MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngprop Structured version   Visualization version   GIF version

Theorem drngprop 18962
Description: If two structures have the same ring components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
drngprop.b (Base‘𝐾) = (Base‘𝐿)
drngprop.p (+g𝐾) = (+g𝐿)
drngprop.m (.r𝐾) = (.r𝐿)
Assertion
Ref Expression
drngprop (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing)

Proof of Theorem drngprop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2807 . . . . . 6 (𝐾 ∈ Ring → (Base‘𝐾) = (Base‘𝐾))
2 drngprop.b . . . . . . 7 (Base‘𝐾) = (Base‘𝐿)
32a1i 11 . . . . . 6 (𝐾 ∈ Ring → (Base‘𝐾) = (Base‘𝐿))
4 drngprop.m . . . . . . . 8 (.r𝐾) = (.r𝐿)
54oveqi 6887 . . . . . . 7 (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦)
65a1i 11 . . . . . 6 ((𝐾 ∈ Ring ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
71, 3, 6unitpropd 18899 . . . . 5 (𝐾 ∈ Ring → (Unit‘𝐾) = (Unit‘𝐿))
8 drngprop.p . . . . . . . . . 10 (+g𝐾) = (+g𝐿)
98oveqi 6887 . . . . . . . . 9 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦)
109a1i 11 . . . . . . . 8 ((𝐾 ∈ Ring ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
111, 3, 10grpidpropd 17466 . . . . . . 7 (𝐾 ∈ Ring → (0g𝐾) = (0g𝐿))
1211sneqd 4382 . . . . . 6 (𝐾 ∈ Ring → {(0g𝐾)} = {(0g𝐿)})
1312difeq2d 3927 . . . . 5 (𝐾 ∈ Ring → ((Base‘𝐾) ∖ {(0g𝐾)}) = ((Base‘𝐾) ∖ {(0g𝐿)}))
147, 13eqeq12d 2821 . . . 4 (𝐾 ∈ Ring → ((Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)}) ↔ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g𝐿)})))
1514pm5.32i 566 . . 3 ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)})) ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g𝐿)})))
162, 8, 4ringprop 18786 . . . 4 (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)
1716anbi1i 612 . . 3 ((𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g𝐿)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g𝐿)})))
1815, 17bitri 266 . 2 ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g𝐿)})))
19 eqid 2806 . . 3 (Base‘𝐾) = (Base‘𝐾)
20 eqid 2806 . . 3 (Unit‘𝐾) = (Unit‘𝐾)
21 eqid 2806 . . 3 (0g𝐾) = (0g𝐾)
2219, 20, 21isdrng 18955 . 2 (𝐾 ∈ DivRing ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)})))
23 eqid 2806 . . 3 (Unit‘𝐿) = (Unit‘𝐿)
24 eqid 2806 . . 3 (0g𝐿) = (0g𝐿)
252, 23, 24isdrng 18955 . 2 (𝐿 ∈ DivRing ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g𝐿)})))
2618, 22, 253bitr4i 294 1 (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384   = wceq 1637  wcel 2156  cdif 3766  {csn 4370  cfv 6101  (class class class)co 6874  Basecbs 16068  +gcplusg 16153  .rcmulr 16154  0gc0g 16305  Ringcrg 18749  Unitcui 18841  DivRingcdr 18951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-om 7296  df-tpos 7587  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-er 7979  df-en 8193  df-dom 8194  df-sdom 8195  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-nn 11306  df-2 11364  df-3 11365  df-ndx 16071  df-slot 16072  df-base 16074  df-sets 16075  df-plusg 16166  df-mulr 16167  df-0g 16307  df-mgm 17447  df-sgrp 17489  df-mnd 17500  df-grp 17630  df-mgp 18692  df-ur 18704  df-ring 18751  df-oppr 18825  df-dvdsr 18843  df-unit 18844  df-drng 18953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator