Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > drngpropd | Structured version Visualization version GIF version |
Description: If two structures have the same group components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015.) |
Ref | Expression |
---|---|
drngpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
drngpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
drngpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
drngpropd.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
Ref | Expression |
---|---|
drngpropd | ⊢ (𝜑 → (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngpropd.1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | drngpropd.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
3 | drngpropd.4 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
4 | 1, 2, 3 | unitpropd 19854 | . . . . . 6 ⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐿)) |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → (Unit‘𝐾) = (Unit‘𝐿)) |
6 | 1, 2 | eqtr3d 2780 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → (Base‘𝐾) = (Base‘𝐿)) |
8 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → 𝐵 = (Base‘𝐾)) |
9 | 2 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → 𝐵 = (Base‘𝐿)) |
10 | drngpropd.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
11 | 10 | adantlr 711 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
12 | 8, 9, 11 | grpidpropd 18261 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → (0g‘𝐾) = (0g‘𝐿)) |
13 | 12 | sneqd 4570 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → {(0g‘𝐾)} = {(0g‘𝐿)}) |
14 | 7, 13 | difeq12d 4054 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → ((Base‘𝐾) ∖ {(0g‘𝐾)}) = ((Base‘𝐿) ∖ {(0g‘𝐿)})) |
15 | 5, 14 | eqeq12d 2754 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → ((Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)}) ↔ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g‘𝐿)}))) |
16 | 15 | pm5.32da 578 | . . 3 ⊢ (𝜑 → ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)})) ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g‘𝐿)})))) |
17 | 1, 2, 10, 3 | ringpropd 19736 | . . . 4 ⊢ (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)) |
18 | 17 | anbi1d 629 | . . 3 ⊢ (𝜑 → ((𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g‘𝐿)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g‘𝐿)})))) |
19 | 16, 18 | bitrd 278 | . 2 ⊢ (𝜑 → ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g‘𝐿)})))) |
20 | eqid 2738 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
21 | eqid 2738 | . . 3 ⊢ (Unit‘𝐾) = (Unit‘𝐾) | |
22 | eqid 2738 | . . 3 ⊢ (0g‘𝐾) = (0g‘𝐾) | |
23 | 20, 21, 22 | isdrng 19910 | . 2 ⊢ (𝐾 ∈ DivRing ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)}))) |
24 | eqid 2738 | . . 3 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
25 | eqid 2738 | . . 3 ⊢ (Unit‘𝐿) = (Unit‘𝐿) | |
26 | eqid 2738 | . . 3 ⊢ (0g‘𝐿) = (0g‘𝐿) | |
27 | 24, 25, 26 | isdrng 19910 | . 2 ⊢ (𝐿 ∈ DivRing ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g‘𝐿)}))) |
28 | 19, 23, 27 | 3bitr4g 313 | 1 ⊢ (𝜑 → (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 {csn 4558 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 0gc0g 17067 Ringcrg 19698 Unitcui 19796 DivRingcdr 19906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-drng 19908 |
This theorem is referenced by: fldpropd 19934 lvecprop2d 20343 hlhildrng 39897 |
Copyright terms: Public domain | W3C validator |