Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isinv2 Structured version   Visualization version   GIF version

Theorem isinv2 49015
Description: The property "𝐹 is an inverse of 𝐺". (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
isinv2.n 𝑁 = (Inv‘𝐶)
isinv2.s 𝑆 = (Sect‘𝐶)
Assertion
Ref Expression
isinv2 (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹))

Proof of Theorem isinv2
StepHypRef Expression
1 isinv2.n . . . 4 𝑁 = (Inv‘𝐶)
2 id 22 . . . 4 (𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐺)
31, 2invrcl 49013 . . 3 (𝐹(𝑋𝑁𝑌)𝐺𝐶 ∈ Cat)
4 eqid 2729 . . . 4 (Base‘𝐶) = (Base‘𝐶)
51, 2, 4invrcl2 49014 . . 3 (𝐹(𝑋𝑁𝑌)𝐺 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
63, 5jca 511 . 2 (𝐹(𝑋𝑁𝑌)𝐺 → (𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))))
7 isinv2.s . . . 4 𝑆 = (Sect‘𝐶)
8 simpl 482 . . . 4 ((𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹) → 𝐹(𝑋𝑆𝑌)𝐺)
97, 8sectrcl 49011 . . 3 ((𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹) → 𝐶 ∈ Cat)
107, 8, 4sectrcl2 49012 . . 3 ((𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
119, 10jca 511 . 2 ((𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹) → (𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))))
12 simpl 482 . . 3 ((𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
13 simprl 770 . . 3 ((𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) → 𝑋 ∈ (Base‘𝐶))
14 simprr 772 . . 3 ((𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) → 𝑌 ∈ (Base‘𝐶))
154, 1, 12, 13, 14, 7isinv 17722 . 2 ((𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹)))
166, 11, 15pm5.21nii 378 1 (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  Catccat 17625  Sectcsect 17706  Invcinv 17707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-sect 17709  df-inv 17710
This theorem is referenced by:  catcinv  49388
  Copyright terms: Public domain W3C validator