MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngprop Structured version   Visualization version   GIF version

Theorem drngprop 19917
Description: If two structures have the same ring components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
drngprop.b (Base‘𝐾) = (Base‘𝐿)
drngprop.p (+g𝐾) = (+g𝐿)
drngprop.m (.r𝐾) = (.r𝐿)
Assertion
Ref Expression
drngprop (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing)

Proof of Theorem drngprop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2739 . . . . . 6 (𝐾 ∈ Ring → (Base‘𝐾) = (Base‘𝐾))
2 drngprop.b . . . . . . 7 (Base‘𝐾) = (Base‘𝐿)
32a1i 11 . . . . . 6 (𝐾 ∈ Ring → (Base‘𝐾) = (Base‘𝐿))
4 drngprop.m . . . . . . . 8 (.r𝐾) = (.r𝐿)
54oveqi 7268 . . . . . . 7 (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦)
65a1i 11 . . . . . 6 ((𝐾 ∈ Ring ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
71, 3, 6unitpropd 19854 . . . . 5 (𝐾 ∈ Ring → (Unit‘𝐾) = (Unit‘𝐿))
8 drngprop.p . . . . . . . . . 10 (+g𝐾) = (+g𝐿)
98oveqi 7268 . . . . . . . . 9 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦)
109a1i 11 . . . . . . . 8 ((𝐾 ∈ Ring ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
111, 3, 10grpidpropd 18261 . . . . . . 7 (𝐾 ∈ Ring → (0g𝐾) = (0g𝐿))
1211sneqd 4570 . . . . . 6 (𝐾 ∈ Ring → {(0g𝐾)} = {(0g𝐿)})
1312difeq2d 4053 . . . . 5 (𝐾 ∈ Ring → ((Base‘𝐾) ∖ {(0g𝐾)}) = ((Base‘𝐾) ∖ {(0g𝐿)}))
147, 13eqeq12d 2754 . . . 4 (𝐾 ∈ Ring → ((Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)}) ↔ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g𝐿)})))
1514pm5.32i 574 . . 3 ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)})) ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g𝐿)})))
162, 8, 4ringprop 19738 . . . 4 (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)
1716anbi1i 623 . . 3 ((𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g𝐿)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g𝐿)})))
1815, 17bitri 274 . 2 ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g𝐿)})))
19 eqid 2738 . . 3 (Base‘𝐾) = (Base‘𝐾)
20 eqid 2738 . . 3 (Unit‘𝐾) = (Unit‘𝐾)
21 eqid 2738 . . 3 (0g𝐾) = (0g𝐾)
2219, 20, 21isdrng 19910 . 2 (𝐾 ∈ DivRing ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)})))
23 eqid 2738 . . 3 (Unit‘𝐿) = (Unit‘𝐿)
24 eqid 2738 . . 3 (0g𝐿) = (0g𝐿)
252, 23, 24isdrng 19910 . 2 (𝐿 ∈ DivRing ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g𝐿)})))
2618, 22, 253bitr4i 302 1 (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  cdif 3880  {csn 4558  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  0gc0g 17067  Ringcrg 19698  Unitcui 19796  DivRingcdr 19906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-drng 19908
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator