| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > invrcl2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for inverse relations. (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| invrcl.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invrcl.f | ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) |
| invrcl2.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| invrcl2 | ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invrcl.f | . . . 4 ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) | |
| 2 | df-br 5094 | . . . 4 ⊢ (𝐹(𝑋𝑁𝑌)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝑋𝑁𝑌)) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝑋𝑁𝑌)) |
| 4 | invrcl2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | invrcl.n | . . . . 5 ⊢ 𝑁 = (Inv‘𝐶) | |
| 6 | 5, 1 | invrcl 49149 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 7 | eqid 2733 | . . . . 5 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 8 | 4, 5, 6, 7 | invffval 17667 | . . . 4 ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)))) |
| 9 | 8 | oveqd 7369 | . . 3 ⊢ (𝜑 → (𝑋𝑁𝑌) = (𝑋(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)))𝑌)) |
| 10 | 3, 9 | eleqtrd 2835 | . 2 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝑋(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)))𝑌)) |
| 11 | eqid 2733 | . . 3 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) | |
| 12 | 11 | elmpocl 7593 | . 2 ⊢ (〈𝐹, 𝐺〉 ∈ (𝑋(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)))𝑌) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
| 13 | 10, 12 | syl 17 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 〈cop 4581 class class class wbr 5093 ◡ccnv 5618 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 Basecbs 17122 Sectcsect 17653 Invcinv 17654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-inv 17657 |
| This theorem is referenced by: isinv2 49151 isoval2 49160 |
| Copyright terms: Public domain | W3C validator |