Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnnumch3 Structured version   Visualization version   GIF version

Theorem dnnumch3 39991
Description: Define an injection from a set into the ordinals using a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
dnnumch.f 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
dnnumch.a (𝜑𝐴𝑉)
dnnumch.g (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
Assertion
Ref Expression
dnnumch3 (𝜑 → (𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1→On)
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐹(𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem dnnumch3
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5916 . . . . 5 (𝐹 “ {𝑥}) ⊆ dom 𝐹
2 dnnumch.f . . . . . . 7 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
32tfr1 8016 . . . . . 6 𝐹 Fn On
43fndmi 6426 . . . . 5 dom 𝐹 = On
51, 4sseqtri 3951 . . . 4 (𝐹 “ {𝑥}) ⊆ On
6 dnnumch.a . . . . . . 7 (𝜑𝐴𝑉)
7 dnnumch.g . . . . . . 7 (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
82, 6, 7dnnumch2 39989 . . . . . 6 (𝜑𝐴 ⊆ ran 𝐹)
98sselda 3915 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ran 𝐹)
10 inisegn0 5928 . . . . 5 (𝑥 ∈ ran 𝐹 ↔ (𝐹 “ {𝑥}) ≠ ∅)
119, 10sylib 221 . . . 4 ((𝜑𝑥𝐴) → (𝐹 “ {𝑥}) ≠ ∅)
12 oninton 7495 . . . 4 (((𝐹 “ {𝑥}) ⊆ On ∧ (𝐹 “ {𝑥}) ≠ ∅) → (𝐹 “ {𝑥}) ∈ On)
135, 11, 12sylancr 590 . . 3 ((𝜑𝑥𝐴) → (𝐹 “ {𝑥}) ∈ On)
1413fmpttd 6856 . 2 (𝜑 → (𝑥𝐴 (𝐹 “ {𝑥})):𝐴⟶On)
152, 6, 7dnnumch3lem 39990 . . . . . 6 ((𝜑𝑣𝐴) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = (𝐹 “ {𝑣}))
1615adantrr 716 . . . . 5 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = (𝐹 “ {𝑣}))
172, 6, 7dnnumch3lem 39990 . . . . . 6 ((𝜑𝑤𝐴) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) = (𝐹 “ {𝑤}))
1817adantrl 715 . . . . 5 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) = (𝐹 “ {𝑤}))
1916, 18eqeq12d 2814 . . . 4 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → (((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) ↔ (𝐹 “ {𝑣}) = (𝐹 “ {𝑤})))
20 fveq2 6645 . . . . . . 7 ( (𝐹 “ {𝑣}) = (𝐹 “ {𝑤}) → (𝐹 (𝐹 “ {𝑣})) = (𝐹 (𝐹 “ {𝑤})))
2120adantl 485 . . . . . 6 (((𝜑 ∧ (𝑣𝐴𝑤𝐴)) ∧ (𝐹 “ {𝑣}) = (𝐹 “ {𝑤})) → (𝐹 (𝐹 “ {𝑣})) = (𝐹 (𝐹 “ {𝑤})))
22 cnvimass 5916 . . . . . . . . . . 11 (𝐹 “ {𝑣}) ⊆ dom 𝐹
2322, 4sseqtri 3951 . . . . . . . . . 10 (𝐹 “ {𝑣}) ⊆ On
248sselda 3915 . . . . . . . . . . 11 ((𝜑𝑣𝐴) → 𝑣 ∈ ran 𝐹)
25 inisegn0 5928 . . . . . . . . . . 11 (𝑣 ∈ ran 𝐹 ↔ (𝐹 “ {𝑣}) ≠ ∅)
2624, 25sylib 221 . . . . . . . . . 10 ((𝜑𝑣𝐴) → (𝐹 “ {𝑣}) ≠ ∅)
27 onint 7490 . . . . . . . . . 10 (((𝐹 “ {𝑣}) ⊆ On ∧ (𝐹 “ {𝑣}) ≠ ∅) → (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑣}))
2823, 26, 27sylancr 590 . . . . . . . . 9 ((𝜑𝑣𝐴) → (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑣}))
29 fniniseg 6807 . . . . . . . . . . 11 (𝐹 Fn On → ( (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑣}) ↔ ( (𝐹 “ {𝑣}) ∈ On ∧ (𝐹 (𝐹 “ {𝑣})) = 𝑣)))
303, 29ax-mp 5 . . . . . . . . . 10 ( (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑣}) ↔ ( (𝐹 “ {𝑣}) ∈ On ∧ (𝐹 (𝐹 “ {𝑣})) = 𝑣))
3130simprbi 500 . . . . . . . . 9 ( (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑣}) → (𝐹 (𝐹 “ {𝑣})) = 𝑣)
3228, 31syl 17 . . . . . . . 8 ((𝜑𝑣𝐴) → (𝐹 (𝐹 “ {𝑣})) = 𝑣)
3332adantrr 716 . . . . . . 7 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → (𝐹 (𝐹 “ {𝑣})) = 𝑣)
3433adantr 484 . . . . . 6 (((𝜑 ∧ (𝑣𝐴𝑤𝐴)) ∧ (𝐹 “ {𝑣}) = (𝐹 “ {𝑤})) → (𝐹 (𝐹 “ {𝑣})) = 𝑣)
35 cnvimass 5916 . . . . . . . . . . 11 (𝐹 “ {𝑤}) ⊆ dom 𝐹
3635, 4sseqtri 3951 . . . . . . . . . 10 (𝐹 “ {𝑤}) ⊆ On
378sselda 3915 . . . . . . . . . . 11 ((𝜑𝑤𝐴) → 𝑤 ∈ ran 𝐹)
38 inisegn0 5928 . . . . . . . . . . 11 (𝑤 ∈ ran 𝐹 ↔ (𝐹 “ {𝑤}) ≠ ∅)
3937, 38sylib 221 . . . . . . . . . 10 ((𝜑𝑤𝐴) → (𝐹 “ {𝑤}) ≠ ∅)
40 onint 7490 . . . . . . . . . 10 (((𝐹 “ {𝑤}) ⊆ On ∧ (𝐹 “ {𝑤}) ≠ ∅) → (𝐹 “ {𝑤}) ∈ (𝐹 “ {𝑤}))
4136, 39, 40sylancr 590 . . . . . . . . 9 ((𝜑𝑤𝐴) → (𝐹 “ {𝑤}) ∈ (𝐹 “ {𝑤}))
42 fniniseg 6807 . . . . . . . . . . 11 (𝐹 Fn On → ( (𝐹 “ {𝑤}) ∈ (𝐹 “ {𝑤}) ↔ ( (𝐹 “ {𝑤}) ∈ On ∧ (𝐹 (𝐹 “ {𝑤})) = 𝑤)))
433, 42ax-mp 5 . . . . . . . . . 10 ( (𝐹 “ {𝑤}) ∈ (𝐹 “ {𝑤}) ↔ ( (𝐹 “ {𝑤}) ∈ On ∧ (𝐹 (𝐹 “ {𝑤})) = 𝑤))
4443simprbi 500 . . . . . . . . 9 ( (𝐹 “ {𝑤}) ∈ (𝐹 “ {𝑤}) → (𝐹 (𝐹 “ {𝑤})) = 𝑤)
4541, 44syl 17 . . . . . . . 8 ((𝜑𝑤𝐴) → (𝐹 (𝐹 “ {𝑤})) = 𝑤)
4645adantrl 715 . . . . . . 7 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → (𝐹 (𝐹 “ {𝑤})) = 𝑤)
4746adantr 484 . . . . . 6 (((𝜑 ∧ (𝑣𝐴𝑤𝐴)) ∧ (𝐹 “ {𝑣}) = (𝐹 “ {𝑤})) → (𝐹 (𝐹 “ {𝑤})) = 𝑤)
4821, 34, 473eqtr3d 2841 . . . . 5 (((𝜑 ∧ (𝑣𝐴𝑤𝐴)) ∧ (𝐹 “ {𝑣}) = (𝐹 “ {𝑤})) → 𝑣 = 𝑤)
4948ex 416 . . . 4 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → ( (𝐹 “ {𝑣}) = (𝐹 “ {𝑤}) → 𝑣 = 𝑤))
5019, 49sylbid 243 . . 3 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → (((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) → 𝑣 = 𝑤))
5150ralrimivva 3156 . 2 (𝜑 → ∀𝑣𝐴𝑤𝐴 (((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) → 𝑣 = 𝑤))
52 dff13 6991 . 2 ((𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1→On ↔ ((𝑥𝐴 (𝐹 “ {𝑥})):𝐴⟶On ∧ ∀𝑣𝐴𝑤𝐴 (((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) → 𝑣 = 𝑤)))
5314, 51, 52sylanbrc 586 1 (𝜑 → (𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1→On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  Vcvv 3441  cdif 3878  wss 3881  c0 4243  𝒫 cpw 4497  {csn 4525   cint 4838  cmpt 5110  ccnv 5518  dom cdm 5519  ran crn 5520  cima 5522  Oncon0 6159   Fn wfn 6319  wf 6320  1-1wf1 6321  cfv 6324  recscrecs 7990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-wrecs 7930  df-recs 7991
This theorem is referenced by:  dnwech  39992
  Copyright terms: Public domain W3C validator