| Step | Hyp | Ref
| Expression |
| 1 | | subbascn.1 |
. . 3
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 2 | | subbascn.3 |
. . 3
⊢ (𝜑 → 𝐾 = (topGen‘(fi‘𝐵))) |
| 3 | | subbascn.4 |
. . 3
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| 4 | 1, 2, 3 | tgcn 23190 |
. 2
⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (fi‘𝐵)(◡𝐹 “ 𝑦) ∈ 𝐽))) |
| 5 | | subbascn.2 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| 6 | 5 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → 𝐵 ∈ 𝑉) |
| 7 | | ssfii 9431 |
. . . . 5
⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (fi‘𝐵)) |
| 8 | | ssralv 4027 |
. . . . 5
⊢ (𝐵 ⊆ (fi‘𝐵) → (∀𝑦 ∈ (fi‘𝐵)(◡𝐹 “ 𝑦) ∈ 𝐽 → ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
| 9 | 6, 7, 8 | 3syl 18 |
. . . 4
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → (∀𝑦 ∈ (fi‘𝐵)(◡𝐹 “ 𝑦) ∈ 𝐽 → ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
| 10 | | vex 3463 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 11 | | elfi 9425 |
. . . . . . . . 9
⊢ ((𝑥 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝑥 ∈ (fi‘𝐵) ↔ ∃𝑧 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ∩ 𝑧)) |
| 12 | 10, 6, 11 | sylancr 587 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → (𝑥 ∈ (fi‘𝐵) ↔ ∃𝑧 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ∩ 𝑧)) |
| 13 | | simpr2 1196 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = ∩ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) → 𝑥 = ∩ 𝑧) |
| 14 | 13 | imaeq2d 6047 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = ∩ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) → (◡𝐹 “ 𝑥) = (◡𝐹 “ ∩ 𝑧)) |
| 15 | | ffun 6709 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝑋⟶𝑌 → Fun 𝐹) |
| 16 | 15 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = ∩ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) → Fun 𝐹) |
| 17 | 13, 10 | eqeltrrdi 2843 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = ∩ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) → ∩ 𝑧 ∈ V) |
| 18 | | intex 5314 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ≠ ∅ ↔ ∩ 𝑧
∈ V) |
| 19 | 17, 18 | sylibr 234 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = ∩ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) → 𝑧 ≠ ∅) |
| 20 | | intpreima 7060 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝐹 ∧ 𝑧 ≠ ∅) → (◡𝐹 “ ∩ 𝑧) = ∩ 𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦)) |
| 21 | 16, 19, 20 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = ∩ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) → (◡𝐹 “ ∩ 𝑧) = ∩ 𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦)) |
| 22 | 14, 21 | eqtrd 2770 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = ∩ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) → (◡𝐹 “ 𝑥) = ∩ 𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦)) |
| 23 | | topontop 22851 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 24 | 1, 23 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐽 ∈ Top) |
| 25 | 24 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = ∩ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) → 𝐽 ∈ Top) |
| 26 | | simpr1 1195 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = ∩ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) → 𝑧 ∈ (𝒫 𝐵 ∩ Fin)) |
| 27 | 26 | elin2d 4180 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = ∩ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) → 𝑧 ∈ Fin) |
| 28 | 26 | elin1d 4179 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = ∩ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) → 𝑧 ∈ 𝒫 𝐵) |
| 29 | 28 | elpwid 4584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = ∩ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) → 𝑧 ⊆ 𝐵) |
| 30 | | simpr3 1197 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = ∩ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) → ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽) |
| 31 | | ssralv 4027 |
. . . . . . . . . . . . 13
⊢ (𝑧 ⊆ 𝐵 → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → ∀𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
| 32 | 29, 30, 31 | sylc 65 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = ∩ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) → ∀𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽) |
| 33 | | iinopn 22840 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ (𝑧 ∈ Fin ∧ 𝑧 ≠ ∅ ∧
∀𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽)) → ∩ 𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽) |
| 34 | 25, 27, 19, 32, 33 | syl13anc 1374 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = ∩ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) → ∩ 𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽) |
| 35 | 22, 34 | eqeltrd 2834 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = ∩ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) → (◡𝐹 “ 𝑥) ∈ 𝐽) |
| 36 | 35 | 3exp2 1355 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → (𝑧 ∈ (𝒫 𝐵 ∩ Fin) → (𝑥 = ∩ 𝑧 → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → (◡𝐹 “ 𝑥) ∈ 𝐽)))) |
| 37 | 36 | rexlimdv 3139 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → (∃𝑧 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ∩ 𝑧 → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 38 | 12, 37 | sylbid 240 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → (𝑥 ∈ (fi‘𝐵) → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 39 | 38 | com23 86 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → (𝑥 ∈ (fi‘𝐵) → (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 40 | 39 | ralrimdv 3138 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → ∀𝑥 ∈ (fi‘𝐵)(◡𝐹 “ 𝑥) ∈ 𝐽)) |
| 41 | | imaeq2 6043 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (◡𝐹 “ 𝑦) = (◡𝐹 “ 𝑥)) |
| 42 | 41 | eleq1d 2819 |
. . . . . 6
⊢ (𝑦 = 𝑥 → ((◡𝐹 “ 𝑦) ∈ 𝐽 ↔ (◡𝐹 “ 𝑥) ∈ 𝐽)) |
| 43 | 42 | cbvralvw 3220 |
. . . . 5
⊢
(∀𝑦 ∈
(fi‘𝐵)(◡𝐹 “ 𝑦) ∈ 𝐽 ↔ ∀𝑥 ∈ (fi‘𝐵)(◡𝐹 “ 𝑥) ∈ 𝐽) |
| 44 | 40, 43 | imbitrrdi 252 |
. . . 4
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → ∀𝑦 ∈ (fi‘𝐵)(◡𝐹 “ 𝑦) ∈ 𝐽)) |
| 45 | 9, 44 | impbid 212 |
. . 3
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → (∀𝑦 ∈ (fi‘𝐵)(◡𝐹 “ 𝑦) ∈ 𝐽 ↔ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
| 46 | 45 | pm5.32da 579 |
. 2
⊢ (𝜑 → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (fi‘𝐵)(◡𝐹 “ 𝑦) ∈ 𝐽) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
| 47 | 4, 46 | bitrd 279 |
1
⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽))) |