| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > invrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for inverse relations. (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| invrcl.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invrcl.f | ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) |
| Ref | Expression |
|---|---|
| invrcl | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invrcl.f | . 2 ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) | |
| 2 | df-br 5092 | . . . . 5 ⊢ (𝐹(𝑋𝑁𝑌)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝑋𝑁𝑌)) | |
| 3 | df-ov 7349 | . . . . . 6 ⊢ (𝑋𝑁𝑌) = (𝑁‘〈𝑋, 𝑌〉) | |
| 4 | 3 | eleq2i 2823 | . . . . 5 ⊢ (〈𝐹, 𝐺〉 ∈ (𝑋𝑁𝑌) ↔ 〈𝐹, 𝐺〉 ∈ (𝑁‘〈𝑋, 𝑌〉)) |
| 5 | 2, 4 | bitri 275 | . . . 4 ⊢ (𝐹(𝑋𝑁𝑌)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝑁‘〈𝑋, 𝑌〉)) |
| 6 | elfvne0 48879 | . . . 4 ⊢ (〈𝐹, 𝐺〉 ∈ (𝑁‘〈𝑋, 𝑌〉) → 𝑁 ≠ ∅) | |
| 7 | 5, 6 | sylbi 217 | . . 3 ⊢ (𝐹(𝑋𝑁𝑌)𝐺 → 𝑁 ≠ ∅) |
| 8 | invrcl.n | . . . . 5 ⊢ 𝑁 = (Inv‘𝐶) | |
| 9 | 8 | neeq1i 2992 | . . . 4 ⊢ (𝑁 ≠ ∅ ↔ (Inv‘𝐶) ≠ ∅) |
| 10 | n0 4303 | . . . 4 ⊢ ((Inv‘𝐶) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Inv‘𝐶)) | |
| 11 | 9, 10 | bitri 275 | . . 3 ⊢ (𝑁 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Inv‘𝐶)) |
| 12 | 7, 11 | sylib 218 | . 2 ⊢ (𝐹(𝑋𝑁𝑌)𝐺 → ∃𝑥 𝑥 ∈ (Inv‘𝐶)) |
| 13 | df-inv 17652 | . . . 4 ⊢ Inv = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥)))) | |
| 14 | 13 | mptrcl 6938 | . . 3 ⊢ (𝑥 ∈ (Inv‘𝐶) → 𝐶 ∈ Cat) |
| 15 | 14 | exlimiv 1931 | . 2 ⊢ (∃𝑥 𝑥 ∈ (Inv‘𝐶) → 𝐶 ∈ Cat) |
| 16 | 1, 12, 15 | 3syl 18 | 1 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∩ cin 3901 ∅c0 4283 〈cop 4582 class class class wbr 5091 ◡ccnv 5615 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 Basecbs 17117 Catccat 17567 Sectcsect 17648 Invcinv 17649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fv 6489 df-ov 7349 df-inv 17652 |
| This theorem is referenced by: invrcl2 49056 isinv2 49057 isoval2 49066 |
| Copyright terms: Public domain | W3C validator |