Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvr0 Structured version   Visualization version   GIF version

Theorem atcvr0 39267
Description: An atom covers zero. (atcv0 32286 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
atomcvr0.z 0 = (0.‘𝐾)
atomcvr0.c 𝐶 = ( ⋖ ‘𝐾)
atomcvr0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atcvr0 ((𝐾𝐷𝑃𝐴) → 0 𝐶𝑃)

Proof of Theorem atcvr0
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 atomcvr0.z . . 3 0 = (0.‘𝐾)
3 atomcvr0.c . . 3 𝐶 = ( ⋖ ‘𝐾)
4 atomcvr0.a . . 3 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4isat 39265 . 2 (𝐾𝐷 → (𝑃𝐴 ↔ (𝑃 ∈ (Base‘𝐾) ∧ 0 𝐶𝑃)))
65simplbda 499 1 ((𝐾𝐷𝑃𝐴) → 0 𝐶𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5092  cfv 6482  Basecbs 17120  0.cp0 18327  ccvr 39241  Atomscatm 39242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-ats 39246
This theorem is referenced by:  0ltat  39270  leatb  39271  atnle0  39288  atlen0  39289  atcmp  39290  atcvreq0  39293  atcvr0eq  39405  lnnat  39406  athgt  39435  ps-2  39457  lhp0lt  39982
  Copyright terms: Public domain W3C validator