MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscplgrnb Structured version   Visualization version   GIF version

Theorem iscplgrnb 29400
Description: A graph is complete iff all vertices are neighbors of all vertices. (Contributed by AV, 1-Nov-2020.)
Hypothesis
Ref Expression
cplgruvtxb.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
iscplgrnb (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉   𝑛,𝐺,𝑣   𝑛,𝑉   𝑣,𝑊
Allowed substitution hint:   𝑊(𝑛)

Proof of Theorem iscplgrnb
StepHypRef Expression
1 cplgruvtxb.v . . 3 𝑉 = (Vtx‘𝐺)
21iscplgr 29399 . 2 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
31uvtxel 29372 . . . . 5 (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
43a1i 11 . . . 4 (𝐺𝑊 → (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))))
54baibd 539 . . 3 ((𝐺𝑊𝑣𝑉) → (𝑣 ∈ (UnivVtx‘𝐺) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
65ralbidva 3162 . 2 (𝐺𝑊 → (∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺) ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
72, 6bitrd 279 1 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  cdif 3928  {csn 4606  cfv 6536  (class class class)co 7410  Vtxcvtx 28980   NeighbVtx cnbgr 29316  UnivVtxcuvtx 29369  ComplGraphccplgr 29393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-uvtx 29370  df-cplgr 29395
This theorem is referenced by:  iscplgredg  29401  iscusgredg  29407  cplgr3v  29419
  Copyright terms: Public domain W3C validator