Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnnumch3lem Structured version   Visualization version   GIF version

Theorem dnnumch3lem 41773
Description: Value of the ordinal injection function. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
dnnumch.f 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
dnnumch.a (𝜑𝐴𝑉)
dnnumch.g (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
Assertion
Ref Expression
dnnumch3lem ((𝜑𝑤𝐴) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) = (𝐹 “ {𝑤}))
Distinct variable groups:   𝑤,𝐹,𝑥,𝑦   𝑤,𝐺,𝑥,𝑦,𝑧   𝑤,𝐴,𝑥,𝑦,𝑧   𝜑,𝑥,𝑤
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐹(𝑧)   𝑉(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem dnnumch3lem
StepHypRef Expression
1 eqid 2732 . 2 (𝑥𝐴 (𝐹 “ {𝑥})) = (𝑥𝐴 (𝐹 “ {𝑥}))
2 sneq 4637 . . . 4 (𝑥 = 𝑤 → {𝑥} = {𝑤})
32imaeq2d 6057 . . 3 (𝑥 = 𝑤 → (𝐹 “ {𝑥}) = (𝐹 “ {𝑤}))
43inteqd 4954 . 2 (𝑥 = 𝑤 (𝐹 “ {𝑥}) = (𝐹 “ {𝑤}))
5 simpr 485 . 2 ((𝜑𝑤𝐴) → 𝑤𝐴)
6 cnvimass 6077 . . . 4 (𝐹 “ {𝑤}) ⊆ dom 𝐹
7 dnnumch.f . . . . . 6 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
87tfr1 8393 . . . . 5 𝐹 Fn On
98fndmi 6650 . . . 4 dom 𝐹 = On
106, 9sseqtri 4017 . . 3 (𝐹 “ {𝑤}) ⊆ On
11 dnnumch.a . . . . . 6 (𝜑𝐴𝑉)
12 dnnumch.g . . . . . 6 (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
137, 11, 12dnnumch2 41772 . . . . 5 (𝜑𝐴 ⊆ ran 𝐹)
1413sselda 3981 . . . 4 ((𝜑𝑤𝐴) → 𝑤 ∈ ran 𝐹)
15 inisegn0 6094 . . . 4 (𝑤 ∈ ran 𝐹 ↔ (𝐹 “ {𝑤}) ≠ ∅)
1614, 15sylib 217 . . 3 ((𝜑𝑤𝐴) → (𝐹 “ {𝑤}) ≠ ∅)
17 oninton 7779 . . 3 (((𝐹 “ {𝑤}) ⊆ On ∧ (𝐹 “ {𝑤}) ≠ ∅) → (𝐹 “ {𝑤}) ∈ On)
1810, 16, 17sylancr 587 . 2 ((𝜑𝑤𝐴) → (𝐹 “ {𝑤}) ∈ On)
191, 4, 5, 18fvmptd3 7018 1 ((𝜑𝑤𝐴) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) = (𝐹 “ {𝑤}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  wral 3061  Vcvv 3474  cdif 3944  wss 3947  c0 4321  𝒫 cpw 4601  {csn 4627   cint 4949  cmpt 5230  ccnv 5674  dom cdm 5675  ran crn 5676  cima 5678  Oncon0 6361  cfv 6540  recscrecs 8366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367
This theorem is referenced by:  dnnumch3  41774  dnwech  41775
  Copyright terms: Public domain W3C validator