|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > iscplgrnb | Structured version Visualization version GIF version | ||
| Description: A graph is complete iff all vertices are neighbors of all vertices. (Contributed by AV, 1-Nov-2020.) | 
| Ref | Expression | 
|---|---|
| cplgruvtxb.v | ⊢ 𝑉 = (Vtx‘𝐺) | 
| Ref | Expression | 
|---|---|
| iscplgrnb | ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cplgruvtxb.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | iscplgr 29432 | . 2 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) | 
| 3 | 1 | uvtxel 29405 | . . . . 5 ⊢ (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) | 
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝐺 ∈ 𝑊 → (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))) | 
| 5 | 4 | baibd 539 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) → (𝑣 ∈ (UnivVtx‘𝐺) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) | 
| 6 | 5 | ralbidva 3176 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺) ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) | 
| 7 | 2, 6 | bitrd 279 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∖ cdif 3948 {csn 4626 ‘cfv 6561 (class class class)co 7431 Vtxcvtx 29013 NeighbVtx cnbgr 29349 UnivVtxcuvtx 29402 ComplGraphccplgr 29426 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-uvtx 29403 df-cplgr 29428 | 
| This theorem is referenced by: iscplgredg 29434 iscusgredg 29440 cplgr3v 29452 | 
| Copyright terms: Public domain | W3C validator |