Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isat2 Structured version   Visualization version   GIF version

Theorem isat2 39283
Description: The predicate "is an atom". (elatcv0 32386 analog.) (Contributed by NM, 18-Jun-2012.)
Hypotheses
Ref Expression
isatom.b 𝐵 = (Base‘𝐾)
isatom.z 0 = (0.‘𝐾)
isatom.c 𝐶 = ( ⋖ ‘𝐾)
isatom.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
isat2 ((𝐾𝐷𝑃𝐵) → (𝑃𝐴0 𝐶𝑃))

Proof of Theorem isat2
StepHypRef Expression
1 isatom.b . . 3 𝐵 = (Base‘𝐾)
2 isatom.z . . 3 0 = (0.‘𝐾)
3 isatom.c . . 3 𝐶 = ( ⋖ ‘𝐾)
4 isatom.a . . 3 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4isat 39282 . 2 (𝐾𝐷 → (𝑃𝐴 ↔ (𝑃𝐵0 𝐶𝑃)))
65baibd 539 1 ((𝐾𝐷𝑃𝐵) → (𝑃𝐴0 𝐶𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2108   class class class wbr 5151  cfv 6569  Basecbs 17254  0.cp0 18490  ccvr 39258  Atomscatm 39259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-iota 6522  df-fun 6571  df-fv 6577  df-ats 39263
This theorem is referenced by:  llncvrlpln  39555  lplncvrlvol  39613  lhpm0atN  40026
  Copyright terms: Public domain W3C validator