Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnnumch3lem Structured version   Visualization version   GIF version

Theorem dnnumch3lem 39507
Description: Value of the ordinal injection function. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
dnnumch.f 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
dnnumch.a (𝜑𝐴𝑉)
dnnumch.g (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
Assertion
Ref Expression
dnnumch3lem ((𝜑𝑤𝐴) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) = (𝐹 “ {𝑤}))
Distinct variable groups:   𝑤,𝐹,𝑥,𝑦   𝑤,𝐺,𝑥,𝑦,𝑧   𝑤,𝐴,𝑥,𝑦,𝑧   𝜑,𝑥,𝑤
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐹(𝑧)   𝑉(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem dnnumch3lem
StepHypRef Expression
1 eqid 2825 . 2 (𝑥𝐴 (𝐹 “ {𝑥})) = (𝑥𝐴 (𝐹 “ {𝑥}))
2 sneq 4573 . . . 4 (𝑥 = 𝑤 → {𝑥} = {𝑤})
32imaeq2d 5926 . . 3 (𝑥 = 𝑤 → (𝐹 “ {𝑥}) = (𝐹 “ {𝑤}))
43inteqd 4878 . 2 (𝑥 = 𝑤 (𝐹 “ {𝑥}) = (𝐹 “ {𝑤}))
5 simpr 485 . 2 ((𝜑𝑤𝐴) → 𝑤𝐴)
6 cnvimass 5946 . . . 4 (𝐹 “ {𝑤}) ⊆ dom 𝐹
7 dnnumch.f . . . . . 6 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
87tfr1 8027 . . . . 5 𝐹 Fn On
9 fndm 6451 . . . . 5 (𝐹 Fn On → dom 𝐹 = On)
108, 9ax-mp 5 . . . 4 dom 𝐹 = On
116, 10sseqtri 4006 . . 3 (𝐹 “ {𝑤}) ⊆ On
12 dnnumch.a . . . . . 6 (𝜑𝐴𝑉)
13 dnnumch.g . . . . . 6 (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
147, 12, 13dnnumch2 39506 . . . . 5 (𝜑𝐴 ⊆ ran 𝐹)
1514sselda 3970 . . . 4 ((𝜑𝑤𝐴) → 𝑤 ∈ ran 𝐹)
16 inisegn0 5958 . . . 4 (𝑤 ∈ ran 𝐹 ↔ (𝐹 “ {𝑤}) ≠ ∅)
1715, 16sylib 219 . . 3 ((𝜑𝑤𝐴) → (𝐹 “ {𝑤}) ≠ ∅)
18 oninton 7506 . . 3 (((𝐹 “ {𝑤}) ⊆ On ∧ (𝐹 “ {𝑤}) ≠ ∅) → (𝐹 “ {𝑤}) ∈ On)
1911, 17, 18sylancr 587 . 2 ((𝜑𝑤𝐴) → (𝐹 “ {𝑤}) ∈ On)
201, 4, 5, 19fvmptd3 6786 1 ((𝜑𝑤𝐴) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) = (𝐹 “ {𝑤}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  wne 3020  wral 3142  Vcvv 3499  cdif 3936  wss 3939  c0 4294  𝒫 cpw 4541  {csn 4563   cint 4873  cmpt 5142  ccnv 5552  dom cdm 5553  ran crn 5554  cima 5556  Oncon0 6188   Fn wfn 6346  cfv 6351  recscrecs 8001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-wrecs 7941  df-recs 8002
This theorem is referenced by:  dnnumch3  39508  dnwech  39509
  Copyright terms: Public domain W3C validator