Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  invrcl Structured version   Visualization version   GIF version

Theorem invrcl 49055
Description: Reverse closure for inverse relations. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
invrcl.n 𝑁 = (Inv‘𝐶)
invrcl.f (𝜑𝐹(𝑋𝑁𝑌)𝐺)
Assertion
Ref Expression
invrcl (𝜑𝐶 ∈ Cat)

Proof of Theorem invrcl
Dummy variables 𝑥 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invrcl.f . 2 (𝜑𝐹(𝑋𝑁𝑌)𝐺)
2 df-br 5092 . . . . 5 (𝐹(𝑋𝑁𝑌)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑋𝑁𝑌))
3 df-ov 7349 . . . . . 6 (𝑋𝑁𝑌) = (𝑁‘⟨𝑋, 𝑌⟩)
43eleq2i 2823 . . . . 5 (⟨𝐹, 𝐺⟩ ∈ (𝑋𝑁𝑌) ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑁‘⟨𝑋, 𝑌⟩))
52, 4bitri 275 . . . 4 (𝐹(𝑋𝑁𝑌)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑁‘⟨𝑋, 𝑌⟩))
6 elfvne0 48879 . . . 4 (⟨𝐹, 𝐺⟩ ∈ (𝑁‘⟨𝑋, 𝑌⟩) → 𝑁 ≠ ∅)
75, 6sylbi 217 . . 3 (𝐹(𝑋𝑁𝑌)𝐺𝑁 ≠ ∅)
8 invrcl.n . . . . 5 𝑁 = (Inv‘𝐶)
98neeq1i 2992 . . . 4 (𝑁 ≠ ∅ ↔ (Inv‘𝐶) ≠ ∅)
10 n0 4303 . . . 4 ((Inv‘𝐶) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Inv‘𝐶))
119, 10bitri 275 . . 3 (𝑁 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Inv‘𝐶))
127, 11sylib 218 . 2 (𝐹(𝑋𝑁𝑌)𝐺 → ∃𝑥 𝑥 ∈ (Inv‘𝐶))
13 df-inv 17652 . . . 4 Inv = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥))))
1413mptrcl 6938 . . 3 (𝑥 ∈ (Inv‘𝐶) → 𝐶 ∈ Cat)
1514exlimiv 1931 . 2 (∃𝑥 𝑥 ∈ (Inv‘𝐶) → 𝐶 ∈ Cat)
161, 12, 153syl 18 1 (𝜑𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wex 1780  wcel 2111  wne 2928  cin 3901  c0 4283  cop 4582   class class class wbr 5091  ccnv 5615  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17117  Catccat 17567  Sectcsect 17648  Invcinv 17649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-xp 5622  df-rel 5623  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fv 6489  df-ov 7349  df-inv 17652
This theorem is referenced by:  invrcl2  49056  isinv2  49057  isoval2  49066
  Copyright terms: Public domain W3C validator