| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isinv2 | Structured version Visualization version GIF version | ||
| Description: The property "𝐹 is an inverse of 𝐺". (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| isinv2.n | ⊢ 𝑁 = (Inv‘𝐶) |
| isinv2.s | ⊢ 𝑆 = (Sect‘𝐶) |
| Ref | Expression |
|---|---|
| isinv2 | ⊢ (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isinv2.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
| 2 | id 22 | . . . 4 ⊢ (𝐹(𝑋𝑁𝑌)𝐺 → 𝐹(𝑋𝑁𝑌)𝐺) | |
| 3 | 1, 2 | invrcl 48941 | . . 3 ⊢ (𝐹(𝑋𝑁𝑌)𝐺 → 𝐶 ∈ Cat) |
| 4 | eqid 2730 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 5 | 1, 2, 4 | invrcl2 48942 | . . 3 ⊢ (𝐹(𝑋𝑁𝑌)𝐺 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 6 | 3, 5 | jca 511 | . 2 ⊢ (𝐹(𝑋𝑁𝑌)𝐺 → (𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))) |
| 7 | isinv2.s | . . . 4 ⊢ 𝑆 = (Sect‘𝐶) | |
| 8 | simpl 482 | . . . 4 ⊢ ((𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹) → 𝐹(𝑋𝑆𝑌)𝐺) | |
| 9 | 7, 8 | sectrcl 48939 | . . 3 ⊢ ((𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹) → 𝐶 ∈ Cat) |
| 10 | 7, 8, 4 | sectrcl2 48940 | . . 3 ⊢ ((𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 11 | 9, 10 | jca 511 | . 2 ⊢ ((𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹) → (𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))) |
| 12 | simpl 482 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat) | |
| 13 | simprl 770 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) → 𝑋 ∈ (Base‘𝐶)) | |
| 14 | simprr 772 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) → 𝑌 ∈ (Base‘𝐶)) | |
| 15 | 4, 1, 12, 13, 14, 7 | isinv 17728 | . 2 ⊢ ((𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹))) |
| 16 | 6, 11, 15 | pm5.21nii 378 | 1 ⊢ (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5115 ‘cfv 6519 (class class class)co 7394 Basecbs 17185 Catccat 17631 Sectcsect 17712 Invcinv 17713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 df-sect 17715 df-inv 17716 |
| This theorem is referenced by: catcinv 49291 uobeq3 49294 |
| Copyright terms: Public domain | W3C validator |