Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isinv2 Structured version   Visualization version   GIF version

Theorem isinv2 48943
Description: The property "𝐹 is an inverse of 𝐺". (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
isinv2.n 𝑁 = (Inv‘𝐶)
isinv2.s 𝑆 = (Sect‘𝐶)
Assertion
Ref Expression
isinv2 (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹))

Proof of Theorem isinv2
StepHypRef Expression
1 isinv2.n . . . 4 𝑁 = (Inv‘𝐶)
2 id 22 . . . 4 (𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐺)
31, 2invrcl 48941 . . 3 (𝐹(𝑋𝑁𝑌)𝐺𝐶 ∈ Cat)
4 eqid 2730 . . . 4 (Base‘𝐶) = (Base‘𝐶)
51, 2, 4invrcl2 48942 . . 3 (𝐹(𝑋𝑁𝑌)𝐺 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
63, 5jca 511 . 2 (𝐹(𝑋𝑁𝑌)𝐺 → (𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))))
7 isinv2.s . . . 4 𝑆 = (Sect‘𝐶)
8 simpl 482 . . . 4 ((𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹) → 𝐹(𝑋𝑆𝑌)𝐺)
97, 8sectrcl 48939 . . 3 ((𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹) → 𝐶 ∈ Cat)
107, 8, 4sectrcl2 48940 . . 3 ((𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
119, 10jca 511 . 2 ((𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹) → (𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))))
12 simpl 482 . . 3 ((𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
13 simprl 770 . . 3 ((𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) → 𝑋 ∈ (Base‘𝐶))
14 simprr 772 . . 3 ((𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) → 𝑌 ∈ (Base‘𝐶))
154, 1, 12, 13, 14, 7isinv 17728 . 2 ((𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹)))
166, 11, 15pm5.21nii 378 1 (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5115  cfv 6519  (class class class)co 7394  Basecbs 17185  Catccat 17631  Sectcsect 17712  Invcinv 17713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-sect 17715  df-inv 17716
This theorem is referenced by:  catcinv  49291  uobeq3  49294
  Copyright terms: Public domain W3C validator