Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvr0 Structured version   Visualization version   GIF version

Theorem atcvr0 39306
Description: An atom covers zero. (atcv0 32323 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
atomcvr0.z 0 = (0.‘𝐾)
atomcvr0.c 𝐶 = ( ⋖ ‘𝐾)
atomcvr0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atcvr0 ((𝐾𝐷𝑃𝐴) → 0 𝐶𝑃)

Proof of Theorem atcvr0
StepHypRef Expression
1 eqid 2735 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 atomcvr0.z . . 3 0 = (0.‘𝐾)
3 atomcvr0.c . . 3 𝐶 = ( ⋖ ‘𝐾)
4 atomcvr0.a . . 3 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4isat 39304 . 2 (𝐾𝐷 → (𝑃𝐴 ↔ (𝑃 ∈ (Base‘𝐾) ∧ 0 𝐶𝑃)))
65simplbda 499 1 ((𝐾𝐷𝑃𝐴) → 0 𝐶𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  Basecbs 17228  0.cp0 18433  ccvr 39280  Atomscatm 39281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ats 39285
This theorem is referenced by:  0ltat  39309  leatb  39310  atnle0  39327  atlen0  39328  atcmp  39329  atcvreq0  39332  atcvr0eq  39445  lnnat  39446  athgt  39475  ps-2  39497  lhp0lt  40022
  Copyright terms: Public domain W3C validator