Proof of Theorem lhpm0atN
Step | Hyp | Ref
| Expression |
1 | | simpr3 1195 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ (𝑋 ∧ 𝑊) = 0 )) → (𝑋 ∧ 𝑊) = 0 ) |
2 | | simpl 483 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ (𝑋 ∧ 𝑊) = 0 )) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
3 | | simpr1 1193 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ (𝑋 ∧ 𝑊) = 0 )) → 𝑋 ∈ 𝐵) |
4 | | simpr2 1194 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ (𝑋 ∧ 𝑊) = 0 )) → 𝑋 ≠ 0 ) |
5 | | hllat 37385 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
6 | 5 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ (𝑋 ∧ 𝑊) = 0 )) → 𝐾 ∈ Lat) |
7 | | lhpm0at.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝐾) |
8 | | lhpm0at.h |
. . . . . . . . . . . 12
⊢ 𝐻 = (LHyp‘𝐾) |
9 | 7, 8 | lhpbase 38020 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
10 | 9 | ad2antlr 724 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ (𝑋 ∧ 𝑊) = 0 )) → 𝑊 ∈ 𝐵) |
11 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(le‘𝐾) =
(le‘𝐾) |
12 | | lhpm0at.m |
. . . . . . . . . . 11
⊢ ∧ =
(meet‘𝐾) |
13 | 7, 11, 12 | latleeqm1 18195 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋 ∧ 𝑊) = 𝑋)) |
14 | 6, 3, 10, 13 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ (𝑋 ∧ 𝑊) = 0 )) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋 ∧ 𝑊) = 𝑋)) |
15 | 14 | biimpa 477 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ (𝑋 ∧ 𝑊) = 0 )) ∧ 𝑋(le‘𝐾)𝑊) → (𝑋 ∧ 𝑊) = 𝑋) |
16 | | simplr3 1216 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ (𝑋 ∧ 𝑊) = 0 )) ∧ 𝑋(le‘𝐾)𝑊) → (𝑋 ∧ 𝑊) = 0 ) |
17 | 15, 16 | eqtr3d 2780 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ (𝑋 ∧ 𝑊) = 0 )) ∧ 𝑋(le‘𝐾)𝑊) → 𝑋 = 0 ) |
18 | 17 | ex 413 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ (𝑋 ∧ 𝑊) = 0 )) → (𝑋(le‘𝐾)𝑊 → 𝑋 = 0 )) |
19 | 18 | necon3ad 2956 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ (𝑋 ∧ 𝑊) = 0 )) → (𝑋 ≠ 0 → ¬ 𝑋(le‘𝐾)𝑊)) |
20 | 4, 19 | mpd 15 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ (𝑋 ∧ 𝑊) = 0 )) → ¬ 𝑋(le‘𝐾)𝑊) |
21 | | eqid 2738 |
. . . . 5
⊢ ( ⋖
‘𝐾) = ( ⋖
‘𝐾) |
22 | 7, 11, 12, 21, 8 | lhpmcvr 38045 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋(le‘𝐾)𝑊)) → (𝑋 ∧ 𝑊)( ⋖ ‘𝐾)𝑋) |
23 | 2, 3, 20, 22 | syl12anc 834 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ (𝑋 ∧ 𝑊) = 0 )) → (𝑋 ∧ 𝑊)( ⋖ ‘𝐾)𝑋) |
24 | 1, 23 | eqbrtrrd 5097 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ (𝑋 ∧ 𝑊) = 0 )) → 0 ( ⋖
‘𝐾)𝑋) |
25 | | simpll 764 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ (𝑋 ∧ 𝑊) = 0 )) → 𝐾 ∈ HL) |
26 | | lhpm0at.o |
. . . 4
⊢ 0 =
(0.‘𝐾) |
27 | | lhpm0at.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
28 | 7, 26, 21, 27 | isat2 37309 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝐴 ↔ 0 ( ⋖ ‘𝐾)𝑋)) |
29 | 25, 3, 28 | syl2anc 584 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ (𝑋 ∧ 𝑊) = 0 )) → (𝑋 ∈ 𝐴 ↔ 0 ( ⋖ ‘𝐾)𝑋)) |
30 | 24, 29 | mpbird 256 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ (𝑋 ∧ 𝑊) = 0 )) → 𝑋 ∈ 𝐴) |