MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subbascn Structured version   Visualization version   GIF version

Theorem subbascn 21790
Description: The continuity predicate when the range is given by a subbasis for a topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
subbascn.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
subbascn.2 (𝜑𝐵𝑉)
subbascn.3 (𝜑𝐾 = (topGen‘(fi‘𝐵)))
subbascn.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
subbascn (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐹   𝑦,𝐽   𝑦,𝑋   𝑦,𝑌   𝑦,𝐾
Allowed substitution hints:   𝜑(𝑦)   𝑉(𝑦)

Proof of Theorem subbascn
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subbascn.1 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 subbascn.3 . . 3 (𝜑𝐾 = (topGen‘(fi‘𝐵)))
3 subbascn.4 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
41, 2, 3tgcn 21788 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽)))
5 subbascn.2 . . . . . 6 (𝜑𝐵𝑉)
65adantr 481 . . . . 5 ((𝜑𝐹:𝑋𝑌) → 𝐵𝑉)
7 ssfii 8871 . . . . 5 (𝐵𝑉𝐵 ⊆ (fi‘𝐵))
8 ssralv 4030 . . . . 5 (𝐵 ⊆ (fi‘𝐵) → (∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
96, 7, 83syl 18 . . . 4 ((𝜑𝐹:𝑋𝑌) → (∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
10 vex 3495 . . . . . . . . 9 𝑥 ∈ V
11 elfi 8865 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝐵𝑉) → (𝑥 ∈ (fi‘𝐵) ↔ ∃𝑧 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = 𝑧))
1210, 6, 11sylancr 587 . . . . . . . 8 ((𝜑𝐹:𝑋𝑌) → (𝑥 ∈ (fi‘𝐵) ↔ ∃𝑧 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = 𝑧))
13 simpr2 1187 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑥 = 𝑧)
1413imaeq2d 5922 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑥) = (𝐹 𝑧))
15 ffun 6510 . . . . . . . . . . . . . 14 (𝐹:𝑋𝑌 → Fun 𝐹)
1615ad2antlr 723 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → Fun 𝐹)
1713, 10syl6eqelr 2919 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ∈ V)
18 intex 5231 . . . . . . . . . . . . . 14 (𝑧 ≠ ∅ ↔ 𝑧 ∈ V)
1917, 18sylibr 235 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ≠ ∅)
20 intpreima 6830 . . . . . . . . . . . . 13 ((Fun 𝐹𝑧 ≠ ∅) → (𝐹 𝑧) = 𝑦𝑧 (𝐹𝑦))
2116, 19, 20syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → (𝐹 𝑧) = 𝑦𝑧 (𝐹𝑦))
2214, 21eqtrd 2853 . . . . . . . . . . 11 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑥) = 𝑦𝑧 (𝐹𝑦))
23 topontop 21449 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
241, 23syl 17 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Top)
2524ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝐽 ∈ Top)
26 simpr1 1186 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ∈ (𝒫 𝐵 ∩ Fin))
2726elin2d 4173 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ∈ Fin)
2826elin1d 4172 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ∈ 𝒫 𝐵)
2928elpwid 4549 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧𝐵)
30 simpr3 1188 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)
31 ssralv 4030 . . . . . . . . . . . . 13 (𝑧𝐵 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
3229, 30, 31sylc 65 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽)
33 iinopn 21438 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝑧 ∈ Fin ∧ 𝑧 ≠ ∅ ∧ ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽)) → 𝑦𝑧 (𝐹𝑦) ∈ 𝐽)
3425, 27, 19, 32, 33syl13anc 1364 . . . . . . . . . . 11 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑦𝑧 (𝐹𝑦) ∈ 𝐽)
3522, 34eqeltrd 2910 . . . . . . . . . 10 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑥) ∈ 𝐽)
36353exp2 1346 . . . . . . . . 9 ((𝜑𝐹:𝑋𝑌) → (𝑧 ∈ (𝒫 𝐵 ∩ Fin) → (𝑥 = 𝑧 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽))))
3736rexlimdv 3280 . . . . . . . 8 ((𝜑𝐹:𝑋𝑌) → (∃𝑧 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = 𝑧 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3812, 37sylbid 241 . . . . . . 7 ((𝜑𝐹:𝑋𝑌) → (𝑥 ∈ (fi‘𝐵) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3938com23 86 . . . . . 6 ((𝜑𝐹:𝑋𝑌) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝑥 ∈ (fi‘𝐵) → (𝐹𝑥) ∈ 𝐽)))
4039ralrimdv 3185 . . . . 5 ((𝜑𝐹:𝑋𝑌) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑥 ∈ (fi‘𝐵)(𝐹𝑥) ∈ 𝐽))
41 imaeq2 5918 . . . . . . 7 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
4241eleq1d 2894 . . . . . 6 (𝑦 = 𝑥 → ((𝐹𝑦) ∈ 𝐽 ↔ (𝐹𝑥) ∈ 𝐽))
4342cbvralvw 3447 . . . . 5 (∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽 ↔ ∀𝑥 ∈ (fi‘𝐵)(𝐹𝑥) ∈ 𝐽)
4440, 43syl6ibr 253 . . . 4 ((𝜑𝐹:𝑋𝑌) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽))
459, 44impbid 213 . . 3 ((𝜑𝐹:𝑋𝑌) → (∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽 ↔ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
4645pm5.32da 579 . 2 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
474, 46bitrd 280 1 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136  Vcvv 3492  cin 3932  wss 3933  c0 4288  𝒫 cpw 4535   cint 4867   ciin 4911  ccnv 5547  cima 5551  Fun wfun 6342  wf 6344  cfv 6348  (class class class)co 7145  Fincfn 8497  ficfi 8862  topGenctg 16699  Topctop 21429  TopOnctopon 21446   Cn ccn 21760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-fin 8501  df-fi 8863  df-topgen 16705  df-top 21430  df-topon 21447  df-bases 21482  df-cn 21763
This theorem is referenced by:  xkoccn  22155  ptrescn  22175  xkoco1cn  22193  xkoco2cn  22194  xkococn  22196  xkoinjcn  22223  ordthmeolem  22337
  Copyright terms: Public domain W3C validator