Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocgtlb Structured version   Visualization version   GIF version

Theorem iocgtlb 45626
Description: An element of a left-open right-closed interval is larger than its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
iocgtlb ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 < 𝐶)

Proof of Theorem iocgtlb
StepHypRef Expression
1 elioc1 13289 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
2 simp2 1137 . . 3 ((𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵) → 𝐴 < 𝐶)
31, 2biimtrdi 253 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) → 𝐴 < 𝐶))
433impia 1117 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 < 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2113   class class class wbr 5093  (class class class)co 7352  *cxr 11152   < clt 11153  cle 11154  (,]cioc 13248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-xr 11157  df-ioc 13252
This theorem is referenced by:  iocopn  45644  eliccelioc  45645  iccdificc  45663  iocgtlbd  45693  limcresiooub  45764  fourierdlem19  46248  fourierdlem35  46264  fourierdlem41  46270  fourierdlem46  46274  fourierdlem48  46276  fourierdlem49  46277  fourierdlem51  46279  fourierswlem  46352  fouriersw  46353
  Copyright terms: Public domain W3C validator