| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isat | Structured version Visualization version GIF version | ||
| Description: The predicate "is an atom". (ela 32268 analog.) (Contributed by NM, 18-Sep-2011.) |
| Ref | Expression |
|---|---|
| isatom.b | ⊢ 𝐵 = (Base‘𝐾) |
| isatom.z | ⊢ 0 = (0.‘𝐾) |
| isatom.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| isatom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| isat | ⊢ (𝐾 ∈ 𝐷 → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ 𝐵 ∧ 0 𝐶𝑃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isatom.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | isatom.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 3 | isatom.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 4 | isatom.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 1, 2, 3, 4 | pats 39278 | . . 3 ⊢ (𝐾 ∈ 𝐷 → 𝐴 = {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥}) |
| 6 | 5 | eleq2d 2814 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑃 ∈ 𝐴 ↔ 𝑃 ∈ {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥})) |
| 7 | breq2 5111 | . . 3 ⊢ (𝑥 = 𝑃 → ( 0 𝐶𝑥 ↔ 0 𝐶𝑃)) | |
| 8 | 7 | elrab 3659 | . 2 ⊢ (𝑃 ∈ {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥} ↔ (𝑃 ∈ 𝐵 ∧ 0 𝐶𝑃)) |
| 9 | 6, 8 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐷 → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ 𝐵 ∧ 0 𝐶𝑃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 class class class wbr 5107 ‘cfv 6511 Basecbs 17179 0.cp0 18382 ⋖ ccvr 39255 Atomscatm 39256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ats 39260 |
| This theorem is referenced by: isat2 39280 atcvr0 39281 atbase 39282 isat3 39300 1cvrco 39466 1cvrjat 39469 ltrnatb 40131 |
| Copyright terms: Public domain | W3C validator |