| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atcvr0 | Structured version Visualization version GIF version | ||
| Description: An atom covers zero. (atcv0 32323 analog.) (Contributed by NM, 4-Nov-2011.) |
| Ref | Expression |
|---|---|
| atomcvr0.z | ⊢ 0 = (0.‘𝐾) |
| atomcvr0.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| atomcvr0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atcvr0 | ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑃 ∈ 𝐴) → 0 𝐶𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | atomcvr0.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 3 | atomcvr0.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 4 | atomcvr0.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 1, 2, 3, 4 | isat 39304 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ (Base‘𝐾) ∧ 0 𝐶𝑃))) |
| 6 | 5 | simplbda 499 | 1 ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑃 ∈ 𝐴) → 0 𝐶𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6531 Basecbs 17228 0.cp0 18433 ⋖ ccvr 39280 Atomscatm 39281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ats 39285 |
| This theorem is referenced by: 0ltat 39309 leatb 39310 atnle0 39327 atlen0 39328 atcmp 39329 atcvreq0 39332 atcvr0eq 39445 lnnat 39446 athgt 39475 ps-2 39497 lhp0lt 40022 |
| Copyright terms: Public domain | W3C validator |