MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subbascn Structured version   Visualization version   GIF version

Theorem subbascn 21338
Description: The continuity predicate when the range is given by a subbasis for a topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
subbascn.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
subbascn.2 (𝜑𝐵𝑉)
subbascn.3 (𝜑𝐾 = (topGen‘(fi‘𝐵)))
subbascn.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
subbascn (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐹   𝑦,𝐽   𝑦,𝑋   𝑦,𝑌   𝑦,𝐾
Allowed substitution hints:   𝜑(𝑦)   𝑉(𝑦)

Proof of Theorem subbascn
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subbascn.1 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 subbascn.3 . . 3 (𝜑𝐾 = (topGen‘(fi‘𝐵)))
3 subbascn.4 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
41, 2, 3tgcn 21336 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽)))
5 subbascn.2 . . . . . 6 (𝜑𝐵𝑉)
65adantr 472 . . . . 5 ((𝜑𝐹:𝑋𝑌) → 𝐵𝑉)
7 ssfii 8532 . . . . 5 (𝐵𝑉𝐵 ⊆ (fi‘𝐵))
8 ssralv 3826 . . . . 5 (𝐵 ⊆ (fi‘𝐵) → (∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
96, 7, 83syl 18 . . . 4 ((𝜑𝐹:𝑋𝑌) → (∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
10 vex 3353 . . . . . . . . 9 𝑥 ∈ V
11 elfi 8526 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝐵𝑉) → (𝑥 ∈ (fi‘𝐵) ↔ ∃𝑧 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = 𝑧))
1210, 6, 11sylancr 581 . . . . . . . 8 ((𝜑𝐹:𝑋𝑌) → (𝑥 ∈ (fi‘𝐵) ↔ ∃𝑧 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = 𝑧))
13 simpr2 1250 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑥 = 𝑧)
1413imaeq2d 5648 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑥) = (𝐹 𝑧))
15 ffun 6226 . . . . . . . . . . . . . 14 (𝐹:𝑋𝑌 → Fun 𝐹)
1615ad2antlr 718 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → Fun 𝐹)
1713, 10syl6eqelr 2853 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ∈ V)
18 intex 4978 . . . . . . . . . . . . . 14 (𝑧 ≠ ∅ ↔ 𝑧 ∈ V)
1917, 18sylibr 225 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ≠ ∅)
20 intpreima 6536 . . . . . . . . . . . . 13 ((Fun 𝐹𝑧 ≠ ∅) → (𝐹 𝑧) = 𝑦𝑧 (𝐹𝑦))
2116, 19, 20syl2anc 579 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → (𝐹 𝑧) = 𝑦𝑧 (𝐹𝑦))
2214, 21eqtrd 2799 . . . . . . . . . . 11 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑥) = 𝑦𝑧 (𝐹𝑦))
23 topontop 20997 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
241, 23syl 17 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Top)
2524ad2antrr 717 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝐽 ∈ Top)
26 inss2 3993 . . . . . . . . . . . . 13 (𝒫 𝐵 ∩ Fin) ⊆ Fin
27 simpr1 1248 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ∈ (𝒫 𝐵 ∩ Fin))
2826, 27sseldi 3759 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ∈ Fin)
29 inss1 3992 . . . . . . . . . . . . . . 15 (𝒫 𝐵 ∩ Fin) ⊆ 𝒫 𝐵
3029, 27sseldi 3759 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ∈ 𝒫 𝐵)
3130elpwid 4327 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧𝐵)
32 simpr3 1252 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)
33 ssralv 3826 . . . . . . . . . . . . 13 (𝑧𝐵 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
3431, 32, 33sylc 65 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽)
35 iinopn 20986 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝑧 ∈ Fin ∧ 𝑧 ≠ ∅ ∧ ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽)) → 𝑦𝑧 (𝐹𝑦) ∈ 𝐽)
3625, 28, 19, 34, 35syl13anc 1491 . . . . . . . . . . 11 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑦𝑧 (𝐹𝑦) ∈ 𝐽)
3722, 36eqeltrd 2844 . . . . . . . . . 10 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑥) ∈ 𝐽)
38373exp2 1463 . . . . . . . . 9 ((𝜑𝐹:𝑋𝑌) → (𝑧 ∈ (𝒫 𝐵 ∩ Fin) → (𝑥 = 𝑧 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽))))
3938rexlimdv 3177 . . . . . . . 8 ((𝜑𝐹:𝑋𝑌) → (∃𝑧 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = 𝑧 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
4012, 39sylbid 231 . . . . . . 7 ((𝜑𝐹:𝑋𝑌) → (𝑥 ∈ (fi‘𝐵) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
4140com23 86 . . . . . 6 ((𝜑𝐹:𝑋𝑌) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝑥 ∈ (fi‘𝐵) → (𝐹𝑥) ∈ 𝐽)))
4241ralrimdv 3115 . . . . 5 ((𝜑𝐹:𝑋𝑌) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑥 ∈ (fi‘𝐵)(𝐹𝑥) ∈ 𝐽))
43 imaeq2 5644 . . . . . . 7 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
4443eleq1d 2829 . . . . . 6 (𝑦 = 𝑥 → ((𝐹𝑦) ∈ 𝐽 ↔ (𝐹𝑥) ∈ 𝐽))
4544cbvralv 3319 . . . . 5 (∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽 ↔ ∀𝑥 ∈ (fi‘𝐵)(𝐹𝑥) ∈ 𝐽)
4642, 45syl6ibr 243 . . . 4 ((𝜑𝐹:𝑋𝑌) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽))
479, 46impbid 203 . . 3 ((𝜑𝐹:𝑋𝑌) → (∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽 ↔ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
4847pm5.32da 574 . 2 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
494, 48bitrd 270 1 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  Vcvv 3350  cin 3731  wss 3732  c0 4079  𝒫 cpw 4315   cint 4633   ciin 4677  ccnv 5276  cima 5280  Fun wfun 6062  wf 6064  cfv 6068  (class class class)co 6842  Fincfn 8160  ficfi 8523  topGenctg 16366  Topctop 20977  TopOnctopon 20994   Cn ccn 21308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-fin 8164  df-fi 8524  df-topgen 16372  df-top 20978  df-topon 20995  df-bases 21030  df-cn 21311
This theorem is referenced by:  xkoccn  21702  ptrescn  21722  xkoco1cn  21740  xkoco2cn  21741  xkococn  21743  xkoinjcn  21770  ordthmeolem  21884
  Copyright terms: Public domain W3C validator