MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimacnvOLD Structured version   Visualization version   GIF version

Theorem fimacnvOLD 6930
Description: Obsolete version of fimacnv 6606 as of 20-Sep-2024. (Contributed by FL, 25-Jan-2007.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
fimacnvOLD (𝐹:𝐴𝐵 → (𝐹𝐵) = 𝐴)

Proof of Theorem fimacnvOLD
StepHypRef Expression
1 imassrn 5969 . . 3 (𝐹𝐵) ⊆ ran 𝐹
2 dfdm4 5793 . . . 4 dom 𝐹 = ran 𝐹
3 fdm 6593 . . . . 5 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
4 ssid 3939 . . . . 5 𝐴𝐴
53, 4eqsstrdi 3971 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
62, 5eqsstrrid 3966 . . 3 (𝐹:𝐴𝐵 → ran 𝐹𝐴)
71, 6sstrid 3928 . 2 (𝐹:𝐴𝐵 → (𝐹𝐵) ⊆ 𝐴)
8 fimass 6605 . . 3 (𝐹:𝐴𝐵 → (𝐹𝐴) ⊆ 𝐵)
9 ffun 6587 . . . 4 (𝐹:𝐴𝐵 → Fun 𝐹)
104, 3sseqtrrid 3970 . . . 4 (𝐹:𝐴𝐵𝐴 ⊆ dom 𝐹)
11 funimass3 6913 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
129, 10, 11syl2anc 583 . . 3 (𝐹:𝐴𝐵 → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
138, 12mpbid 231 . 2 (𝐹:𝐴𝐵𝐴 ⊆ (𝐹𝐵))
147, 13eqssd 3934 1 (𝐹:𝐴𝐵 → (𝐹𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wss 3883  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583  Fun wfun 6412  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator