Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  invrcl2 Structured version   Visualization version   GIF version

Theorem invrcl2 49014
Description: Reverse closure for inverse relations. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
invrcl.n 𝑁 = (Inv‘𝐶)
invrcl.f (𝜑𝐹(𝑋𝑁𝑌)𝐺)
invrcl2.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
invrcl2 (𝜑 → (𝑋𝐵𝑌𝐵))

Proof of Theorem invrcl2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invrcl.f . . . 4 (𝜑𝐹(𝑋𝑁𝑌)𝐺)
2 df-br 5108 . . . 4 (𝐹(𝑋𝑁𝑌)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑋𝑁𝑌))
31, 2sylib 218 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝑋𝑁𝑌))
4 invrcl2.b . . . . 5 𝐵 = (Base‘𝐶)
5 invrcl.n . . . . 5 𝑁 = (Inv‘𝐶)
65, 1invrcl 49013 . . . . 5 (𝜑𝐶 ∈ Cat)
7 eqid 2729 . . . . 5 (Sect‘𝐶) = (Sect‘𝐶)
84, 5, 6, 7invffval 17720 . . . 4 (𝜑𝑁 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))))
98oveqd 7404 . . 3 (𝜑 → (𝑋𝑁𝑌) = (𝑋(𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)))𝑌))
103, 9eleqtrd 2830 . 2 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝑋(𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)))𝑌))
11 eqid 2729 . . 3 (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)))
1211elmpocl 7630 . 2 (⟨𝐹, 𝐺⟩ ∈ (𝑋(𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)))𝑌) → (𝑋𝐵𝑌𝐵))
1310, 12syl 17 1 (𝜑 → (𝑋𝐵𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3913  cop 4595   class class class wbr 5107  ccnv 5637  cfv 6511  (class class class)co 7387  cmpo 7389  Basecbs 17179  Sectcsect 17706  Invcinv 17707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-inv 17710
This theorem is referenced by:  isinv2  49015  isoval2  49024
  Copyright terms: Public domain W3C validator