![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drngprop | Structured version Visualization version GIF version |
Description: If two structures have the same ring components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
drngprop.b | ⊢ (Base‘𝐾) = (Base‘𝐿) |
drngprop.p | ⊢ (+g‘𝐾) = (+g‘𝐿) |
drngprop.m | ⊢ (.r‘𝐾) = (.r‘𝐿) |
Ref | Expression |
---|---|
drngprop | ⊢ (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2741 | . . . . . 6 ⊢ (𝐾 ∈ Ring → (Base‘𝐾) = (Base‘𝐾)) | |
2 | drngprop.b | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐿) | |
3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝐾 ∈ Ring → (Base‘𝐾) = (Base‘𝐿)) |
4 | drngprop.m | . . . . . . . 8 ⊢ (.r‘𝐾) = (.r‘𝐿) | |
5 | 4 | oveqi 7461 | . . . . . . 7 ⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦) |
6 | 5 | a1i 11 | . . . . . 6 ⊢ ((𝐾 ∈ Ring ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
7 | 1, 3, 6 | unitpropd 20443 | . . . . 5 ⊢ (𝐾 ∈ Ring → (Unit‘𝐾) = (Unit‘𝐿)) |
8 | drngprop.p | . . . . . . . . . 10 ⊢ (+g‘𝐾) = (+g‘𝐿) | |
9 | 8 | oveqi 7461 | . . . . . . . . 9 ⊢ (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦) |
10 | 9 | a1i 11 | . . . . . . . 8 ⊢ ((𝐾 ∈ Ring ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
11 | 1, 3, 10 | grpidpropd 18700 | . . . . . . 7 ⊢ (𝐾 ∈ Ring → (0g‘𝐾) = (0g‘𝐿)) |
12 | 11 | sneqd 4660 | . . . . . 6 ⊢ (𝐾 ∈ Ring → {(0g‘𝐾)} = {(0g‘𝐿)}) |
13 | 12 | difeq2d 4149 | . . . . 5 ⊢ (𝐾 ∈ Ring → ((Base‘𝐾) ∖ {(0g‘𝐾)}) = ((Base‘𝐾) ∖ {(0g‘𝐿)})) |
14 | 7, 13 | eqeq12d 2756 | . . . 4 ⊢ (𝐾 ∈ Ring → ((Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)}) ↔ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g‘𝐿)}))) |
15 | 14 | pm5.32i 574 | . . 3 ⊢ ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)})) ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g‘𝐿)}))) |
16 | 2, 8, 4 | ringprop 20313 | . . . 4 ⊢ (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring) |
17 | 16 | anbi1i 623 | . . 3 ⊢ ((𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g‘𝐿)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g‘𝐿)}))) |
18 | 15, 17 | bitri 275 | . 2 ⊢ ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g‘𝐿)}))) |
19 | eqid 2740 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
20 | eqid 2740 | . . 3 ⊢ (Unit‘𝐾) = (Unit‘𝐾) | |
21 | eqid 2740 | . . 3 ⊢ (0g‘𝐾) = (0g‘𝐾) | |
22 | 19, 20, 21 | isdrng 20755 | . 2 ⊢ (𝐾 ∈ DivRing ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)}))) |
23 | eqid 2740 | . . 3 ⊢ (Unit‘𝐿) = (Unit‘𝐿) | |
24 | eqid 2740 | . . 3 ⊢ (0g‘𝐿) = (0g‘𝐿) | |
25 | 2, 23, 24 | isdrng 20755 | . 2 ⊢ (𝐿 ∈ DivRing ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g‘𝐿)}))) |
26 | 18, 22, 25 | 3bitr4i 303 | 1 ⊢ (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 {csn 4648 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 .rcmulr 17312 0gc0g 17499 Ringcrg 20260 Unitcui 20381 DivRingcdr 20751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-mgp 20162 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-drng 20753 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |