Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  invrcl Structured version   Visualization version   GIF version

Theorem invrcl 49149
Description: Reverse closure for inverse relations. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
invrcl.n 𝑁 = (Inv‘𝐶)
invrcl.f (𝜑𝐹(𝑋𝑁𝑌)𝐺)
Assertion
Ref Expression
invrcl (𝜑𝐶 ∈ Cat)

Proof of Theorem invrcl
Dummy variables 𝑥 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invrcl.f . 2 (𝜑𝐹(𝑋𝑁𝑌)𝐺)
2 df-br 5094 . . . . 5 (𝐹(𝑋𝑁𝑌)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑋𝑁𝑌))
3 df-ov 7355 . . . . . 6 (𝑋𝑁𝑌) = (𝑁‘⟨𝑋, 𝑌⟩)
43eleq2i 2825 . . . . 5 (⟨𝐹, 𝐺⟩ ∈ (𝑋𝑁𝑌) ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑁‘⟨𝑋, 𝑌⟩))
52, 4bitri 275 . . . 4 (𝐹(𝑋𝑁𝑌)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑁‘⟨𝑋, 𝑌⟩))
6 elfvne0 48973 . . . 4 (⟨𝐹, 𝐺⟩ ∈ (𝑁‘⟨𝑋, 𝑌⟩) → 𝑁 ≠ ∅)
75, 6sylbi 217 . . 3 (𝐹(𝑋𝑁𝑌)𝐺𝑁 ≠ ∅)
8 invrcl.n . . . . 5 𝑁 = (Inv‘𝐶)
98neeq1i 2993 . . . 4 (𝑁 ≠ ∅ ↔ (Inv‘𝐶) ≠ ∅)
10 n0 4302 . . . 4 ((Inv‘𝐶) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Inv‘𝐶))
119, 10bitri 275 . . 3 (𝑁 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Inv‘𝐶))
127, 11sylib 218 . 2 (𝐹(𝑋𝑁𝑌)𝐺 → ∃𝑥 𝑥 ∈ (Inv‘𝐶))
13 df-inv 17657 . . . 4 Inv = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥))))
1413mptrcl 6944 . . 3 (𝑥 ∈ (Inv‘𝐶) → 𝐶 ∈ Cat)
1514exlimiv 1931 . 2 (∃𝑥 𝑥 ∈ (Inv‘𝐶) → 𝐶 ∈ Cat)
161, 12, 153syl 18 1 (𝜑𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wex 1780  wcel 2113  wne 2929  cin 3897  c0 4282  cop 4581   class class class wbr 5093  ccnv 5618  cfv 6486  (class class class)co 7352  cmpo 7354  Basecbs 17122  Catccat 17572  Sectcsect 17653  Invcinv 17654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fv 6494  df-ov 7355  df-inv 17657
This theorem is referenced by:  invrcl2  49150  isinv2  49151  isoval2  49160
  Copyright terms: Public domain W3C validator