Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  invrcl2 Structured version   Visualization version   GIF version

Theorem invrcl2 49150
Description: Reverse closure for inverse relations. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
invrcl.n 𝑁 = (Inv‘𝐶)
invrcl.f (𝜑𝐹(𝑋𝑁𝑌)𝐺)
invrcl2.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
invrcl2 (𝜑 → (𝑋𝐵𝑌𝐵))

Proof of Theorem invrcl2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invrcl.f . . . 4 (𝜑𝐹(𝑋𝑁𝑌)𝐺)
2 df-br 5094 . . . 4 (𝐹(𝑋𝑁𝑌)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑋𝑁𝑌))
31, 2sylib 218 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝑋𝑁𝑌))
4 invrcl2.b . . . . 5 𝐵 = (Base‘𝐶)
5 invrcl.n . . . . 5 𝑁 = (Inv‘𝐶)
65, 1invrcl 49149 . . . . 5 (𝜑𝐶 ∈ Cat)
7 eqid 2733 . . . . 5 (Sect‘𝐶) = (Sect‘𝐶)
84, 5, 6, 7invffval 17667 . . . 4 (𝜑𝑁 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))))
98oveqd 7369 . . 3 (𝜑 → (𝑋𝑁𝑌) = (𝑋(𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)))𝑌))
103, 9eleqtrd 2835 . 2 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝑋(𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)))𝑌))
11 eqid 2733 . . 3 (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)))
1211elmpocl 7593 . 2 (⟨𝐹, 𝐺⟩ ∈ (𝑋(𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)))𝑌) → (𝑋𝐵𝑌𝐵))
1310, 12syl 17 1 (𝜑 → (𝑋𝐵𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cin 3897  cop 4581   class class class wbr 5093  ccnv 5618  cfv 6486  (class class class)co 7352  cmpo 7354  Basecbs 17122  Sectcsect 17653  Invcinv 17654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-inv 17657
This theorem is referenced by:  isinv2  49151  isoval2  49160
  Copyright terms: Public domain W3C validator