Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isat2 Structured version   Visualization version   GIF version

Theorem isat2 39275
Description: The predicate "is an atom". (elatcv0 32276 analog.) (Contributed by NM, 18-Jun-2012.)
Hypotheses
Ref Expression
isatom.b 𝐵 = (Base‘𝐾)
isatom.z 0 = (0.‘𝐾)
isatom.c 𝐶 = ( ⋖ ‘𝐾)
isatom.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
isat2 ((𝐾𝐷𝑃𝐵) → (𝑃𝐴0 𝐶𝑃))

Proof of Theorem isat2
StepHypRef Expression
1 isatom.b . . 3 𝐵 = (Base‘𝐾)
2 isatom.z . . 3 0 = (0.‘𝐾)
3 isatom.c . . 3 𝐶 = ( ⋖ ‘𝐾)
4 isatom.a . . 3 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4isat 39274 . 2 (𝐾𝐷 → (𝑃𝐴 ↔ (𝑃𝐵0 𝐶𝑃)))
65baibd 539 1 ((𝐾𝐷𝑃𝐵) → (𝑃𝐴0 𝐶𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5109  cfv 6513  Basecbs 17185  0.cp0 18388  ccvr 39250  Atomscatm 39251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-iota 6466  df-fun 6515  df-fv 6521  df-ats 39255
This theorem is referenced by:  llncvrlpln  39547  lplncvrlvol  39605  lhpm0atN  40018
  Copyright terms: Public domain W3C validator