| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sectrcl2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for section relations. (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| sectrcl.s | ⊢ 𝑆 = (Sect‘𝐶) |
| sectrcl.f | ⊢ (𝜑 → 𝐹(𝑋𝑆𝑌)𝐺) |
| sectrcl2.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| sectrcl2 | ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sectrcl.f | . . . 4 ⊢ (𝜑 → 𝐹(𝑋𝑆𝑌)𝐺) | |
| 2 | df-br 5096 | . . . 4 ⊢ (𝐹(𝑋𝑆𝑌)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝑋𝑆𝑌)) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝑋𝑆𝑌)) |
| 4 | sectrcl2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 7 | eqid 2729 | . . . . 5 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 8 | sectrcl.s | . . . . 5 ⊢ 𝑆 = (Sect‘𝐶) | |
| 9 | 8, 1 | sectrcl 49008 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 10 | 4, 5, 6, 7, 8, 9 | sectffval 17675 | . . . 4 ⊢ (𝜑 → 𝑆 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})) |
| 11 | 10 | oveqd 7370 | . . 3 ⊢ (𝜑 → (𝑋𝑆𝑌) = (𝑋(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})𝑌)) |
| 12 | 3, 11 | eleqtrd 2830 | . 2 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝑋(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})𝑌)) |
| 13 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}) | |
| 14 | 13 | elmpocl 7594 | . 2 ⊢ (〈𝐹, 𝐺〉 ∈ (𝑋(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})𝑌) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
| 15 | 12, 14 | syl 17 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4585 class class class wbr 5095 {copab 5157 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 Basecbs 17138 Hom chom 17190 compcco 17191 Idccid 17589 Sectcsect 17669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-sect 17672 |
| This theorem is referenced by: isinv2 49012 catcsect 49384 |
| Copyright terms: Public domain | W3C validator |