![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscplgrnb | Structured version Visualization version GIF version |
Description: A graph is complete iff all vertices are neighbors of all vertices. (Contributed by AV, 1-Nov-2020.) |
Ref | Expression |
---|---|
cplgruvtxb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
iscplgrnb | ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cplgruvtxb.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | iscplgr 26663 | . 2 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
3 | 1 | uvtxel 26632 | . . . . 5 ⊢ (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝐺 ∈ 𝑊 → (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))) |
5 | 4 | baibd 536 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) → (𝑣 ∈ (UnivVtx‘𝐺) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
6 | 5 | ralbidva 3167 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺) ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
7 | 2, 6 | bitrd 271 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3090 ∖ cdif 3767 {csn 4369 ‘cfv 6102 (class class class)co 6879 Vtxcvtx 26230 NeighbVtx cnbgr 26565 UnivVtxcuvtx 26628 ComplGraphccplgr 26657 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-iota 6065 df-fun 6104 df-fv 6110 df-ov 6882 df-uvtx 26629 df-cplgr 26659 |
This theorem is referenced by: iscplgredg 26666 iscusgredg 26672 cplgr3v 26684 |
Copyright terms: Public domain | W3C validator |