Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzubico2 Structured version   Visualization version   GIF version

Theorem uzubico2 45516
Description: The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
uzubico2.1 (𝜑𝑀 ∈ ℤ)
uzubico2.2 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzubico2 (𝜑 → ∀𝑥 ∈ ℝ ∃𝑘 ∈ (𝑥[,)+∞)𝑘𝑍)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑘)   𝑀(𝑥)

Proof of Theorem uzubico2
StepHypRef Expression
1 uzubico2.1 . . 3 (𝜑𝑀 ∈ ℤ)
2 uzubico2.2 . . 3 𝑍 = (ℤ𝑀)
31, 2uzubioo2 45515 . 2 (𝜑 → ∀𝑥 ∈ ℝ ∃𝑘 ∈ (𝑥(,)+∞)𝑘𝑍)
4 ioossico 13459 . . . 4 (𝑥(,)+∞) ⊆ (𝑥[,)+∞)
5 ssrexv 4033 . . . 4 ((𝑥(,)+∞) ⊆ (𝑥[,)+∞) → (∃𝑘 ∈ (𝑥(,)+∞)𝑘𝑍 → ∃𝑘 ∈ (𝑥[,)+∞)𝑘𝑍))
64, 5ax-mp 5 . . 3 (∃𝑘 ∈ (𝑥(,)+∞)𝑘𝑍 → ∃𝑘 ∈ (𝑥[,)+∞)𝑘𝑍)
76ralimi 3072 . 2 (∀𝑥 ∈ ℝ ∃𝑘 ∈ (𝑥(,)+∞)𝑘𝑍 → ∀𝑥 ∈ ℝ ∃𝑘 ∈ (𝑥[,)+∞)𝑘𝑍)
83, 7syl 17 1 (𝜑 → ∀𝑥 ∈ ℝ ∃𝑘 ∈ (𝑥[,)+∞)𝑘𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wral 3050  wrex 3059  wss 3931  cfv 6540  (class class class)co 7412  cr 11135  +∞cpnf 11273  cz 12595  cuz 12859  (,)cioo 13368  [,)cico 13370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-sup 9463  df-inf 9464  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-nn 12248  df-n0 12509  df-z 12596  df-uz 12860  df-ioo 13372  df-ico 13374  df-fl 13813  df-ceil 13814
This theorem is referenced by:  liminflelimsupuz  45733
  Copyright terms: Public domain W3C validator