Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isat Structured version   Visualization version   GIF version

Theorem isat 39324
Description: The predicate "is an atom". (ela 32314 analog.) (Contributed by NM, 18-Sep-2011.)
Hypotheses
Ref Expression
isatom.b 𝐵 = (Base‘𝐾)
isatom.z 0 = (0.‘𝐾)
isatom.c 𝐶 = ( ⋖ ‘𝐾)
isatom.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
isat (𝐾𝐷 → (𝑃𝐴 ↔ (𝑃𝐵0 𝐶𝑃)))

Proof of Theorem isat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isatom.b . . . 4 𝐵 = (Base‘𝐾)
2 isatom.z . . . 4 0 = (0.‘𝐾)
3 isatom.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
4 isatom.a . . . 4 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4pats 39323 . . 3 (𝐾𝐷𝐴 = {𝑥𝐵0 𝐶𝑥})
65eleq2d 2817 . 2 (𝐾𝐷 → (𝑃𝐴𝑃 ∈ {𝑥𝐵0 𝐶𝑥}))
7 breq2 5095 . . 3 (𝑥 = 𝑃 → ( 0 𝐶𝑥0 𝐶𝑃))
87elrab 3647 . 2 (𝑃 ∈ {𝑥𝐵0 𝐶𝑥} ↔ (𝑃𝐵0 𝐶𝑃))
96, 8bitrdi 287 1 (𝐾𝐷 → (𝑃𝐴 ↔ (𝑃𝐵0 𝐶𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395   class class class wbr 5091  cfv 6481  Basecbs 17117  0.cp0 18324  ccvr 39300  Atomscatm 39301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ats 39305
This theorem is referenced by:  isat2  39325  atcvr0  39326  atbase  39327  isat3  39345  1cvrco  39510  1cvrjat  39513  ltrnatb  40175
  Copyright terms: Public domain W3C validator