| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngpropd | Structured version Visualization version GIF version | ||
| Description: If two structures have the same group components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015.) |
| Ref | Expression |
|---|---|
| drngpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| drngpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| drngpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| drngpropd.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| Ref | Expression |
|---|---|
| drngpropd | ⊢ (𝜑 → (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngpropd.1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 2 | drngpropd.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 3 | drngpropd.4 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
| 4 | 1, 2, 3 | unitpropd 20339 | . . . . . 6 ⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐿)) |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → (Unit‘𝐾) = (Unit‘𝐿)) |
| 6 | 1, 2 | eqtr3d 2770 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
| 7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → (Base‘𝐾) = (Base‘𝐿)) |
| 8 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → 𝐵 = (Base‘𝐾)) |
| 9 | 2 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → 𝐵 = (Base‘𝐿)) |
| 10 | drngpropd.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
| 11 | 10 | adantlr 715 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 12 | 8, 9, 11 | grpidpropd 18574 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → (0g‘𝐾) = (0g‘𝐿)) |
| 13 | 12 | sneqd 4589 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → {(0g‘𝐾)} = {(0g‘𝐿)}) |
| 14 | 7, 13 | difeq12d 4076 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → ((Base‘𝐾) ∖ {(0g‘𝐾)}) = ((Base‘𝐿) ∖ {(0g‘𝐿)})) |
| 15 | 5, 14 | eqeq12d 2749 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → ((Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)}) ↔ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g‘𝐿)}))) |
| 16 | 15 | pm5.32da 579 | . . 3 ⊢ (𝜑 → ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)})) ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g‘𝐿)})))) |
| 17 | 1, 2, 10, 3 | ringpropd 20210 | . . . 4 ⊢ (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)) |
| 18 | 17 | anbi1d 631 | . . 3 ⊢ (𝜑 → ((𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g‘𝐿)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g‘𝐿)})))) |
| 19 | 16, 18 | bitrd 279 | . 2 ⊢ (𝜑 → ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g‘𝐿)})))) |
| 20 | eqid 2733 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 21 | eqid 2733 | . . 3 ⊢ (Unit‘𝐾) = (Unit‘𝐾) | |
| 22 | eqid 2733 | . . 3 ⊢ (0g‘𝐾) = (0g‘𝐾) | |
| 23 | 20, 21, 22 | isdrng 20652 | . 2 ⊢ (𝐾 ∈ DivRing ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)}))) |
| 24 | eqid 2733 | . . 3 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 25 | eqid 2733 | . . 3 ⊢ (Unit‘𝐿) = (Unit‘𝐿) | |
| 26 | eqid 2733 | . . 3 ⊢ (0g‘𝐿) = (0g‘𝐿) | |
| 27 | 24, 25, 26 | isdrng 20652 | . 2 ⊢ (𝐿 ∈ DivRing ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g‘𝐿)}))) |
| 28 | 19, 23, 27 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 {csn 4577 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 +gcplusg 17165 .rcmulr 17166 0gc0g 17347 Ringcrg 20155 Unitcui 20277 DivRingcdr 20648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-2nd 7930 df-tpos 8164 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-plusg 17178 df-mulr 17179 df-0g 17349 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-grp 18853 df-mgp 20063 df-ur 20104 df-ring 20157 df-oppr 20259 df-dvdsr 20279 df-unit 20280 df-drng 20650 |
| This theorem is referenced by: fldpropd 20689 lvecprop2d 21107 hlhildrng 42074 |
| Copyright terms: Public domain | W3C validator |