MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscplgrnb Structured version   Visualization version   GIF version

Theorem iscplgrnb 27783
Description: A graph is complete iff all vertices are neighbors of all vertices. (Contributed by AV, 1-Nov-2020.)
Hypothesis
Ref Expression
cplgruvtxb.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
iscplgrnb (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉   𝑛,𝐺,𝑣   𝑛,𝑉   𝑣,𝑊
Allowed substitution hint:   𝑊(𝑛)

Proof of Theorem iscplgrnb
StepHypRef Expression
1 cplgruvtxb.v . . 3 𝑉 = (Vtx‘𝐺)
21iscplgr 27782 . 2 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
31uvtxel 27755 . . . . 5 (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
43a1i 11 . . . 4 (𝐺𝑊 → (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))))
54baibd 540 . . 3 ((𝐺𝑊𝑣𝑉) → (𝑣 ∈ (UnivVtx‘𝐺) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
65ralbidva 3111 . 2 (𝐺𝑊 → (∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺) ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
72, 6bitrd 278 1 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  cdif 3884  {csn 4561  cfv 6433  (class class class)co 7275  Vtxcvtx 27366   NeighbVtx cnbgr 27699  UnivVtxcuvtx 27752  ComplGraphccplgr 27776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-uvtx 27753  df-cplgr 27778
This theorem is referenced by:  iscplgredg  27784  iscusgredg  27790  cplgr3v  27802
  Copyright terms: Public domain W3C validator