MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subbascn Structured version   Visualization version   GIF version

Theorem subbascn 23283
Description: The continuity predicate when the range is given by a subbasis for a topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
subbascn.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
subbascn.2 (𝜑𝐵𝑉)
subbascn.3 (𝜑𝐾 = (topGen‘(fi‘𝐵)))
subbascn.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
subbascn (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐹   𝑦,𝐽   𝑦,𝑋   𝑦,𝑌   𝑦,𝐾
Allowed substitution hints:   𝜑(𝑦)   𝑉(𝑦)

Proof of Theorem subbascn
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subbascn.1 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 subbascn.3 . . 3 (𝜑𝐾 = (topGen‘(fi‘𝐵)))
3 subbascn.4 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
41, 2, 3tgcn 23281 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽)))
5 subbascn.2 . . . . . 6 (𝜑𝐵𝑉)
65adantr 480 . . . . 5 ((𝜑𝐹:𝑋𝑌) → 𝐵𝑉)
7 ssfii 9488 . . . . 5 (𝐵𝑉𝐵 ⊆ (fi‘𝐵))
8 ssralv 4077 . . . . 5 (𝐵 ⊆ (fi‘𝐵) → (∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
96, 7, 83syl 18 . . . 4 ((𝜑𝐹:𝑋𝑌) → (∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
10 vex 3492 . . . . . . . . 9 𝑥 ∈ V
11 elfi 9482 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝐵𝑉) → (𝑥 ∈ (fi‘𝐵) ↔ ∃𝑧 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = 𝑧))
1210, 6, 11sylancr 586 . . . . . . . 8 ((𝜑𝐹:𝑋𝑌) → (𝑥 ∈ (fi‘𝐵) ↔ ∃𝑧 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = 𝑧))
13 simpr2 1195 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑥 = 𝑧)
1413imaeq2d 6089 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑥) = (𝐹 𝑧))
15 ffun 6750 . . . . . . . . . . . . . 14 (𝐹:𝑋𝑌 → Fun 𝐹)
1615ad2antlr 726 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → Fun 𝐹)
1713, 10eqeltrrdi 2853 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ∈ V)
18 intex 5362 . . . . . . . . . . . . . 14 (𝑧 ≠ ∅ ↔ 𝑧 ∈ V)
1917, 18sylibr 234 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ≠ ∅)
20 intpreima 7103 . . . . . . . . . . . . 13 ((Fun 𝐹𝑧 ≠ ∅) → (𝐹 𝑧) = 𝑦𝑧 (𝐹𝑦))
2116, 19, 20syl2anc 583 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → (𝐹 𝑧) = 𝑦𝑧 (𝐹𝑦))
2214, 21eqtrd 2780 . . . . . . . . . . 11 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑥) = 𝑦𝑧 (𝐹𝑦))
23 topontop 22940 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
241, 23syl 17 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Top)
2524ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝐽 ∈ Top)
26 simpr1 1194 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ∈ (𝒫 𝐵 ∩ Fin))
2726elin2d 4228 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ∈ Fin)
2826elin1d 4227 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ∈ 𝒫 𝐵)
2928elpwid 4631 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧𝐵)
30 simpr3 1196 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)
31 ssralv 4077 . . . . . . . . . . . . 13 (𝑧𝐵 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
3229, 30, 31sylc 65 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽)
33 iinopn 22929 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝑧 ∈ Fin ∧ 𝑧 ≠ ∅ ∧ ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽)) → 𝑦𝑧 (𝐹𝑦) ∈ 𝐽)
3425, 27, 19, 32, 33syl13anc 1372 . . . . . . . . . . 11 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑦𝑧 (𝐹𝑦) ∈ 𝐽)
3522, 34eqeltrd 2844 . . . . . . . . . 10 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑥) ∈ 𝐽)
36353exp2 1354 . . . . . . . . 9 ((𝜑𝐹:𝑋𝑌) → (𝑧 ∈ (𝒫 𝐵 ∩ Fin) → (𝑥 = 𝑧 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽))))
3736rexlimdv 3159 . . . . . . . 8 ((𝜑𝐹:𝑋𝑌) → (∃𝑧 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = 𝑧 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3812, 37sylbid 240 . . . . . . 7 ((𝜑𝐹:𝑋𝑌) → (𝑥 ∈ (fi‘𝐵) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3938com23 86 . . . . . 6 ((𝜑𝐹:𝑋𝑌) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝑥 ∈ (fi‘𝐵) → (𝐹𝑥) ∈ 𝐽)))
4039ralrimdv 3158 . . . . 5 ((𝜑𝐹:𝑋𝑌) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑥 ∈ (fi‘𝐵)(𝐹𝑥) ∈ 𝐽))
41 imaeq2 6085 . . . . . . 7 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
4241eleq1d 2829 . . . . . 6 (𝑦 = 𝑥 → ((𝐹𝑦) ∈ 𝐽 ↔ (𝐹𝑥) ∈ 𝐽))
4342cbvralvw 3243 . . . . 5 (∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽 ↔ ∀𝑥 ∈ (fi‘𝐵)(𝐹𝑥) ∈ 𝐽)
4440, 43imbitrrdi 252 . . . 4 ((𝜑𝐹:𝑋𝑌) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽))
459, 44impbid 212 . . 3 ((𝜑𝐹:𝑋𝑌) → (∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽 ↔ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
4645pm5.32da 578 . 2 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
474, 46bitrd 279 1 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622   cint 4970   ciin 5016  ccnv 5699  cima 5703  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  Fincfn 9003  ficfi 9479  topGenctg 17497  Topctop 22920  TopOnctopon 22937   Cn ccn 23253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-1o 8522  df-2o 8523  df-map 8886  df-en 9004  df-dom 9005  df-fin 9007  df-fi 9480  df-topgen 17503  df-top 22921  df-topon 22938  df-bases 22974  df-cn 23256
This theorem is referenced by:  xkoccn  23648  ptrescn  23668  xkoco1cn  23686  xkoco2cn  23687  xkococn  23689  xkoinjcn  23716  ordthmeolem  23830
  Copyright terms: Public domain W3C validator