Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atcvr0 | Structured version Visualization version GIF version |
Description: An atom covers zero. (atcv0 30605 analog.) (Contributed by NM, 4-Nov-2011.) |
Ref | Expression |
---|---|
atomcvr0.z | ⊢ 0 = (0.‘𝐾) |
atomcvr0.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
atomcvr0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atcvr0 | ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑃 ∈ 𝐴) → 0 𝐶𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | atomcvr0.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
3 | atomcvr0.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
4 | atomcvr0.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 1, 2, 3, 4 | isat 37227 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ (Base‘𝐾) ∧ 0 𝐶𝑃))) |
6 | 5 | simplbda 499 | 1 ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑃 ∈ 𝐴) → 0 𝐶𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 0.cp0 18056 ⋖ ccvr 37203 Atomscatm 37204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ats 37208 |
This theorem is referenced by: 0ltat 37232 leatb 37233 atnle0 37250 atlen0 37251 atcmp 37252 atcvreq0 37255 atcvr0eq 37367 lnnat 37368 athgt 37397 ps-2 37419 lhp0lt 37944 |
Copyright terms: Public domain | W3C validator |