MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subbascn Structured version   Visualization version   GIF version

Theorem subbascn 23192
Description: The continuity predicate when the range is given by a subbasis for a topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
subbascn.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
subbascn.2 (𝜑𝐵𝑉)
subbascn.3 (𝜑𝐾 = (topGen‘(fi‘𝐵)))
subbascn.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
subbascn (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐹   𝑦,𝐽   𝑦,𝑋   𝑦,𝑌   𝑦,𝐾
Allowed substitution hints:   𝜑(𝑦)   𝑉(𝑦)

Proof of Theorem subbascn
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subbascn.1 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 subbascn.3 . . 3 (𝜑𝐾 = (topGen‘(fi‘𝐵)))
3 subbascn.4 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
41, 2, 3tgcn 23190 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽)))
5 subbascn.2 . . . . . 6 (𝜑𝐵𝑉)
65adantr 480 . . . . 5 ((𝜑𝐹:𝑋𝑌) → 𝐵𝑉)
7 ssfii 9431 . . . . 5 (𝐵𝑉𝐵 ⊆ (fi‘𝐵))
8 ssralv 4027 . . . . 5 (𝐵 ⊆ (fi‘𝐵) → (∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
96, 7, 83syl 18 . . . 4 ((𝜑𝐹:𝑋𝑌) → (∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
10 vex 3463 . . . . . . . . 9 𝑥 ∈ V
11 elfi 9425 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝐵𝑉) → (𝑥 ∈ (fi‘𝐵) ↔ ∃𝑧 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = 𝑧))
1210, 6, 11sylancr 587 . . . . . . . 8 ((𝜑𝐹:𝑋𝑌) → (𝑥 ∈ (fi‘𝐵) ↔ ∃𝑧 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = 𝑧))
13 simpr2 1196 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑥 = 𝑧)
1413imaeq2d 6047 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑥) = (𝐹 𝑧))
15 ffun 6709 . . . . . . . . . . . . . 14 (𝐹:𝑋𝑌 → Fun 𝐹)
1615ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → Fun 𝐹)
1713, 10eqeltrrdi 2843 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ∈ V)
18 intex 5314 . . . . . . . . . . . . . 14 (𝑧 ≠ ∅ ↔ 𝑧 ∈ V)
1917, 18sylibr 234 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ≠ ∅)
20 intpreima 7060 . . . . . . . . . . . . 13 ((Fun 𝐹𝑧 ≠ ∅) → (𝐹 𝑧) = 𝑦𝑧 (𝐹𝑦))
2116, 19, 20syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → (𝐹 𝑧) = 𝑦𝑧 (𝐹𝑦))
2214, 21eqtrd 2770 . . . . . . . . . . 11 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑥) = 𝑦𝑧 (𝐹𝑦))
23 topontop 22851 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
241, 23syl 17 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Top)
2524ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝐽 ∈ Top)
26 simpr1 1195 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ∈ (𝒫 𝐵 ∩ Fin))
2726elin2d 4180 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ∈ Fin)
2826elin1d 4179 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ∈ 𝒫 𝐵)
2928elpwid 4584 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧𝐵)
30 simpr3 1197 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)
31 ssralv 4027 . . . . . . . . . . . . 13 (𝑧𝐵 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
3229, 30, 31sylc 65 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽)
33 iinopn 22840 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝑧 ∈ Fin ∧ 𝑧 ≠ ∅ ∧ ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽)) → 𝑦𝑧 (𝐹𝑦) ∈ 𝐽)
3425, 27, 19, 32, 33syl13anc 1374 . . . . . . . . . . 11 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑦𝑧 (𝐹𝑦) ∈ 𝐽)
3522, 34eqeltrd 2834 . . . . . . . . . 10 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑥) ∈ 𝐽)
36353exp2 1355 . . . . . . . . 9 ((𝜑𝐹:𝑋𝑌) → (𝑧 ∈ (𝒫 𝐵 ∩ Fin) → (𝑥 = 𝑧 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽))))
3736rexlimdv 3139 . . . . . . . 8 ((𝜑𝐹:𝑋𝑌) → (∃𝑧 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = 𝑧 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3812, 37sylbid 240 . . . . . . 7 ((𝜑𝐹:𝑋𝑌) → (𝑥 ∈ (fi‘𝐵) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3938com23 86 . . . . . 6 ((𝜑𝐹:𝑋𝑌) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝑥 ∈ (fi‘𝐵) → (𝐹𝑥) ∈ 𝐽)))
4039ralrimdv 3138 . . . . 5 ((𝜑𝐹:𝑋𝑌) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑥 ∈ (fi‘𝐵)(𝐹𝑥) ∈ 𝐽))
41 imaeq2 6043 . . . . . . 7 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
4241eleq1d 2819 . . . . . 6 (𝑦 = 𝑥 → ((𝐹𝑦) ∈ 𝐽 ↔ (𝐹𝑥) ∈ 𝐽))
4342cbvralvw 3220 . . . . 5 (∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽 ↔ ∀𝑥 ∈ (fi‘𝐵)(𝐹𝑥) ∈ 𝐽)
4440, 43imbitrrdi 252 . . . 4 ((𝜑𝐹:𝑋𝑌) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽))
459, 44impbid 212 . . 3 ((𝜑𝐹:𝑋𝑌) → (∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽 ↔ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
4645pm5.32da 579 . 2 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
474, 46bitrd 279 1 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  Vcvv 3459  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575   cint 4922   ciin 4968  ccnv 5653  cima 5657  Fun wfun 6525  wf 6527  cfv 6531  (class class class)co 7405  Fincfn 8959  ficfi 9422  topGenctg 17451  Topctop 22831  TopOnctopon 22848   Cn ccn 23162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-1o 8480  df-2o 8481  df-map 8842  df-en 8960  df-dom 8961  df-fin 8963  df-fi 9423  df-topgen 17457  df-top 22832  df-topon 22849  df-bases 22884  df-cn 23165
This theorem is referenced by:  xkoccn  23557  ptrescn  23577  xkoco1cn  23595  xkoco2cn  23596  xkococn  23598  xkoinjcn  23625  ordthmeolem  23739
  Copyright terms: Public domain W3C validator