Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnnumch3lem Structured version   Visualization version   GIF version

Theorem dnnumch3lem 43163
Description: Value of the ordinal injection function. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
dnnumch.f 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
dnnumch.a (𝜑𝐴𝑉)
dnnumch.g (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
Assertion
Ref Expression
dnnumch3lem ((𝜑𝑤𝐴) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) = (𝐹 “ {𝑤}))
Distinct variable groups:   𝑤,𝐹,𝑥,𝑦   𝑤,𝐺,𝑥,𝑦,𝑧   𝑤,𝐴,𝑥,𝑦,𝑧   𝜑,𝑥,𝑤
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐹(𝑧)   𝑉(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem dnnumch3lem
StepHypRef Expression
1 eqid 2733 . 2 (𝑥𝐴 (𝐹 “ {𝑥})) = (𝑥𝐴 (𝐹 “ {𝑥}))
2 sneq 4585 . . . 4 (𝑥 = 𝑤 → {𝑥} = {𝑤})
32imaeq2d 6013 . . 3 (𝑥 = 𝑤 → (𝐹 “ {𝑥}) = (𝐹 “ {𝑤}))
43inteqd 4902 . 2 (𝑥 = 𝑤 (𝐹 “ {𝑥}) = (𝐹 “ {𝑤}))
5 simpr 484 . 2 ((𝜑𝑤𝐴) → 𝑤𝐴)
6 cnvimass 6035 . . . 4 (𝐹 “ {𝑤}) ⊆ dom 𝐹
7 dnnumch.f . . . . . 6 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
87tfr1 8322 . . . . 5 𝐹 Fn On
98fndmi 6590 . . . 4 dom 𝐹 = On
106, 9sseqtri 3979 . . 3 (𝐹 “ {𝑤}) ⊆ On
11 dnnumch.a . . . . . 6 (𝜑𝐴𝑉)
12 dnnumch.g . . . . . 6 (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
137, 11, 12dnnumch2 43162 . . . . 5 (𝜑𝐴 ⊆ ran 𝐹)
1413sselda 3930 . . . 4 ((𝜑𝑤𝐴) → 𝑤 ∈ ran 𝐹)
15 inisegn0 6051 . . . 4 (𝑤 ∈ ran 𝐹 ↔ (𝐹 “ {𝑤}) ≠ ∅)
1614, 15sylib 218 . . 3 ((𝜑𝑤𝐴) → (𝐹 “ {𝑤}) ≠ ∅)
17 oninton 7734 . . 3 (((𝐹 “ {𝑤}) ⊆ On ∧ (𝐹 “ {𝑤}) ≠ ∅) → (𝐹 “ {𝑤}) ∈ On)
1810, 16, 17sylancr 587 . 2 ((𝜑𝑤𝐴) → (𝐹 “ {𝑤}) ∈ On)
191, 4, 5, 18fvmptd3 6958 1 ((𝜑𝑤𝐴) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) = (𝐹 “ {𝑤}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  Vcvv 3437  cdif 3895  wss 3898  c0 4282  𝒫 cpw 4549  {csn 4575   cint 4897  cmpt 5174  ccnv 5618  dom cdm 5619  ran crn 5620  cima 5622  Oncon0 6311  cfv 6486  recscrecs 8296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297
This theorem is referenced by:  dnnumch3  43164  dnwech  43165
  Copyright terms: Public domain W3C validator