| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isinv2 | Structured version Visualization version GIF version | ||
| Description: The property "𝐹 is an inverse of 𝐺". (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| isinv2.n | ⊢ 𝑁 = (Inv‘𝐶) |
| isinv2.s | ⊢ 𝑆 = (Sect‘𝐶) |
| Ref | Expression |
|---|---|
| isinv2 | ⊢ (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isinv2.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
| 2 | id 22 | . . . 4 ⊢ (𝐹(𝑋𝑁𝑌)𝐺 → 𝐹(𝑋𝑁𝑌)𝐺) | |
| 3 | 1, 2 | invrcl 49010 | . . 3 ⊢ (𝐹(𝑋𝑁𝑌)𝐺 → 𝐶 ∈ Cat) |
| 4 | eqid 2729 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 5 | 1, 2, 4 | invrcl2 49011 | . . 3 ⊢ (𝐹(𝑋𝑁𝑌)𝐺 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 6 | 3, 5 | jca 511 | . 2 ⊢ (𝐹(𝑋𝑁𝑌)𝐺 → (𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))) |
| 7 | isinv2.s | . . . 4 ⊢ 𝑆 = (Sect‘𝐶) | |
| 8 | simpl 482 | . . . 4 ⊢ ((𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹) → 𝐹(𝑋𝑆𝑌)𝐺) | |
| 9 | 7, 8 | sectrcl 49008 | . . 3 ⊢ ((𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹) → 𝐶 ∈ Cat) |
| 10 | 7, 8, 4 | sectrcl2 49009 | . . 3 ⊢ ((𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 11 | 9, 10 | jca 511 | . 2 ⊢ ((𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹) → (𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))) |
| 12 | simpl 482 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat) | |
| 13 | simprl 770 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) → 𝑋 ∈ (Base‘𝐶)) | |
| 14 | simprr 772 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) → 𝑌 ∈ (Base‘𝐶)) | |
| 15 | 4, 1, 12, 13, 14, 7 | isinv 17685 | . 2 ⊢ ((𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹))) |
| 16 | 6, 11, 15 | pm5.21nii 378 | 1 ⊢ (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Catccat 17588 Sectcsect 17669 Invcinv 17670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-sect 17672 df-inv 17673 |
| This theorem is referenced by: catcinv 49385 |
| Copyright terms: Public domain | W3C validator |