| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sectrcl2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for section relations. (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| sectrcl.s | ⊢ 𝑆 = (Sect‘𝐶) |
| sectrcl.f | ⊢ (𝜑 → 𝐹(𝑋𝑆𝑌)𝐺) |
| sectrcl2.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| sectrcl2 | ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sectrcl.f | . . . 4 ⊢ (𝜑 → 𝐹(𝑋𝑆𝑌)𝐺) | |
| 2 | df-br 5092 | . . . 4 ⊢ (𝐹(𝑋𝑆𝑌)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝑋𝑆𝑌)) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝑋𝑆𝑌)) |
| 4 | sectrcl2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | eqid 2731 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 6 | eqid 2731 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 7 | eqid 2731 | . . . . 5 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 8 | sectrcl.s | . . . . 5 ⊢ 𝑆 = (Sect‘𝐶) | |
| 9 | 8, 1 | sectrcl 49053 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 10 | 4, 5, 6, 7, 8, 9 | sectffval 17654 | . . . 4 ⊢ (𝜑 → 𝑆 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})) |
| 11 | 10 | oveqd 7363 | . . 3 ⊢ (𝜑 → (𝑋𝑆𝑌) = (𝑋(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})𝑌)) |
| 12 | 3, 11 | eleqtrd 2833 | . 2 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝑋(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})𝑌)) |
| 13 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}) | |
| 14 | 13 | elmpocl 7587 | . 2 ⊢ (〈𝐹, 𝐺〉 ∈ (𝑋(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})𝑌) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
| 15 | 12, 14 | syl 17 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4582 class class class wbr 5091 {copab 5153 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 Basecbs 17117 Hom chom 17169 compcco 17170 Idccid 17568 Sectcsect 17648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-sect 17651 |
| This theorem is referenced by: isinv2 49057 catcsect 49429 |
| Copyright terms: Public domain | W3C validator |