Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sectrcl2 Structured version   Visualization version   GIF version

Theorem sectrcl2 49148
Description: Reverse closure for section relations. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
sectrcl.s 𝑆 = (Sect‘𝐶)
sectrcl.f (𝜑𝐹(𝑋𝑆𝑌)𝐺)
sectrcl2.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
sectrcl2 (𝜑 → (𝑋𝐵𝑌𝐵))

Proof of Theorem sectrcl2
Dummy variables 𝑥 𝑦 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sectrcl.f . . . 4 (𝜑𝐹(𝑋𝑆𝑌)𝐺)
2 df-br 5094 . . . 4 (𝐹(𝑋𝑆𝑌)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑋𝑆𝑌))
31, 2sylib 218 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝑋𝑆𝑌))
4 sectrcl2.b . . . . 5 𝐵 = (Base‘𝐶)
5 eqid 2733 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2733 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
7 eqid 2733 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
8 sectrcl.s . . . . 5 𝑆 = (Sect‘𝐶)
98, 1sectrcl 49147 . . . . 5 (𝜑𝐶 ∈ Cat)
104, 5, 6, 7, 8, 9sectffval 17659 . . . 4 (𝜑𝑆 = (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}))
1110oveqd 7369 . . 3 (𝜑 → (𝑋𝑆𝑌) = (𝑋(𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})𝑌))
123, 11eleqtrd 2835 . 2 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝑋(𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})𝑌))
13 eqid 2733 . . 3 (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}) = (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})
1413elmpocl 7593 . 2 (⟨𝐹, 𝐺⟩ ∈ (𝑋(𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})𝑌) → (𝑋𝐵𝑌𝐵))
1512, 14syl 17 1 (𝜑 → (𝑋𝐵𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cop 4581   class class class wbr 5093  {copab 5155  cfv 6486  (class class class)co 7352  cmpo 7354  Basecbs 17122  Hom chom 17174  compcco 17175  Idccid 17573  Sectcsect 17653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-sect 17656
This theorem is referenced by:  isinv2  49151  catcsect  49523
  Copyright terms: Public domain W3C validator