| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isat2 | Structured version Visualization version GIF version | ||
| Description: The predicate "is an atom". (elatcv0 32321 analog.) (Contributed by NM, 18-Jun-2012.) |
| Ref | Expression |
|---|---|
| isatom.b | ⊢ 𝐵 = (Base‘𝐾) |
| isatom.z | ⊢ 0 = (0.‘𝐾) |
| isatom.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| isatom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| isat2 | ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑃 ∈ 𝐵) → (𝑃 ∈ 𝐴 ↔ 0 𝐶𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isatom.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | isatom.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 3 | isatom.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 4 | isatom.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 1, 2, 3, 4 | isat 39333 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ 𝐵 ∧ 0 𝐶𝑃))) |
| 6 | 5 | baibd 539 | 1 ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑃 ∈ 𝐵) → (𝑃 ∈ 𝐴 ↔ 0 𝐶𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 Basecbs 17120 0.cp0 18327 ⋖ ccvr 39309 Atomscatm 39310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ats 39314 |
| This theorem is referenced by: llncvrlpln 39605 lplncvrlvol 39663 lhpm0atN 40076 |
| Copyright terms: Public domain | W3C validator |