MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimacnvOLD Structured version   Visualization version   GIF version

Theorem fimacnvOLD 6880
Description: Obsolete version of fimacnv 6556 as of 20-Sep-2024. (Contributed by FL, 25-Jan-2007.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
fimacnvOLD (𝐹:𝐴𝐵 → (𝐹𝐵) = 𝐴)

Proof of Theorem fimacnvOLD
StepHypRef Expression
1 imassrn 5929 . . 3 (𝐹𝐵) ⊆ ran 𝐹
2 dfdm4 5753 . . . 4 dom 𝐹 = ran 𝐹
3 fdm 6543 . . . . 5 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
4 ssid 3913 . . . . 5 𝐴𝐴
53, 4eqsstrdi 3945 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
62, 5eqsstrrid 3940 . . 3 (𝐹:𝐴𝐵 → ran 𝐹𝐴)
71, 6sstrid 3902 . 2 (𝐹:𝐴𝐵 → (𝐹𝐵) ⊆ 𝐴)
8 fimass 6555 . . 3 (𝐹:𝐴𝐵 → (𝐹𝐴) ⊆ 𝐵)
9 ffun 6537 . . . 4 (𝐹:𝐴𝐵 → Fun 𝐹)
104, 3sseqtrrid 3944 . . . 4 (𝐹:𝐴𝐵𝐴 ⊆ dom 𝐹)
11 funimass3 6863 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
129, 10, 11syl2anc 587 . . 3 (𝐹:𝐴𝐵 → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
138, 12mpbid 235 . 2 (𝐹:𝐴𝐵𝐴 ⊆ (𝐹𝐵))
147, 13eqssd 3908 1 (𝐹:𝐴𝐵 → (𝐹𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1543  wss 3857  ccnv 5539  dom cdm 5540  ran crn 5541  cima 5543  Fun wfun 6363  wf 6365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pr 5311
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3403  df-sbc 3688  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-br 5044  df-opab 5106  df-id 5444  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-fv 6377
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator