228, 31syl 17 . . . . . . . 8 ((𝜑𝑣𝐴) → (𝐹 (𝐹 “ {𝑣})) = 𝑣)
3332adantrr 713 . . . . . . 7 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → (𝐹 (𝐹 “ {𝑣})) = 𝑣)
3433adantr 480 . . . . . 6 (((𝜑 ∧ (𝑣𝐴𝑤𝐴)) ∧ (𝐹 “ {𝑣}) = (𝐹 “ {𝑤})) → (𝐹 (𝐹 “ {𝑣})) = 𝑣)
35 cnvimass 5978 . . . . . . . . . . 11 (𝐹 “ {𝑤}) ⊆ dom 𝐹
3635, 4sseqtri 3953 . . . . . . . . . 10 (𝐹 “ {𝑤}) ⊆ On
378sselda 3917 . . . . . . . . . . 11 ((𝜑𝑤𝐴) → 𝑤 ∈ ran 𝐹)
38 inisegn0 5995 . . . . . . . . . . 11 (𝑤 ∈ ran 𝐹 ↔ (𝐹 “ {𝑤}) ≠ ∅)
3937, 38sylib 217 . . . . . . . . . 10 ((𝜑𝑤𝐴) → (𝐹 “ {𝑤}) ≠ ∅)
40 onint 7617 . . . . . . . . . 10 (((𝐹 “ {𝑤}) ⊆ On ∧ (𝐹 “ {𝑤}) ≠ ∅) → (𝐹 “ {𝑤}) ∈ (𝐹 “ {𝑤}))
4136, 39, 40sylancr 586 . . . . . . . . 9 ((𝜑𝑤𝐴) → (𝐹 “ {𝑤}) ∈ (𝐹 “ {𝑤}))
42 fniniseg 6919 . . . . . . . . . . 11 (𝐹 Fn On → ( (𝐹 “ {𝑤}) ∈ (𝐹 “ {𝑤}) ↔ ( (𝐹 “ {𝑤}) ∈ On ∧ (𝐹 (𝐹 “ {𝑤})) = 𝑤)))
433, 42ax-mp 5 . . . . . . . . . 10 ( (𝐹 “ {𝑤}) ∈ (𝐹 “ {𝑤}) ↔ ( (𝐹 “ {𝑤}) ∈ On ∧ (𝐹 (𝐹 “ {𝑤})) = 𝑤))
4443simprbi 496 . . . . . . . . 9 ( (𝐹 “ {𝑤}) ∈ (𝐹 “ {𝑤}) → (𝐹 (𝐹 “ {𝑤})) = 𝑤)
4541, 44syl 17 . . . . . . . 8 ((𝜑𝑤𝐴) → (𝐹 (𝐹 “ {𝑤})) = 𝑤)
4645adantrl 712 . . . . . . 7 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → (𝐹 (𝐹 “ {𝑤})) = 𝑤)
4746adantr 480 . . . . . 6 (((𝜑 ∧ (𝑣𝐴𝑤𝐴)) ∧ (𝐹 “ {𝑣}) = (𝐹 “ {𝑤})) → (𝐹 (𝐹 “ {𝑤})) = 𝑤)
4821, 34, 473eqtr3d 2786 . . . . 5 (((𝜑 ∧ (𝑣𝐴𝑤𝐴)) ∧ (𝐹 “ {𝑣}) = (𝐹 “ {𝑤})) → 𝑣 = 𝑤)
4948ex 412 . . . 4 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → ( (𝐹 “ {𝑣}) = (𝐹 “ {𝑤}) → 𝑣 = 𝑤))
5019, 49sylbid 239 . . 3 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → (((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) → 𝑣 = 𝑤))
5150ralrimivva 3114 . 2 (𝜑 → ∀𝑣𝐴𝑤𝐴 (((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) → 𝑣 = 𝑤))
52 dff13 7109 . 2 ((𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1→On ↔ ((𝑥𝐴 (𝐹 “ {𝑥})):𝐴⟶On ∧ ∀𝑣𝐴𝑤𝐴 (((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) → 𝑣 = 𝑤)))
5314, 51, 52sylanbrc 582 1 (𝜑 → (𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1→On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  cdif 3880  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   cint 4876  cmpt 5153  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583  Oncon0 6251   Fn wfn 6413  wf 6414  1-1wf1 6415  cfv 6418  recscrecs 8172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173
This theorem is referenced by:  dnwech  40789
  Copyright terms: Public domain W3C validator