Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpm0atN Structured version   Visualization version   GIF version

Theorem lhpm0atN 36646
Description: If the meet of a lattice hyperplane with a nonzero element is zero, the element is an atom. (Contributed by NM, 28-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhpm0at.b 𝐵 = (Base‘𝐾)
lhpm0at.m = (meet‘𝐾)
lhpm0at.o 0 = (0.‘𝐾)
lhpm0at.a 𝐴 = (Atoms‘𝐾)
lhpm0at.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpm0atN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 𝑋𝐴)

Proof of Theorem lhpm0atN
StepHypRef Expression
1 simpr3 1187 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → (𝑋 𝑊) = 0 )
2 simpl 483 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simpr1 1185 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 𝑋𝐵)
4 simpr2 1186 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 𝑋0 )
5 hllat 35980 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Lat)
65ad2antrr 722 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 𝐾 ∈ Lat)
7 lhpm0at.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐾)
8 lhpm0at.h . . . . . . . . . . . 12 𝐻 = (LHyp‘𝐾)
97, 8lhpbase 36615 . . . . . . . . . . 11 (𝑊𝐻𝑊𝐵)
109ad2antlr 723 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 𝑊𝐵)
11 eqid 2793 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
12 lhpm0at.m . . . . . . . . . . 11 = (meet‘𝐾)
137, 11, 12latleeqm1 17506 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋 𝑊) = 𝑋))
146, 3, 10, 13syl3anc 1362 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋 𝑊) = 𝑋))
1514biimpa 477 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) ∧ 𝑋(le‘𝐾)𝑊) → (𝑋 𝑊) = 𝑋)
16 simplr3 1208 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) ∧ 𝑋(le‘𝐾)𝑊) → (𝑋 𝑊) = 0 )
1715, 16eqtr3d 2831 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) ∧ 𝑋(le‘𝐾)𝑊) → 𝑋 = 0 )
1817ex 413 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → (𝑋(le‘𝐾)𝑊𝑋 = 0 ))
1918necon3ad 2995 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → (𝑋0 → ¬ 𝑋(le‘𝐾)𝑊))
204, 19mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → ¬ 𝑋(le‘𝐾)𝑊)
21 eqid 2793 . . . . 5 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
227, 11, 12, 21, 8lhpmcvr 36640 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋(le‘𝐾)𝑊)) → (𝑋 𝑊)( ⋖ ‘𝐾)𝑋)
232, 3, 20, 22syl12anc 833 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → (𝑋 𝑊)( ⋖ ‘𝐾)𝑋)
241, 23eqbrtrrd 4980 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 0 ( ⋖ ‘𝐾)𝑋)
25 simpll 763 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 𝐾 ∈ HL)
26 lhpm0at.o . . . 4 0 = (0.‘𝐾)
27 lhpm0at.a . . . 4 𝐴 = (Atoms‘𝐾)
287, 26, 21, 27isat2 35904 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝐴0 ( ⋖ ‘𝐾)𝑋))
2925, 3, 28syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → (𝑋𝐴0 ( ⋖ ‘𝐾)𝑋))
3024, 29mpbird 258 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 𝑋𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1078   = wceq 1520  wcel 2079  wne 2982   class class class wbr 4956  cfv 6217  (class class class)co 7007  Basecbs 16300  lecple 16389  meetcmee 17372  0.cp0 17464  Latclat 17472  ccvr 35879  Atomscatm 35880  HLchlt 35967  LHypclh 36601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-ral 3108  df-rex 3109  df-reu 3110  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-id 5340  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-proset 17355  df-poset 17373  df-plt 17385  df-lub 17401  df-glb 17402  df-join 17403  df-meet 17404  df-p0 17466  df-p1 17467  df-lat 17473  df-clat 17535  df-oposet 35793  df-ol 35795  df-oml 35796  df-covers 35883  df-ats 35884  df-atl 35915  df-cvlat 35939  df-hlat 35968  df-lhyp 36605
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator