Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnnumch3lem Structured version   Visualization version   GIF version

Theorem dnnumch3lem 43017
Description: Value of the ordinal injection function. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
dnnumch.f 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
dnnumch.a (𝜑𝐴𝑉)
dnnumch.g (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
Assertion
Ref Expression
dnnumch3lem ((𝜑𝑤𝐴) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) = (𝐹 “ {𝑤}))
Distinct variable groups:   𝑤,𝐹,𝑥,𝑦   𝑤,𝐺,𝑥,𝑦,𝑧   𝑤,𝐴,𝑥,𝑦,𝑧   𝜑,𝑥,𝑤
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐹(𝑧)   𝑉(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem dnnumch3lem
StepHypRef Expression
1 eqid 2735 . 2 (𝑥𝐴 (𝐹 “ {𝑥})) = (𝑥𝐴 (𝐹 “ {𝑥}))
2 sneq 4611 . . . 4 (𝑥 = 𝑤 → {𝑥} = {𝑤})
32imaeq2d 6047 . . 3 (𝑥 = 𝑤 → (𝐹 “ {𝑥}) = (𝐹 “ {𝑤}))
43inteqd 4927 . 2 (𝑥 = 𝑤 (𝐹 “ {𝑥}) = (𝐹 “ {𝑤}))
5 simpr 484 . 2 ((𝜑𝑤𝐴) → 𝑤𝐴)
6 cnvimass 6069 . . . 4 (𝐹 “ {𝑤}) ⊆ dom 𝐹
7 dnnumch.f . . . . . 6 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
87tfr1 8409 . . . . 5 𝐹 Fn On
98fndmi 6641 . . . 4 dom 𝐹 = On
106, 9sseqtri 4007 . . 3 (𝐹 “ {𝑤}) ⊆ On
11 dnnumch.a . . . . . 6 (𝜑𝐴𝑉)
12 dnnumch.g . . . . . 6 (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
137, 11, 12dnnumch2 43016 . . . . 5 (𝜑𝐴 ⊆ ran 𝐹)
1413sselda 3958 . . . 4 ((𝜑𝑤𝐴) → 𝑤 ∈ ran 𝐹)
15 inisegn0 6085 . . . 4 (𝑤 ∈ ran 𝐹 ↔ (𝐹 “ {𝑤}) ≠ ∅)
1614, 15sylib 218 . . 3 ((𝜑𝑤𝐴) → (𝐹 “ {𝑤}) ≠ ∅)
17 oninton 7787 . . 3 (((𝐹 “ {𝑤}) ⊆ On ∧ (𝐹 “ {𝑤}) ≠ ∅) → (𝐹 “ {𝑤}) ∈ On)
1810, 16, 17sylancr 587 . 2 ((𝜑𝑤𝐴) → (𝐹 “ {𝑤}) ∈ On)
191, 4, 5, 18fvmptd3 7008 1 ((𝜑𝑤𝐴) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) = (𝐹 “ {𝑤}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  Vcvv 3459  cdif 3923  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601   cint 4922  cmpt 5201  ccnv 5653  dom cdm 5654  ran crn 5655  cima 5657  Oncon0 6352  cfv 6530  recscrecs 8382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383
This theorem is referenced by:  dnnumch3  43018  dnwech  43019
  Copyright terms: Public domain W3C validator