MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngpropd Structured version   Visualization version   GIF version

Theorem drngpropd 19043
Description: If two structures have the same group components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015.)
Hypotheses
Ref Expression
drngpropd.1 (𝜑𝐵 = (Base‘𝐾))
drngpropd.2 (𝜑𝐵 = (Base‘𝐿))
drngpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
drngpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
drngpropd (𝜑 → (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem drngpropd
StepHypRef Expression
1 drngpropd.1 . . . . . . 7 (𝜑𝐵 = (Base‘𝐾))
2 drngpropd.2 . . . . . . 7 (𝜑𝐵 = (Base‘𝐿))
3 drngpropd.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
41, 2, 3unitpropd 18964 . . . . . 6 (𝜑 → (Unit‘𝐾) = (Unit‘𝐿))
54adantr 472 . . . . 5 ((𝜑𝐾 ∈ Ring) → (Unit‘𝐾) = (Unit‘𝐿))
61, 2eqtr3d 2801 . . . . . . 7 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
76adantr 472 . . . . . 6 ((𝜑𝐾 ∈ Ring) → (Base‘𝐾) = (Base‘𝐿))
81adantr 472 . . . . . . . 8 ((𝜑𝐾 ∈ Ring) → 𝐵 = (Base‘𝐾))
92adantr 472 . . . . . . . 8 ((𝜑𝐾 ∈ Ring) → 𝐵 = (Base‘𝐿))
10 drngpropd.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
1110adantlr 706 . . . . . . . 8 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
128, 9, 11grpidpropd 17527 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → (0g𝐾) = (0g𝐿))
1312sneqd 4346 . . . . . 6 ((𝜑𝐾 ∈ Ring) → {(0g𝐾)} = {(0g𝐿)})
147, 13difeq12d 3891 . . . . 5 ((𝜑𝐾 ∈ Ring) → ((Base‘𝐾) ∖ {(0g𝐾)}) = ((Base‘𝐿) ∖ {(0g𝐿)}))
155, 14eqeq12d 2780 . . . 4 ((𝜑𝐾 ∈ Ring) → ((Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)}) ↔ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g𝐿)})))
1615pm5.32da 574 . . 3 (𝜑 → ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)})) ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g𝐿)}))))
171, 2, 10, 3ringpropd 18849 . . . 4 (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
1817anbi1d 623 . . 3 (𝜑 → ((𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g𝐿)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g𝐿)}))))
1916, 18bitrd 270 . 2 (𝜑 → ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g𝐿)}))))
20 eqid 2765 . . 3 (Base‘𝐾) = (Base‘𝐾)
21 eqid 2765 . . 3 (Unit‘𝐾) = (Unit‘𝐾)
22 eqid 2765 . . 3 (0g𝐾) = (0g𝐾)
2320, 21, 22isdrng 19020 . 2 (𝐾 ∈ DivRing ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)})))
24 eqid 2765 . . 3 (Base‘𝐿) = (Base‘𝐿)
25 eqid 2765 . . 3 (Unit‘𝐿) = (Unit‘𝐿)
26 eqid 2765 . . 3 (0g𝐿) = (0g𝐿)
2724, 25, 26isdrng 19020 . 2 (𝐿 ∈ DivRing ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g𝐿)})))
2819, 23, 273bitr4g 305 1 (𝜑 → (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  cdif 3729  {csn 4334  cfv 6068  (class class class)co 6842  Basecbs 16130  +gcplusg 16214  .rcmulr 16215  0gc0g 16366  Ringcrg 18814  Unitcui 18906  DivRingcdr 19016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-tpos 7555  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-plusg 16227  df-mulr 16228  df-0g 16368  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-grp 17692  df-mgp 18757  df-ur 18769  df-ring 18816  df-oppr 18890  df-dvdsr 18908  df-unit 18909  df-drng 19018
This theorem is referenced by:  fldpropd  19044  lvecprop2d  19440  hlhildrng  37908
  Copyright terms: Public domain W3C validator