Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isat Structured version   Visualization version   GIF version

Theorem isat 39304
Description: The predicate "is an atom". (ela 32320 analog.) (Contributed by NM, 18-Sep-2011.)
Hypotheses
Ref Expression
isatom.b 𝐵 = (Base‘𝐾)
isatom.z 0 = (0.‘𝐾)
isatom.c 𝐶 = ( ⋖ ‘𝐾)
isatom.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
isat (𝐾𝐷 → (𝑃𝐴 ↔ (𝑃𝐵0 𝐶𝑃)))

Proof of Theorem isat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isatom.b . . . 4 𝐵 = (Base‘𝐾)
2 isatom.z . . . 4 0 = (0.‘𝐾)
3 isatom.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
4 isatom.a . . . 4 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4pats 39303 . . 3 (𝐾𝐷𝐴 = {𝑥𝐵0 𝐶𝑥})
65eleq2d 2820 . 2 (𝐾𝐷 → (𝑃𝐴𝑃 ∈ {𝑥𝐵0 𝐶𝑥}))
7 breq2 5123 . . 3 (𝑥 = 𝑃 → ( 0 𝐶𝑥0 𝐶𝑃))
87elrab 3671 . 2 (𝑃 ∈ {𝑥𝐵0 𝐶𝑥} ↔ (𝑃𝐵0 𝐶𝑃))
96, 8bitrdi 287 1 (𝐾𝐷 → (𝑃𝐴 ↔ (𝑃𝐵0 𝐶𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {crab 3415   class class class wbr 5119  cfv 6531  Basecbs 17228  0.cp0 18433  ccvr 39280  Atomscatm 39281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ats 39285
This theorem is referenced by:  isat2  39305  atcvr0  39306  atbase  39307  isat3  39325  1cvrco  39491  1cvrjat  39494  ltrnatb  40156
  Copyright terms: Public domain W3C validator