Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocgtlbd Structured version   Visualization version   GIF version

Theorem iocgtlbd 45553
Description: An element of a left-open right-closed interval is larger than its lower bound. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
iocgtlbd.1 (𝜑𝐴 ∈ ℝ*)
iocgtlbd.2 (𝜑𝐵 ∈ ℝ*)
iocgtlbd.3 (𝜑𝐶 ∈ (𝐴(,]𝐵))
Assertion
Ref Expression
iocgtlbd (𝜑𝐴 < 𝐶)

Proof of Theorem iocgtlbd
StepHypRef Expression
1 iocgtlbd.1 . 2 (𝜑𝐴 ∈ ℝ*)
2 iocgtlbd.2 . 2 (𝜑𝐵 ∈ ℝ*)
3 iocgtlbd.3 . 2 (𝜑𝐶 ∈ (𝐴(,]𝐵))
4 iocgtlb 45484 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 < 𝐶)
51, 2, 3, 4syl3anc 1372 1 (𝜑𝐴 < 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5151  (class class class)co 7438  *cxr 11301   < clt 11302  (,]cioc 13394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-iota 6522  df-fun 6571  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-xr 11306  df-ioc 13398
This theorem is referenced by:  xlimpnfvlem1  45820
  Copyright terms: Public domain W3C validator