MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngprop Structured version   Visualization version   GIF version

Theorem drngprop 20654
Description: If two structures have the same ring components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
drngprop.b (Base‘𝐾) = (Base‘𝐿)
drngprop.p (+g𝐾) = (+g𝐿)
drngprop.m (.r𝐾) = (.r𝐿)
Assertion
Ref Expression
drngprop (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing)

Proof of Theorem drngprop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2732 . . . . . 6 (𝐾 ∈ Ring → (Base‘𝐾) = (Base‘𝐾))
2 drngprop.b . . . . . . 7 (Base‘𝐾) = (Base‘𝐿)
32a1i 11 . . . . . 6 (𝐾 ∈ Ring → (Base‘𝐾) = (Base‘𝐿))
4 drngprop.m . . . . . . . 8 (.r𝐾) = (.r𝐿)
54oveqi 7354 . . . . . . 7 (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦)
65a1i 11 . . . . . 6 ((𝐾 ∈ Ring ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
71, 3, 6unitpropd 20330 . . . . 5 (𝐾 ∈ Ring → (Unit‘𝐾) = (Unit‘𝐿))
8 drngprop.p . . . . . . . . . 10 (+g𝐾) = (+g𝐿)
98oveqi 7354 . . . . . . . . 9 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦)
109a1i 11 . . . . . . . 8 ((𝐾 ∈ Ring ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
111, 3, 10grpidpropd 18565 . . . . . . 7 (𝐾 ∈ Ring → (0g𝐾) = (0g𝐿))
1211sneqd 4583 . . . . . 6 (𝐾 ∈ Ring → {(0g𝐾)} = {(0g𝐿)})
1312difeq2d 4071 . . . . 5 (𝐾 ∈ Ring → ((Base‘𝐾) ∖ {(0g𝐾)}) = ((Base‘𝐾) ∖ {(0g𝐿)}))
147, 13eqeq12d 2747 . . . 4 (𝐾 ∈ Ring → ((Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)}) ↔ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g𝐿)})))
1514pm5.32i 574 . . 3 ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)})) ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g𝐿)})))
162, 8, 4ringprop 20203 . . . 4 (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)
1716anbi1i 624 . . 3 ((𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g𝐿)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g𝐿)})))
1815, 17bitri 275 . 2 ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g𝐿)})))
19 eqid 2731 . . 3 (Base‘𝐾) = (Base‘𝐾)
20 eqid 2731 . . 3 (Unit‘𝐾) = (Unit‘𝐾)
21 eqid 2731 . . 3 (0g𝐾) = (0g𝐾)
2219, 20, 21isdrng 20643 . 2 (𝐾 ∈ DivRing ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)})))
23 eqid 2731 . . 3 (Unit‘𝐿) = (Unit‘𝐿)
24 eqid 2731 . . 3 (0g𝐿) = (0g𝐿)
252, 23, 24isdrng 20643 . 2 (𝐿 ∈ DivRing ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g𝐿)})))
2618, 22, 253bitr4i 303 1 (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  cdif 3894  {csn 4571  cfv 6476  (class class class)co 7341  Basecbs 17115  +gcplusg 17156  .rcmulr 17157  0gc0g 17338  Ringcrg 20146  Unitcui 20268  DivRingcdr 20639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-plusg 17169  df-mulr 17170  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-mgp 20054  df-ur 20095  df-ring 20148  df-oppr 20250  df-dvdsr 20270  df-unit 20271  df-drng 20641
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator