Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpm0atN Structured version   Visualization version   GIF version

Theorem lhpm0atN 37284
 Description: If the meet of a lattice hyperplane with a nonzero element is zero, the element is an atom. (Contributed by NM, 28-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhpm0at.b 𝐵 = (Base‘𝐾)
lhpm0at.m = (meet‘𝐾)
lhpm0at.o 0 = (0.‘𝐾)
lhpm0at.a 𝐴 = (Atoms‘𝐾)
lhpm0at.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpm0atN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 𝑋𝐴)

Proof of Theorem lhpm0atN
StepHypRef Expression
1 simpr3 1193 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → (𝑋 𝑊) = 0 )
2 simpl 486 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simpr1 1191 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 𝑋𝐵)
4 simpr2 1192 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 𝑋0 )
5 hllat 36618 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Lat)
65ad2antrr 725 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 𝐾 ∈ Lat)
7 lhpm0at.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐾)
8 lhpm0at.h . . . . . . . . . . . 12 𝐻 = (LHyp‘𝐾)
97, 8lhpbase 37253 . . . . . . . . . . 11 (𝑊𝐻𝑊𝐵)
109ad2antlr 726 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 𝑊𝐵)
11 eqid 2822 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
12 lhpm0at.m . . . . . . . . . . 11 = (meet‘𝐾)
137, 11, 12latleeqm1 17680 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋 𝑊) = 𝑋))
146, 3, 10, 13syl3anc 1368 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋 𝑊) = 𝑋))
1514biimpa 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) ∧ 𝑋(le‘𝐾)𝑊) → (𝑋 𝑊) = 𝑋)
16 simplr3 1214 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) ∧ 𝑋(le‘𝐾)𝑊) → (𝑋 𝑊) = 0 )
1715, 16eqtr3d 2859 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) ∧ 𝑋(le‘𝐾)𝑊) → 𝑋 = 0 )
1817ex 416 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → (𝑋(le‘𝐾)𝑊𝑋 = 0 ))
1918necon3ad 3024 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → (𝑋0 → ¬ 𝑋(le‘𝐾)𝑊))
204, 19mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → ¬ 𝑋(le‘𝐾)𝑊)
21 eqid 2822 . . . . 5 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
227, 11, 12, 21, 8lhpmcvr 37278 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋(le‘𝐾)𝑊)) → (𝑋 𝑊)( ⋖ ‘𝐾)𝑋)
232, 3, 20, 22syl12anc 835 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → (𝑋 𝑊)( ⋖ ‘𝐾)𝑋)
241, 23eqbrtrrd 5066 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 0 ( ⋖ ‘𝐾)𝑋)
25 simpll 766 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 𝐾 ∈ HL)
26 lhpm0at.o . . . 4 0 = (0.‘𝐾)
27 lhpm0at.a . . . 4 𝐴 = (Atoms‘𝐾)
287, 26, 21, 27isat2 36542 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝐴0 ( ⋖ ‘𝐾)𝑋))
2925, 3, 28syl2anc 587 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → (𝑋𝐴0 ( ⋖ ‘𝐾)𝑋))
3024, 29mpbird 260 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 𝑋𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2114   ≠ wne 3011   class class class wbr 5042  ‘cfv 6334  (class class class)co 7140  Basecbs 16474  lecple 16563  meetcmee 17546  0.cp0 17638  Latclat 17646   ⋖ ccvr 36517  Atomscatm 36518  HLchlt 36605  LHypclh 37239 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-proset 17529  df-poset 17547  df-plt 17559  df-lub 17575  df-glb 17576  df-join 17577  df-meet 17578  df-p0 17640  df-p1 17641  df-lat 17647  df-clat 17709  df-oposet 36431  df-ol 36433  df-oml 36434  df-covers 36521  df-ats 36522  df-atl 36553  df-cvlat 36577  df-hlat 36606  df-lhyp 37243 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator