MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimacnvOLD Structured version   Visualization version   GIF version

Theorem fimacnvOLD 7104
Description: Obsolete version of fimacnv 6769 as of 20-Sep-2024. (Contributed by FL, 25-Jan-2007.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
fimacnvOLD (𝐹:𝐴𝐵 → (𝐹𝐵) = 𝐴)

Proof of Theorem fimacnvOLD
StepHypRef Expression
1 imassrn 6100 . . 3 (𝐹𝐵) ⊆ ran 𝐹
2 dfdm4 5920 . . . 4 dom 𝐹 = ran 𝐹
3 fdm 6756 . . . . 5 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
4 ssid 4031 . . . . 5 𝐴𝐴
53, 4eqsstrdi 4063 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
62, 5eqsstrrid 4058 . . 3 (𝐹:𝐴𝐵 → ran 𝐹𝐴)
71, 6sstrid 4020 . 2 (𝐹:𝐴𝐵 → (𝐹𝐵) ⊆ 𝐴)
8 fimass 6767 . . 3 (𝐹:𝐴𝐵 → (𝐹𝐴) ⊆ 𝐵)
9 ffun 6750 . . . 4 (𝐹:𝐴𝐵 → Fun 𝐹)
104, 3sseqtrrid 4062 . . . 4 (𝐹:𝐴𝐵𝐴 ⊆ dom 𝐹)
11 funimass3 7087 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
129, 10, 11syl2anc 583 . . 3 (𝐹:𝐴𝐵 → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
138, 12mpbid 232 . 2 (𝐹:𝐴𝐵𝐴 ⊆ (𝐹𝐵))
147, 13eqssd 4026 1 (𝐹:𝐴𝐵 → (𝐹𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wss 3976  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  Fun wfun 6567  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator