| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isat | Structured version Visualization version GIF version | ||
| Description: The predicate "is an atom". (ela 32321 analog.) (Contributed by NM, 18-Sep-2011.) |
| Ref | Expression |
|---|---|
| isatom.b | ⊢ 𝐵 = (Base‘𝐾) |
| isatom.z | ⊢ 0 = (0.‘𝐾) |
| isatom.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| isatom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| isat | ⊢ (𝐾 ∈ 𝐷 → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ 𝐵 ∧ 0 𝐶𝑃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isatom.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | isatom.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 3 | isatom.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 4 | isatom.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 1, 2, 3, 4 | pats 39404 | . . 3 ⊢ (𝐾 ∈ 𝐷 → 𝐴 = {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥}) |
| 6 | 5 | eleq2d 2819 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑃 ∈ 𝐴 ↔ 𝑃 ∈ {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥})) |
| 7 | breq2 5097 | . . 3 ⊢ (𝑥 = 𝑃 → ( 0 𝐶𝑥 ↔ 0 𝐶𝑃)) | |
| 8 | 7 | elrab 3643 | . 2 ⊢ (𝑃 ∈ {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥} ↔ (𝑃 ∈ 𝐵 ∧ 0 𝐶𝑃)) |
| 9 | 6, 8 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐷 → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ 𝐵 ∧ 0 𝐶𝑃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 class class class wbr 5093 ‘cfv 6486 Basecbs 17122 0.cp0 18329 ⋖ ccvr 39381 Atomscatm 39382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ats 39386 |
| This theorem is referenced by: isat2 39406 atcvr0 39407 atbase 39408 isat3 39426 1cvrco 39591 1cvrjat 39594 ltrnatb 40256 |
| Copyright terms: Public domain | W3C validator |