![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimacnvOLD | Structured version Visualization version GIF version |
Description: Obsolete version of fimacnv 6740 as of 20-Sep-2024. (Contributed by FL, 25-Jan-2007.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
fimacnvOLD | ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 6069 | . . 3 ⊢ (◡𝐹 “ 𝐵) ⊆ ran ◡𝐹 | |
2 | dfdm4 5892 | . . . 4 ⊢ dom 𝐹 = ran ◡𝐹 | |
3 | fdm 6726 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
4 | ssid 3995 | . . . . 5 ⊢ 𝐴 ⊆ 𝐴 | |
5 | 3, 4 | eqsstrdi 4027 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 ⊆ 𝐴) |
6 | 2, 5 | eqsstrrid 4022 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ran ◡𝐹 ⊆ 𝐴) |
7 | 1, 6 | sstrid 3984 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) ⊆ 𝐴) |
8 | fimass 6738 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝐴) ⊆ 𝐵) | |
9 | ffun 6720 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
10 | 4, 3 | sseqtrrid 4026 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐴 ⊆ dom 𝐹) |
11 | funimass3 7058 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ 𝐵))) | |
12 | 9, 10, 11 | syl2anc 582 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ 𝐵))) |
13 | 8, 12 | mpbid 231 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐴 ⊆ (◡𝐹 “ 𝐵)) |
14 | 7, 13 | eqssd 3990 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ⊆ wss 3939 ◡ccnv 5671 dom cdm 5672 ran crn 5673 “ cima 5675 Fun wfun 6537 ⟶wf 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |