| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dnnumch3lem | Structured version Visualization version GIF version | ||
| Description: Value of the ordinal injection function. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| dnnumch.f | ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) |
| dnnumch.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| dnnumch.g | ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) |
| Ref | Expression |
|---|---|
| dnnumch3lem | ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ ∩ (◡𝐹 “ {𝑥}))‘𝑤) = ∩ (◡𝐹 “ {𝑤})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ ∩ (◡𝐹 “ {𝑥})) = (𝑥 ∈ 𝐴 ↦ ∩ (◡𝐹 “ {𝑥})) | |
| 2 | sneq 4599 | . . . 4 ⊢ (𝑥 = 𝑤 → {𝑥} = {𝑤}) | |
| 3 | 2 | imaeq2d 6031 | . . 3 ⊢ (𝑥 = 𝑤 → (◡𝐹 “ {𝑥}) = (◡𝐹 “ {𝑤})) |
| 4 | 3 | inteqd 4915 | . 2 ⊢ (𝑥 = 𝑤 → ∩ (◡𝐹 “ {𝑥}) = ∩ (◡𝐹 “ {𝑤})) |
| 5 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ 𝐴) | |
| 6 | cnvimass 6053 | . . . 4 ⊢ (◡𝐹 “ {𝑤}) ⊆ dom 𝐹 | |
| 7 | dnnumch.f | . . . . . 6 ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) | |
| 8 | 7 | tfr1 8365 | . . . . 5 ⊢ 𝐹 Fn On |
| 9 | 8 | fndmi 6622 | . . . 4 ⊢ dom 𝐹 = On |
| 10 | 6, 9 | sseqtri 3995 | . . 3 ⊢ (◡𝐹 “ {𝑤}) ⊆ On |
| 11 | dnnumch.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 12 | dnnumch.g | . . . . . 6 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) | |
| 13 | 7, 11, 12 | dnnumch2 43034 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ran 𝐹) |
| 14 | 13 | sselda 3946 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ran 𝐹) |
| 15 | inisegn0 6069 | . . . 4 ⊢ (𝑤 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝑤}) ≠ ∅) | |
| 16 | 14, 15 | sylib 218 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (◡𝐹 “ {𝑤}) ≠ ∅) |
| 17 | oninton 7771 | . . 3 ⊢ (((◡𝐹 “ {𝑤}) ⊆ On ∧ (◡𝐹 “ {𝑤}) ≠ ∅) → ∩ (◡𝐹 “ {𝑤}) ∈ On) | |
| 18 | 10, 16, 17 | sylancr 587 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∩ (◡𝐹 “ {𝑤}) ∈ On) |
| 19 | 1, 4, 5, 18 | fvmptd3 6991 | 1 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ ∩ (◡𝐹 “ {𝑥}))‘𝑤) = ∩ (◡𝐹 “ {𝑤})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 {csn 4589 ∩ cint 4910 ↦ cmpt 5188 ◡ccnv 5637 dom cdm 5638 ran crn 5639 “ cima 5641 Oncon0 6332 ‘cfv 6511 recscrecs 8339 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 |
| This theorem is referenced by: dnnumch3 43036 dnwech 43037 |
| Copyright terms: Public domain | W3C validator |