MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngpropd Structured version   Visualization version   GIF version

Theorem drngpropd 20688
Description: If two structures have the same group components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015.)
Hypotheses
Ref Expression
drngpropd.1 (𝜑𝐵 = (Base‘𝐾))
drngpropd.2 (𝜑𝐵 = (Base‘𝐿))
drngpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
drngpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
drngpropd (𝜑 → (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem drngpropd
StepHypRef Expression
1 drngpropd.1 . . . . . . 7 (𝜑𝐵 = (Base‘𝐾))
2 drngpropd.2 . . . . . . 7 (𝜑𝐵 = (Base‘𝐿))
3 drngpropd.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
41, 2, 3unitpropd 20339 . . . . . 6 (𝜑 → (Unit‘𝐾) = (Unit‘𝐿))
54adantr 480 . . . . 5 ((𝜑𝐾 ∈ Ring) → (Unit‘𝐾) = (Unit‘𝐿))
61, 2eqtr3d 2770 . . . . . . 7 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
76adantr 480 . . . . . 6 ((𝜑𝐾 ∈ Ring) → (Base‘𝐾) = (Base‘𝐿))
81adantr 480 . . . . . . . 8 ((𝜑𝐾 ∈ Ring) → 𝐵 = (Base‘𝐾))
92adantr 480 . . . . . . . 8 ((𝜑𝐾 ∈ Ring) → 𝐵 = (Base‘𝐿))
10 drngpropd.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
1110adantlr 715 . . . . . . . 8 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
128, 9, 11grpidpropd 18574 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → (0g𝐾) = (0g𝐿))
1312sneqd 4589 . . . . . 6 ((𝜑𝐾 ∈ Ring) → {(0g𝐾)} = {(0g𝐿)})
147, 13difeq12d 4076 . . . . 5 ((𝜑𝐾 ∈ Ring) → ((Base‘𝐾) ∖ {(0g𝐾)}) = ((Base‘𝐿) ∖ {(0g𝐿)}))
155, 14eqeq12d 2749 . . . 4 ((𝜑𝐾 ∈ Ring) → ((Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)}) ↔ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g𝐿)})))
1615pm5.32da 579 . . 3 (𝜑 → ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)})) ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g𝐿)}))))
171, 2, 10, 3ringpropd 20210 . . . 4 (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
1817anbi1d 631 . . 3 (𝜑 → ((𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g𝐿)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g𝐿)}))))
1916, 18bitrd 279 . 2 (𝜑 → ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g𝐿)}))))
20 eqid 2733 . . 3 (Base‘𝐾) = (Base‘𝐾)
21 eqid 2733 . . 3 (Unit‘𝐾) = (Unit‘𝐾)
22 eqid 2733 . . 3 (0g𝐾) = (0g𝐾)
2320, 21, 22isdrng 20652 . 2 (𝐾 ∈ DivRing ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)})))
24 eqid 2733 . . 3 (Base‘𝐿) = (Base‘𝐿)
25 eqid 2733 . . 3 (Unit‘𝐿) = (Unit‘𝐿)
26 eqid 2733 . . 3 (0g𝐿) = (0g𝐿)
2724, 25, 26isdrng 20652 . 2 (𝐿 ∈ DivRing ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g𝐿)})))
2819, 23, 273bitr4g 314 1 (𝜑 → (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  cdif 3895  {csn 4577  cfv 6488  (class class class)co 7354  Basecbs 17124  +gcplusg 17165  .rcmulr 17166  0gc0g 17347  Ringcrg 20155  Unitcui 20277  DivRingcdr 20648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-tpos 8164  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-plusg 17178  df-mulr 17179  df-0g 17349  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-grp 18853  df-mgp 20063  df-ur 20104  df-ring 20157  df-oppr 20259  df-dvdsr 20279  df-unit 20280  df-drng 20650
This theorem is referenced by:  fldpropd  20689  lvecprop2d  21107  hlhildrng  42074
  Copyright terms: Public domain W3C validator