Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnnumch3lem Structured version   Visualization version   GIF version

Theorem dnnumch3lem 43019
Description: Value of the ordinal injection function. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
dnnumch.f 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
dnnumch.a (𝜑𝐴𝑉)
dnnumch.g (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
Assertion
Ref Expression
dnnumch3lem ((𝜑𝑤𝐴) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) = (𝐹 “ {𝑤}))
Distinct variable groups:   𝑤,𝐹,𝑥,𝑦   𝑤,𝐺,𝑥,𝑦,𝑧   𝑤,𝐴,𝑥,𝑦,𝑧   𝜑,𝑥,𝑤
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐹(𝑧)   𝑉(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem dnnumch3lem
StepHypRef Expression
1 eqid 2729 . 2 (𝑥𝐴 (𝐹 “ {𝑥})) = (𝑥𝐴 (𝐹 “ {𝑥}))
2 sneq 4589 . . . 4 (𝑥 = 𝑤 → {𝑥} = {𝑤})
32imaeq2d 6015 . . 3 (𝑥 = 𝑤 → (𝐹 “ {𝑥}) = (𝐹 “ {𝑤}))
43inteqd 4904 . 2 (𝑥 = 𝑤 (𝐹 “ {𝑥}) = (𝐹 “ {𝑤}))
5 simpr 484 . 2 ((𝜑𝑤𝐴) → 𝑤𝐴)
6 cnvimass 6037 . . . 4 (𝐹 “ {𝑤}) ⊆ dom 𝐹
7 dnnumch.f . . . . . 6 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
87tfr1 8326 . . . . 5 𝐹 Fn On
98fndmi 6590 . . . 4 dom 𝐹 = On
106, 9sseqtri 3986 . . 3 (𝐹 “ {𝑤}) ⊆ On
11 dnnumch.a . . . . . 6 (𝜑𝐴𝑉)
12 dnnumch.g . . . . . 6 (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
137, 11, 12dnnumch2 43018 . . . . 5 (𝜑𝐴 ⊆ ran 𝐹)
1413sselda 3937 . . . 4 ((𝜑𝑤𝐴) → 𝑤 ∈ ran 𝐹)
15 inisegn0 6053 . . . 4 (𝑤 ∈ ran 𝐹 ↔ (𝐹 “ {𝑤}) ≠ ∅)
1614, 15sylib 218 . . 3 ((𝜑𝑤𝐴) → (𝐹 “ {𝑤}) ≠ ∅)
17 oninton 7735 . . 3 (((𝐹 “ {𝑤}) ⊆ On ∧ (𝐹 “ {𝑤}) ≠ ∅) → (𝐹 “ {𝑤}) ∈ On)
1810, 16, 17sylancr 587 . 2 ((𝜑𝑤𝐴) → (𝐹 “ {𝑤}) ∈ On)
191, 4, 5, 18fvmptd3 6957 1 ((𝜑𝑤𝐴) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) = (𝐹 “ {𝑤}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3438  cdif 3902  wss 3905  c0 4286  𝒫 cpw 4553  {csn 4579   cint 4899  cmpt 5176  ccnv 5622  dom cdm 5623  ran crn 5624  cima 5626  Oncon0 6311  cfv 6486  recscrecs 8300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301
This theorem is referenced by:  dnnumch3  43020  dnwech  43021
  Copyright terms: Public domain W3C validator