![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isat2 | Structured version Visualization version GIF version |
Description: The predicate "is an atom". (elatcv0 32386 analog.) (Contributed by NM, 18-Jun-2012.) |
Ref | Expression |
---|---|
isatom.b | ⊢ 𝐵 = (Base‘𝐾) |
isatom.z | ⊢ 0 = (0.‘𝐾) |
isatom.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
isatom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
isat2 | ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑃 ∈ 𝐵) → (𝑃 ∈ 𝐴 ↔ 0 𝐶𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isatom.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | isatom.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
3 | isatom.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
4 | isatom.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 1, 2, 3, 4 | isat 39282 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ 𝐵 ∧ 0 𝐶𝑃))) |
6 | 5 | baibd 539 | 1 ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑃 ∈ 𝐵) → (𝑃 ∈ 𝐴 ↔ 0 𝐶𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5151 ‘cfv 6569 Basecbs 17254 0.cp0 18490 ⋖ ccvr 39258 Atomscatm 39259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-iota 6522 df-fun 6571 df-fv 6577 df-ats 39263 |
This theorem is referenced by: llncvrlpln 39555 lplncvrlvol 39613 lhpm0atN 40026 |
Copyright terms: Public domain | W3C validator |