| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iocgtlbd | Structured version Visualization version GIF version | ||
| Description: An element of a left-open right-closed interval is larger than its lower bound. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| iocgtlbd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| iocgtlbd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| iocgtlbd.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐴(,]𝐵)) |
| Ref | Expression |
|---|---|
| iocgtlbd | ⊢ (𝜑 → 𝐴 < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iocgtlbd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | iocgtlbd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 3 | iocgtlbd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ (𝐴(,]𝐵)) | |
| 4 | iocgtlb 45472 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 < 𝐶) | |
| 5 | 1, 2, 3, 4 | syl3anc 1372 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 class class class wbr 5123 (class class class)co 7413 ℝ*cxr 11276 < clt 11277 (,]cioc 13370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-xr 11281 df-ioc 13374 |
| This theorem is referenced by: xlimpnfvlem1 45808 |
| Copyright terms: Public domain | W3C validator |