![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atcvr0 | Structured version Visualization version GIF version |
Description: An atom covers zero. (atcv0 32100 analog.) (Contributed by NM, 4-Nov-2011.) |
Ref | Expression |
---|---|
atomcvr0.z | β’ 0 = (0.βπΎ) |
atomcvr0.c | β’ πΆ = ( β βπΎ) |
atomcvr0.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
atcvr0 | β’ ((πΎ β π· β§ π β π΄) β 0 πΆπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . 3 β’ (BaseβπΎ) = (BaseβπΎ) | |
2 | atomcvr0.z | . . 3 β’ 0 = (0.βπΎ) | |
3 | atomcvr0.c | . . 3 β’ πΆ = ( β βπΎ) | |
4 | atomcvr0.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
5 | 1, 2, 3, 4 | isat 38667 | . 2 β’ (πΎ β π· β (π β π΄ β (π β (BaseβπΎ) β§ 0 πΆπ))) |
6 | 5 | simplbda 499 | 1 β’ ((πΎ β π· β§ π β π΄) β 0 πΆπ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 class class class wbr 5141 βcfv 6536 Basecbs 17151 0.cp0 18386 β ccvr 38643 Atomscatm 38644 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6488 df-fun 6538 df-fv 6544 df-ats 38648 |
This theorem is referenced by: 0ltat 38672 leatb 38673 atnle0 38690 atlen0 38691 atcmp 38692 atcvreq0 38695 atcvr0eq 38808 lnnat 38809 athgt 38838 ps-2 38860 lhp0lt 39385 |
Copyright terms: Public domain | W3C validator |