Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpm0atN Structured version   Visualization version   GIF version

Theorem lhpm0atN 40030
Description: If the meet of a lattice hyperplane with a nonzero element is zero, the element is an atom. (Contributed by NM, 28-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhpm0at.b 𝐵 = (Base‘𝐾)
lhpm0at.m = (meet‘𝐾)
lhpm0at.o 0 = (0.‘𝐾)
lhpm0at.a 𝐴 = (Atoms‘𝐾)
lhpm0at.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpm0atN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 𝑋𝐴)

Proof of Theorem lhpm0atN
StepHypRef Expression
1 simpr3 1197 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → (𝑋 𝑊) = 0 )
2 simpl 482 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simpr1 1195 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 𝑋𝐵)
4 simpr2 1196 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 𝑋0 )
5 hllat 39363 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Lat)
65ad2antrr 726 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 𝐾 ∈ Lat)
7 lhpm0at.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐾)
8 lhpm0at.h . . . . . . . . . . . 12 𝐻 = (LHyp‘𝐾)
97, 8lhpbase 39999 . . . . . . . . . . 11 (𝑊𝐻𝑊𝐵)
109ad2antlr 727 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 𝑊𝐵)
11 eqid 2730 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
12 lhpm0at.m . . . . . . . . . . 11 = (meet‘𝐾)
137, 11, 12latleeqm1 18433 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋 𝑊) = 𝑋))
146, 3, 10, 13syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋 𝑊) = 𝑋))
1514biimpa 476 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) ∧ 𝑋(le‘𝐾)𝑊) → (𝑋 𝑊) = 𝑋)
16 simplr3 1218 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) ∧ 𝑋(le‘𝐾)𝑊) → (𝑋 𝑊) = 0 )
1715, 16eqtr3d 2767 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) ∧ 𝑋(le‘𝐾)𝑊) → 𝑋 = 0 )
1817ex 412 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → (𝑋(le‘𝐾)𝑊𝑋 = 0 ))
1918necon3ad 2939 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → (𝑋0 → ¬ 𝑋(le‘𝐾)𝑊))
204, 19mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → ¬ 𝑋(le‘𝐾)𝑊)
21 eqid 2730 . . . . 5 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
227, 11, 12, 21, 8lhpmcvr 40024 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋(le‘𝐾)𝑊)) → (𝑋 𝑊)( ⋖ ‘𝐾)𝑋)
232, 3, 20, 22syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → (𝑋 𝑊)( ⋖ ‘𝐾)𝑋)
241, 23eqbrtrrd 5134 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 0 ( ⋖ ‘𝐾)𝑋)
25 simpll 766 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 𝐾 ∈ HL)
26 lhpm0at.o . . . 4 0 = (0.‘𝐾)
27 lhpm0at.a . . . 4 𝐴 = (Atoms‘𝐾)
287, 26, 21, 27isat2 39287 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝐴0 ( ⋖ ‘𝐾)𝑋))
2925, 3, 28syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → (𝑋𝐴0 ( ⋖ ‘𝐾)𝑋))
3024, 29mpbird 257 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 𝑋𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  meetcmee 18280  0.cp0 18389  Latclat 18397  ccvr 39262  Atomscatm 39263  HLchlt 39350  LHypclh 39985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-lhyp 39989
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator