Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnnumch3 Structured version   Visualization version   GIF version

Theorem dnnumch3 39654
Description: Define an injection from a set into the ordinals using a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
dnnumch.f 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
dnnumch.a (𝜑𝐴𝑉)
dnnumch.g (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
Assertion
Ref Expression
dnnumch3 (𝜑 → (𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1→On)
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐹(𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem dnnumch3
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5951 . . . . 5 (𝐹 “ {𝑥}) ⊆ dom 𝐹
2 dnnumch.f . . . . . . 7 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
32tfr1 8035 . . . . . 6 𝐹 Fn On
4 fndm 6457 . . . . . 6 (𝐹 Fn On → dom 𝐹 = On)
53, 4ax-mp 5 . . . . 5 dom 𝐹 = On
61, 5sseqtri 4005 . . . 4 (𝐹 “ {𝑥}) ⊆ On
7 dnnumch.a . . . . . . 7 (𝜑𝐴𝑉)
8 dnnumch.g . . . . . . 7 (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
92, 7, 8dnnumch2 39652 . . . . . 6 (𝜑𝐴 ⊆ ran 𝐹)
109sselda 3969 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ran 𝐹)
11 inisegn0 5963 . . . . 5 (𝑥 ∈ ran 𝐹 ↔ (𝐹 “ {𝑥}) ≠ ∅)
1210, 11sylib 220 . . . 4 ((𝜑𝑥𝐴) → (𝐹 “ {𝑥}) ≠ ∅)
13 oninton 7517 . . . 4 (((𝐹 “ {𝑥}) ⊆ On ∧ (𝐹 “ {𝑥}) ≠ ∅) → (𝐹 “ {𝑥}) ∈ On)
146, 12, 13sylancr 589 . . 3 ((𝜑𝑥𝐴) → (𝐹 “ {𝑥}) ∈ On)
1514fmpttd 6881 . 2 (𝜑 → (𝑥𝐴 (𝐹 “ {𝑥})):𝐴⟶On)
162, 7, 8dnnumch3lem 39653 . . . . . 6 ((𝜑𝑣𝐴) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = (𝐹 “ {𝑣}))
1716adantrr 715 . . . . 5 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = (𝐹 “ {𝑣}))
182, 7, 8dnnumch3lem 39653 . . . . . 6 ((𝜑𝑤𝐴) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) = (𝐹 “ {𝑤}))
1918adantrl 714 . . . . 5 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) = (𝐹 “ {𝑤}))
2017, 19eqeq12d 2839 . . . 4 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → (((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) ↔ (𝐹 “ {𝑣}) = (𝐹 “ {𝑤})))
21 fveq2 6672 . . . . . . 7 ( (𝐹 “ {𝑣}) = (𝐹 “ {𝑤}) → (𝐹 (𝐹 “ {𝑣})) = (𝐹 (𝐹 “ {𝑤})))
2221adantl 484 . . . . . 6 (((𝜑 ∧ (𝑣𝐴𝑤𝐴)) ∧ (𝐹 “ {𝑣}) = (𝐹 “ {𝑤})) → (𝐹 (𝐹 “ {𝑣})) = (𝐹 (𝐹 “ {𝑤})))
23 cnvimass 5951 . . . . . . . . . . 11 (𝐹 “ {𝑣}) ⊆ dom 𝐹
2423, 5sseqtri 4005 . . . . . . . . . 10 (𝐹 “ {𝑣}) ⊆ On
259sselda 3969 . . . . . . . . . . 11 ((𝜑𝑣𝐴) → 𝑣 ∈ ran 𝐹)
26 inisegn0 5963 . . . . . . . . . . 11 (𝑣 ∈ ran 𝐹 ↔ (𝐹 “ {𝑣}) ≠ ∅)
2725, 26sylib 220 . . . . . . . . . 10 ((𝜑𝑣𝐴) → (𝐹 “ {𝑣}) ≠ ∅)
28 onint 7512 . . . . . . . . . 10 (((𝐹 “ {𝑣}) ⊆ On ∧ (𝐹 “ {𝑣}) ≠ ∅) → (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑣}))
2924, 27, 28sylancr 589 . . . . . . . . 9 ((𝜑𝑣𝐴) → (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑣}))
30 fniniseg 6832 . . . . . . . . . . 11 (𝐹 Fn On → ( (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑣}) ↔ ( (𝐹 “ {𝑣}) ∈ On ∧ (𝐹 (𝐹 “ {𝑣})) = 𝑣)))
313, 30ax-mp 5 . . . . . . . . . 10 ( (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑣}) ↔ ( (𝐹 “ {𝑣}) ∈ On ∧ (𝐹 (𝐹 “ {𝑣})) = 𝑣))
3231simprbi 499 . . . . . . . . 9 ( (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑣}) → (𝐹 (𝐹 “ {𝑣})) = 𝑣)
3329, 32syl 17 . . . . . . . 8 ((𝜑𝑣𝐴) → (𝐹 (𝐹 “ {𝑣})) = 𝑣)
3433adantrr 715 . . . . . . 7 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → (𝐹 (𝐹 “ {𝑣})) = 𝑣)
3534adantr 483 . . . . . 6 (((𝜑 ∧ (𝑣𝐴𝑤𝐴)) ∧ (𝐹 “ {𝑣}) = (𝐹 “ {𝑤})) → (𝐹 (𝐹 “ {𝑣})) = 𝑣)
36 cnvimass 5951 . . . . . . . . . . 11 (𝐹 “ {𝑤}) ⊆ dom 𝐹
3736, 5sseqtri 4005 . . . . . . . . . 10 (𝐹 “ {𝑤}) ⊆ On
389sselda 3969 . . . . . . . . . . 11 ((𝜑𝑤𝐴) → 𝑤 ∈ ran 𝐹)
39 inisegn0 5963 . . . . . . . . . . 11 (𝑤 ∈ ran 𝐹 ↔ (𝐹 “ {𝑤}) ≠ ∅)
4038, 39sylib 220 . . . . . . . . . 10 ((𝜑𝑤𝐴) → (𝐹 “ {𝑤}) ≠ ∅)
41 onint 7512 . . . . . . . . . 10 (((𝐹 “ {𝑤}) ⊆ On ∧ (𝐹 “ {𝑤}) ≠ ∅) → (𝐹 “ {𝑤}) ∈ (𝐹 “ {𝑤}))
4237, 40, 41sylancr 589 . . . . . . . . 9 ((𝜑𝑤𝐴) → (𝐹 “ {𝑤}) ∈ (𝐹 “ {𝑤}))
43 fniniseg 6832 . . . . . . . . . . 11 (𝐹 Fn On → ( (𝐹 “ {𝑤}) ∈ (𝐹 “ {𝑤}) ↔ ( (𝐹 “ {𝑤}) ∈ On ∧ (𝐹 (𝐹 “ {𝑤})) = 𝑤)))
443, 43ax-mp 5 . . . . . . . . . 10 ( (𝐹 “ {𝑤}) ∈ (𝐹 “ {𝑤}) ↔ ( (𝐹 “ {𝑤}) ∈ On ∧ (𝐹 (𝐹 “ {𝑤})) = 𝑤))
4544simprbi 499 . . . . . . . . 9 ( (𝐹 “ {𝑤}) ∈ (𝐹 “ {𝑤}) → (𝐹 (𝐹 “ {𝑤})) = 𝑤)
4642, 45syl 17 . . . . . . . 8 ((𝜑𝑤𝐴) → (𝐹 (𝐹 “ {𝑤})) = 𝑤)
4746adantrl 714 . . . . . . 7 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → (𝐹 (𝐹 “ {𝑤})) = 𝑤)
4847adantr 483 . . . . . 6 (((𝜑 ∧ (𝑣𝐴𝑤𝐴)) ∧ (𝐹 “ {𝑣}) = (𝐹 “ {𝑤})) → (𝐹 (𝐹 “ {𝑤})) = 𝑤)
4922, 35, 483eqtr3d 2866 . . . . 5 (((𝜑 ∧ (𝑣𝐴𝑤𝐴)) ∧ (𝐹 “ {𝑣}) = (𝐹 “ {𝑤})) → 𝑣 = 𝑤)
5049ex 415 . . . 4 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → ( (𝐹 “ {𝑣}) = (𝐹 “ {𝑤}) → 𝑣 = 𝑤))
5120, 50sylbid 242 . . 3 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → (((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) → 𝑣 = 𝑤))
5251ralrimivva 3193 . 2 (𝜑 → ∀𝑣𝐴𝑤𝐴 (((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) → 𝑣 = 𝑤))
53 dff13 7015 . 2 ((𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1→On ↔ ((𝑥𝐴 (𝐹 “ {𝑥})):𝐴⟶On ∧ ∀𝑣𝐴𝑤𝐴 (((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) → 𝑣 = 𝑤)))
5415, 52, 53sylanbrc 585 1 (𝜑 → (𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1→On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  Vcvv 3496  cdif 3935  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569   cint 4878  cmpt 5148  ccnv 5556  dom cdm 5557  ran crn 5558  cima 5560  Oncon0 6193   Fn wfn 6352  wf 6353  1-1wf1 6354  cfv 6357  recscrecs 8009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-wrecs 7949  df-recs 8010
This theorem is referenced by:  dnwech  39655
  Copyright terms: Public domain W3C validator