Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnnumch3 Structured version   Visualization version   GIF version

Theorem dnnumch3 43036
Description: Define an injection from a set into the ordinals using a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
dnnumch.f 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
dnnumch.a (𝜑𝐴𝑉)
dnnumch.g (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
Assertion
Ref Expression
dnnumch3 (𝜑 → (𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1→On)
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐹(𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem dnnumch3
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 6053 . . . . 5 (𝐹 “ {𝑥}) ⊆ dom 𝐹
2 dnnumch.f . . . . . . 7 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
32tfr1 8365 . . . . . 6 𝐹 Fn On
43fndmi 6622 . . . . 5 dom 𝐹 = On
51, 4sseqtri 3995 . . . 4 (𝐹 “ {𝑥}) ⊆ On
6 dnnumch.a . . . . . . 7 (𝜑𝐴𝑉)
7 dnnumch.g . . . . . . 7 (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
82, 6, 7dnnumch2 43034 . . . . . 6 (𝜑𝐴 ⊆ ran 𝐹)
98sselda 3946 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ran 𝐹)
10 inisegn0 6069 . . . . 5 (𝑥 ∈ ran 𝐹 ↔ (𝐹 “ {𝑥}) ≠ ∅)
119, 10sylib 218 . . . 4 ((𝜑𝑥𝐴) → (𝐹 “ {𝑥}) ≠ ∅)
12 oninton 7771 . . . 4 (((𝐹 “ {𝑥}) ⊆ On ∧ (𝐹 “ {𝑥}) ≠ ∅) → (𝐹 “ {𝑥}) ∈ On)
135, 11, 12sylancr 587 . . 3 ((𝜑𝑥𝐴) → (𝐹 “ {𝑥}) ∈ On)
1413fmpttd 7087 . 2 (𝜑 → (𝑥𝐴 (𝐹 “ {𝑥})):𝐴⟶On)
152, 6, 7dnnumch3lem 43035 . . . . . 6 ((𝜑𝑣𝐴) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = (𝐹 “ {𝑣}))
1615adantrr 717 . . . . 5 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = (𝐹 “ {𝑣}))
172, 6, 7dnnumch3lem 43035 . . . . . 6 ((𝜑𝑤𝐴) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) = (𝐹 “ {𝑤}))
1817adantrl 716 . . . . 5 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) = (𝐹 “ {𝑤}))
1916, 18eqeq12d 2745 . . . 4 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → (((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) ↔ (𝐹 “ {𝑣}) = (𝐹 “ {𝑤})))
20 fveq2 6858 . . . . . . 7 ( (𝐹 “ {𝑣}) = (𝐹 “ {𝑤}) → (𝐹 (𝐹 “ {𝑣})) = (𝐹 (𝐹 “ {𝑤})))
2120adantl 481 . . . . . 6 (((𝜑 ∧ (𝑣𝐴𝑤𝐴)) ∧ (𝐹 “ {𝑣}) = (𝐹 “ {𝑤})) → (𝐹 (𝐹 “ {𝑣})) = (𝐹 (𝐹 “ {𝑤})))
22 cnvimass 6053 . . . . . . . . . . 11 (𝐹 “ {𝑣}) ⊆ dom 𝐹
2322, 4sseqtri 3995 . . . . . . . . . 10 (𝐹 “ {𝑣}) ⊆ On
248sselda 3946 . . . . . . . . . . 11 ((𝜑𝑣𝐴) → 𝑣 ∈ ran 𝐹)
25 inisegn0 6069 . . . . . . . . . . 11 (𝑣 ∈ ran 𝐹 ↔ (𝐹 “ {𝑣}) ≠ ∅)
2624, 25sylib 218 . . . . . . . . . 10 ((𝜑𝑣𝐴) → (𝐹 “ {𝑣}) ≠ ∅)
27 onint 7766 . . . . . . . . . 10 (((𝐹 “ {𝑣}) ⊆ On ∧ (𝐹 “ {𝑣}) ≠ ∅) → (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑣}))
2823, 26, 27sylancr 587 . . . . . . . . 9 ((𝜑𝑣𝐴) → (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑣}))
29 fniniseg 7032 . . . . . . . . . . 11 (𝐹 Fn On → ( (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑣}) ↔ ( (𝐹 “ {𝑣}) ∈ On ∧ (𝐹 (𝐹 “ {𝑣})) = 𝑣)))
303, 29ax-mp 5 . . . . . . . . . 10 ( (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑣}) ↔ ( (𝐹 “ {𝑣}) ∈ On ∧ (𝐹 (𝐹 “ {𝑣})) = 𝑣))
3130simprbi 496 . . . . . . . . 9 ( (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑣}) → (𝐹 (𝐹 “ {𝑣})) = 𝑣)
3228, 31syl 17 . . . . . . . 8 ((𝜑𝑣𝐴) → (𝐹 (𝐹 “ {𝑣})) = 𝑣)
3332adantrr 717 . . . . . . 7 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → (𝐹 (𝐹 “ {𝑣})) = 𝑣)
3433adantr 480 . . . . . 6 (((𝜑 ∧ (𝑣𝐴𝑤𝐴)) ∧ (𝐹 “ {𝑣}) = (𝐹 “ {𝑤})) → (𝐹 (𝐹 “ {𝑣})) = 𝑣)
35 cnvimass 6053 . . . . . . . . . . 11 (𝐹 “ {𝑤}) ⊆ dom 𝐹
3635, 4sseqtri 3995 . . . . . . . . . 10 (𝐹 “ {𝑤}) ⊆ On
378sselda 3946 . . . . . . . . . . 11 ((𝜑𝑤𝐴) → 𝑤 ∈ ran 𝐹)
38 inisegn0 6069 . . . . . . . . . . 11 (𝑤 ∈ ran 𝐹 ↔ (𝐹 “ {𝑤}) ≠ ∅)
3937, 38sylib 218 . . . . . . . . . 10 ((𝜑𝑤𝐴) → (𝐹 “ {𝑤}) ≠ ∅)
40 onint 7766 . . . . . . . . . 10 (((𝐹 “ {𝑤}) ⊆ On ∧ (𝐹 “ {𝑤}) ≠ ∅) → (𝐹 “ {𝑤}) ∈ (𝐹 “ {𝑤}))
4136, 39, 40sylancr 587 . . . . . . . . 9 ((𝜑𝑤𝐴) → (𝐹 “ {𝑤}) ∈ (𝐹 “ {𝑤}))
42 fniniseg 7032 . . . . . . . . . . 11 (𝐹 Fn On → ( (𝐹 “ {𝑤}) ∈ (𝐹 “ {𝑤}) ↔ ( (𝐹 “ {𝑤}) ∈ On ∧ (𝐹 (𝐹 “ {𝑤})) = 𝑤)))
433, 42ax-mp 5 . . . . . . . . . 10 ( (𝐹 “ {𝑤}) ∈ (𝐹 “ {𝑤}) ↔ ( (𝐹 “ {𝑤}) ∈ On ∧ (𝐹 (𝐹 “ {𝑤})) = 𝑤))
4443simprbi 496 . . . . . . . . 9 ( (𝐹 “ {𝑤}) ∈ (𝐹 “ {𝑤}) → (𝐹 (𝐹 “ {𝑤})) = 𝑤)
4541, 44syl 17 . . . . . . . 8 ((𝜑𝑤𝐴) → (𝐹 (𝐹 “ {𝑤})) = 𝑤)
4645adantrl 716 . . . . . . 7 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → (𝐹 (𝐹 “ {𝑤})) = 𝑤)
4746adantr 480 . . . . . 6 (((𝜑 ∧ (𝑣𝐴𝑤𝐴)) ∧ (𝐹 “ {𝑣}) = (𝐹 “ {𝑤})) → (𝐹 (𝐹 “ {𝑤})) = 𝑤)
4821, 34, 473eqtr3d 2772 . . . . 5 (((𝜑 ∧ (𝑣𝐴𝑤𝐴)) ∧ (𝐹 “ {𝑣}) = (𝐹 “ {𝑤})) → 𝑣 = 𝑤)
4948ex 412 . . . 4 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → ( (𝐹 “ {𝑣}) = (𝐹 “ {𝑤}) → 𝑣 = 𝑤))
5019, 49sylbid 240 . . 3 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → (((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) → 𝑣 = 𝑤))
5150ralrimivva 3180 . 2 (𝜑 → ∀𝑣𝐴𝑤𝐴 (((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) → 𝑣 = 𝑤))
52 dff13 7229 . 2 ((𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1→On ↔ ((𝑥𝐴 (𝐹 “ {𝑥})):𝐴⟶On ∧ ∀𝑣𝐴𝑤𝐴 (((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) → 𝑣 = 𝑤)))
5314, 51, 52sylanbrc 583 1 (𝜑 → (𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1→On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3447  cdif 3911  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   cint 4910  cmpt 5188  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641  Oncon0 6332   Fn wfn 6506  wf 6507  1-1wf1 6508  cfv 6511  recscrecs 8339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340
This theorem is referenced by:  dnwech  43037
  Copyright terms: Public domain W3C validator