![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atcvr0 | Structured version Visualization version GIF version |
Description: An atom covers zero. (atcv0 31582 analog.) (Contributed by NM, 4-Nov-2011.) |
Ref | Expression |
---|---|
atomcvr0.z | β’ 0 = (0.βπΎ) |
atomcvr0.c | β’ πΆ = ( β βπΎ) |
atomcvr0.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
atcvr0 | β’ ((πΎ β π· β§ π β π΄) β 0 πΆπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 β’ (BaseβπΎ) = (BaseβπΎ) | |
2 | atomcvr0.z | . . 3 β’ 0 = (0.βπΎ) | |
3 | atomcvr0.c | . . 3 β’ πΆ = ( β βπΎ) | |
4 | atomcvr0.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
5 | 1, 2, 3, 4 | isat 38144 | . 2 β’ (πΎ β π· β (π β π΄ β (π β (BaseβπΎ) β§ 0 πΆπ))) |
6 | 5 | simplbda 500 | 1 β’ ((πΎ β π· β§ π β π΄) β 0 πΆπ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 class class class wbr 5147 βcfv 6540 Basecbs 17140 0.cp0 18372 β ccvr 38120 Atomscatm 38121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-ats 38125 |
This theorem is referenced by: 0ltat 38149 leatb 38150 atnle0 38167 atlen0 38168 atcmp 38169 atcvreq0 38172 atcvr0eq 38285 lnnat 38286 athgt 38315 ps-2 38337 lhp0lt 38862 |
Copyright terms: Public domain | W3C validator |