| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dnnumch3lem | Structured version Visualization version GIF version | ||
| Description: Value of the ordinal injection function. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| dnnumch.f | ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) |
| dnnumch.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| dnnumch.g | ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) |
| Ref | Expression |
|---|---|
| dnnumch3lem | ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ ∩ (◡𝐹 “ {𝑥}))‘𝑤) = ∩ (◡𝐹 “ {𝑤})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ ∩ (◡𝐹 “ {𝑥})) = (𝑥 ∈ 𝐴 ↦ ∩ (◡𝐹 “ {𝑥})) | |
| 2 | sneq 4585 | . . . 4 ⊢ (𝑥 = 𝑤 → {𝑥} = {𝑤}) | |
| 3 | 2 | imaeq2d 6013 | . . 3 ⊢ (𝑥 = 𝑤 → (◡𝐹 “ {𝑥}) = (◡𝐹 “ {𝑤})) |
| 4 | 3 | inteqd 4902 | . 2 ⊢ (𝑥 = 𝑤 → ∩ (◡𝐹 “ {𝑥}) = ∩ (◡𝐹 “ {𝑤})) |
| 5 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ 𝐴) | |
| 6 | cnvimass 6035 | . . . 4 ⊢ (◡𝐹 “ {𝑤}) ⊆ dom 𝐹 | |
| 7 | dnnumch.f | . . . . . 6 ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) | |
| 8 | 7 | tfr1 8322 | . . . . 5 ⊢ 𝐹 Fn On |
| 9 | 8 | fndmi 6590 | . . . 4 ⊢ dom 𝐹 = On |
| 10 | 6, 9 | sseqtri 3979 | . . 3 ⊢ (◡𝐹 “ {𝑤}) ⊆ On |
| 11 | dnnumch.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 12 | dnnumch.g | . . . . . 6 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) | |
| 13 | 7, 11, 12 | dnnumch2 43162 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ran 𝐹) |
| 14 | 13 | sselda 3930 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ran 𝐹) |
| 15 | inisegn0 6051 | . . . 4 ⊢ (𝑤 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝑤}) ≠ ∅) | |
| 16 | 14, 15 | sylib 218 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (◡𝐹 “ {𝑤}) ≠ ∅) |
| 17 | oninton 7734 | . . 3 ⊢ (((◡𝐹 “ {𝑤}) ⊆ On ∧ (◡𝐹 “ {𝑤}) ≠ ∅) → ∩ (◡𝐹 “ {𝑤}) ∈ On) | |
| 18 | 10, 16, 17 | sylancr 587 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∩ (◡𝐹 “ {𝑤}) ∈ On) |
| 19 | 1, 4, 5, 18 | fvmptd3 6958 | 1 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ ∩ (◡𝐹 “ {𝑥}))‘𝑤) = ∩ (◡𝐹 “ {𝑤})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 Vcvv 3437 ∖ cdif 3895 ⊆ wss 3898 ∅c0 4282 𝒫 cpw 4549 {csn 4575 ∩ cint 4897 ↦ cmpt 5174 ◡ccnv 5618 dom cdm 5619 ran crn 5620 “ cima 5622 Oncon0 6311 ‘cfv 6486 recscrecs 8296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 |
| This theorem is referenced by: dnnumch3 43164 dnwech 43165 |
| Copyright terms: Public domain | W3C validator |