Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sectrcl2 Structured version   Visualization version   GIF version

Theorem sectrcl2 49012
Description: Reverse closure for section relations. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
sectrcl.s 𝑆 = (Sect‘𝐶)
sectrcl.f (𝜑𝐹(𝑋𝑆𝑌)𝐺)
sectrcl2.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
sectrcl2 (𝜑 → (𝑋𝐵𝑌𝐵))

Proof of Theorem sectrcl2
Dummy variables 𝑥 𝑦 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sectrcl.f . . . 4 (𝜑𝐹(𝑋𝑆𝑌)𝐺)
2 df-br 5108 . . . 4 (𝐹(𝑋𝑆𝑌)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑋𝑆𝑌))
31, 2sylib 218 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝑋𝑆𝑌))
4 sectrcl2.b . . . . 5 𝐵 = (Base‘𝐶)
5 eqid 2729 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2729 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
7 eqid 2729 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
8 sectrcl.s . . . . 5 𝑆 = (Sect‘𝐶)
98, 1sectrcl 49011 . . . . 5 (𝜑𝐶 ∈ Cat)
104, 5, 6, 7, 8, 9sectffval 17712 . . . 4 (𝜑𝑆 = (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}))
1110oveqd 7404 . . 3 (𝜑 → (𝑋𝑆𝑌) = (𝑋(𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})𝑌))
123, 11eleqtrd 2830 . 2 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝑋(𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})𝑌))
13 eqid 2729 . . 3 (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}) = (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})
1413elmpocl 7630 . 2 (⟨𝐹, 𝐺⟩ ∈ (𝑋(𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})𝑌) → (𝑋𝐵𝑌𝐵))
1512, 14syl 17 1 (𝜑 → (𝑋𝐵𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4595   class class class wbr 5107  {copab 5169  cfv 6511  (class class class)co 7387  cmpo 7389  Basecbs 17179  Hom chom 17231  compcco 17232  Idccid 17626  Sectcsect 17706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-sect 17709
This theorem is referenced by:  isinv2  49015  catcsect  49387
  Copyright terms: Public domain W3C validator