![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drngprop | Structured version Visualization version GIF version |
Description: If two structures have the same ring components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
drngprop.b | โข (Baseโ๐พ) = (Baseโ๐ฟ) |
drngprop.p | โข (+gโ๐พ) = (+gโ๐ฟ) |
drngprop.m | โข (.rโ๐พ) = (.rโ๐ฟ) |
Ref | Expression |
---|---|
drngprop | โข (๐พ โ DivRing โ ๐ฟ โ DivRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2732 | . . . . . 6 โข (๐พ โ Ring โ (Baseโ๐พ) = (Baseโ๐พ)) | |
2 | drngprop.b | . . . . . . 7 โข (Baseโ๐พ) = (Baseโ๐ฟ) | |
3 | 2 | a1i 11 | . . . . . 6 โข (๐พ โ Ring โ (Baseโ๐พ) = (Baseโ๐ฟ)) |
4 | drngprop.m | . . . . . . . 8 โข (.rโ๐พ) = (.rโ๐ฟ) | |
5 | 4 | oveqi 7425 | . . . . . . 7 โข (๐ฅ(.rโ๐พ)๐ฆ) = (๐ฅ(.rโ๐ฟ)๐ฆ) |
6 | 5 | a1i 11 | . . . . . 6 โข ((๐พ โ Ring โง (๐ฅ โ (Baseโ๐พ) โง ๐ฆ โ (Baseโ๐พ))) โ (๐ฅ(.rโ๐พ)๐ฆ) = (๐ฅ(.rโ๐ฟ)๐ฆ)) |
7 | 1, 3, 6 | unitpropd 20309 | . . . . 5 โข (๐พ โ Ring โ (Unitโ๐พ) = (Unitโ๐ฟ)) |
8 | drngprop.p | . . . . . . . . . 10 โข (+gโ๐พ) = (+gโ๐ฟ) | |
9 | 8 | oveqi 7425 | . . . . . . . . 9 โข (๐ฅ(+gโ๐พ)๐ฆ) = (๐ฅ(+gโ๐ฟ)๐ฆ) |
10 | 9 | a1i 11 | . . . . . . . 8 โข ((๐พ โ Ring โง (๐ฅ โ (Baseโ๐พ) โง ๐ฆ โ (Baseโ๐พ))) โ (๐ฅ(+gโ๐พ)๐ฆ) = (๐ฅ(+gโ๐ฟ)๐ฆ)) |
11 | 1, 3, 10 | grpidpropd 18588 | . . . . . . 7 โข (๐พ โ Ring โ (0gโ๐พ) = (0gโ๐ฟ)) |
12 | 11 | sneqd 4640 | . . . . . 6 โข (๐พ โ Ring โ {(0gโ๐พ)} = {(0gโ๐ฟ)}) |
13 | 12 | difeq2d 4122 | . . . . 5 โข (๐พ โ Ring โ ((Baseโ๐พ) โ {(0gโ๐พ)}) = ((Baseโ๐พ) โ {(0gโ๐ฟ)})) |
14 | 7, 13 | eqeq12d 2747 | . . . 4 โข (๐พ โ Ring โ ((Unitโ๐พ) = ((Baseโ๐พ) โ {(0gโ๐พ)}) โ (Unitโ๐ฟ) = ((Baseโ๐พ) โ {(0gโ๐ฟ)}))) |
15 | 14 | pm5.32i 574 | . . 3 โข ((๐พ โ Ring โง (Unitโ๐พ) = ((Baseโ๐พ) โ {(0gโ๐พ)})) โ (๐พ โ Ring โง (Unitโ๐ฟ) = ((Baseโ๐พ) โ {(0gโ๐ฟ)}))) |
16 | 2, 8, 4 | ringprop 20179 | . . . 4 โข (๐พ โ Ring โ ๐ฟ โ Ring) |
17 | 16 | anbi1i 623 | . . 3 โข ((๐พ โ Ring โง (Unitโ๐ฟ) = ((Baseโ๐พ) โ {(0gโ๐ฟ)})) โ (๐ฟ โ Ring โง (Unitโ๐ฟ) = ((Baseโ๐พ) โ {(0gโ๐ฟ)}))) |
18 | 15, 17 | bitri 275 | . 2 โข ((๐พ โ Ring โง (Unitโ๐พ) = ((Baseโ๐พ) โ {(0gโ๐พ)})) โ (๐ฟ โ Ring โง (Unitโ๐ฟ) = ((Baseโ๐พ) โ {(0gโ๐ฟ)}))) |
19 | eqid 2731 | . . 3 โข (Baseโ๐พ) = (Baseโ๐พ) | |
20 | eqid 2731 | . . 3 โข (Unitโ๐พ) = (Unitโ๐พ) | |
21 | eqid 2731 | . . 3 โข (0gโ๐พ) = (0gโ๐พ) | |
22 | 19, 20, 21 | isdrng 20505 | . 2 โข (๐พ โ DivRing โ (๐พ โ Ring โง (Unitโ๐พ) = ((Baseโ๐พ) โ {(0gโ๐พ)}))) |
23 | eqid 2731 | . . 3 โข (Unitโ๐ฟ) = (Unitโ๐ฟ) | |
24 | eqid 2731 | . . 3 โข (0gโ๐ฟ) = (0gโ๐ฟ) | |
25 | 2, 23, 24 | isdrng 20505 | . 2 โข (๐ฟ โ DivRing โ (๐ฟ โ Ring โง (Unitโ๐ฟ) = ((Baseโ๐พ) โ {(0gโ๐ฟ)}))) |
26 | 18, 22, 25 | 3bitr4i 303 | 1 โข (๐พ โ DivRing โ ๐ฟ โ DivRing) |
Colors of variables: wff setvar class |
Syntax hints: โ wb 205 โง wa 395 = wceq 1540 โ wcel 2105 โ cdif 3945 {csn 4628 โcfv 6543 (class class class)co 7412 Basecbs 17149 +gcplusg 17202 .rcmulr 17203 0gc0g 17390 Ringcrg 20128 Unitcui 20247 DivRingcdr 20501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-tpos 8215 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-mulr 17216 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-mgp 20030 df-ur 20077 df-ring 20130 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-drng 20503 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |