| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngprop | Structured version Visualization version GIF version | ||
| Description: If two structures have the same ring components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| drngprop.b | ⊢ (Base‘𝐾) = (Base‘𝐿) |
| drngprop.p | ⊢ (+g‘𝐾) = (+g‘𝐿) |
| drngprop.m | ⊢ (.r‘𝐾) = (.r‘𝐿) |
| Ref | Expression |
|---|---|
| drngprop | ⊢ (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2730 | . . . . . 6 ⊢ (𝐾 ∈ Ring → (Base‘𝐾) = (Base‘𝐾)) | |
| 2 | drngprop.b | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐿) | |
| 3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝐾 ∈ Ring → (Base‘𝐾) = (Base‘𝐿)) |
| 4 | drngprop.m | . . . . . . . 8 ⊢ (.r‘𝐾) = (.r‘𝐿) | |
| 5 | 4 | oveqi 7400 | . . . . . . 7 ⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦) |
| 6 | 5 | a1i 11 | . . . . . 6 ⊢ ((𝐾 ∈ Ring ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| 7 | 1, 3, 6 | unitpropd 20326 | . . . . 5 ⊢ (𝐾 ∈ Ring → (Unit‘𝐾) = (Unit‘𝐿)) |
| 8 | drngprop.p | . . . . . . . . . 10 ⊢ (+g‘𝐾) = (+g‘𝐿) | |
| 9 | 8 | oveqi 7400 | . . . . . . . . 9 ⊢ (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦) |
| 10 | 9 | a1i 11 | . . . . . . . 8 ⊢ ((𝐾 ∈ Ring ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 11 | 1, 3, 10 | grpidpropd 18589 | . . . . . . 7 ⊢ (𝐾 ∈ Ring → (0g‘𝐾) = (0g‘𝐿)) |
| 12 | 11 | sneqd 4601 | . . . . . 6 ⊢ (𝐾 ∈ Ring → {(0g‘𝐾)} = {(0g‘𝐿)}) |
| 13 | 12 | difeq2d 4089 | . . . . 5 ⊢ (𝐾 ∈ Ring → ((Base‘𝐾) ∖ {(0g‘𝐾)}) = ((Base‘𝐾) ∖ {(0g‘𝐿)})) |
| 14 | 7, 13 | eqeq12d 2745 | . . . 4 ⊢ (𝐾 ∈ Ring → ((Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)}) ↔ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g‘𝐿)}))) |
| 15 | 14 | pm5.32i 574 | . . 3 ⊢ ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)})) ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g‘𝐿)}))) |
| 16 | 2, 8, 4 | ringprop 20199 | . . . 4 ⊢ (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring) |
| 17 | 16 | anbi1i 624 | . . 3 ⊢ ((𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g‘𝐿)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g‘𝐿)}))) |
| 18 | 15, 17 | bitri 275 | . 2 ⊢ ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g‘𝐿)}))) |
| 19 | eqid 2729 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 20 | eqid 2729 | . . 3 ⊢ (Unit‘𝐾) = (Unit‘𝐾) | |
| 21 | eqid 2729 | . . 3 ⊢ (0g‘𝐾) = (0g‘𝐾) | |
| 22 | 19, 20, 21 | isdrng 20642 | . 2 ⊢ (𝐾 ∈ DivRing ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)}))) |
| 23 | eqid 2729 | . . 3 ⊢ (Unit‘𝐿) = (Unit‘𝐿) | |
| 24 | eqid 2729 | . . 3 ⊢ (0g‘𝐿) = (0g‘𝐿) | |
| 25 | 2, 23, 24 | isdrng 20642 | . 2 ⊢ (𝐿 ∈ DivRing ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g‘𝐿)}))) |
| 26 | 18, 22, 25 | 3bitr4i 303 | 1 ⊢ (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 {csn 4589 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 0gc0g 17402 Ringcrg 20142 Unitcui 20264 DivRingcdr 20638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-mgp 20050 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-drng 20640 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |