| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngprop | Structured version Visualization version GIF version | ||
| Description: If two structures have the same ring components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| drngprop.b | ⊢ (Base‘𝐾) = (Base‘𝐿) |
| drngprop.p | ⊢ (+g‘𝐾) = (+g‘𝐿) |
| drngprop.m | ⊢ (.r‘𝐾) = (.r‘𝐿) |
| Ref | Expression |
|---|---|
| drngprop | ⊢ (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2732 | . . . . . 6 ⊢ (𝐾 ∈ Ring → (Base‘𝐾) = (Base‘𝐾)) | |
| 2 | drngprop.b | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐿) | |
| 3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝐾 ∈ Ring → (Base‘𝐾) = (Base‘𝐿)) |
| 4 | drngprop.m | . . . . . . . 8 ⊢ (.r‘𝐾) = (.r‘𝐿) | |
| 5 | 4 | oveqi 7354 | . . . . . . 7 ⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦) |
| 6 | 5 | a1i 11 | . . . . . 6 ⊢ ((𝐾 ∈ Ring ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| 7 | 1, 3, 6 | unitpropd 20330 | . . . . 5 ⊢ (𝐾 ∈ Ring → (Unit‘𝐾) = (Unit‘𝐿)) |
| 8 | drngprop.p | . . . . . . . . . 10 ⊢ (+g‘𝐾) = (+g‘𝐿) | |
| 9 | 8 | oveqi 7354 | . . . . . . . . 9 ⊢ (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦) |
| 10 | 9 | a1i 11 | . . . . . . . 8 ⊢ ((𝐾 ∈ Ring ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 11 | 1, 3, 10 | grpidpropd 18565 | . . . . . . 7 ⊢ (𝐾 ∈ Ring → (0g‘𝐾) = (0g‘𝐿)) |
| 12 | 11 | sneqd 4583 | . . . . . 6 ⊢ (𝐾 ∈ Ring → {(0g‘𝐾)} = {(0g‘𝐿)}) |
| 13 | 12 | difeq2d 4071 | . . . . 5 ⊢ (𝐾 ∈ Ring → ((Base‘𝐾) ∖ {(0g‘𝐾)}) = ((Base‘𝐾) ∖ {(0g‘𝐿)})) |
| 14 | 7, 13 | eqeq12d 2747 | . . . 4 ⊢ (𝐾 ∈ Ring → ((Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)}) ↔ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g‘𝐿)}))) |
| 15 | 14 | pm5.32i 574 | . . 3 ⊢ ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)})) ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g‘𝐿)}))) |
| 16 | 2, 8, 4 | ringprop 20203 | . . . 4 ⊢ (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring) |
| 17 | 16 | anbi1i 624 | . . 3 ⊢ ((𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g‘𝐿)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g‘𝐿)}))) |
| 18 | 15, 17 | bitri 275 | . 2 ⊢ ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g‘𝐿)}))) |
| 19 | eqid 2731 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 20 | eqid 2731 | . . 3 ⊢ (Unit‘𝐾) = (Unit‘𝐾) | |
| 21 | eqid 2731 | . . 3 ⊢ (0g‘𝐾) = (0g‘𝐾) | |
| 22 | 19, 20, 21 | isdrng 20643 | . 2 ⊢ (𝐾 ∈ DivRing ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)}))) |
| 23 | eqid 2731 | . . 3 ⊢ (Unit‘𝐿) = (Unit‘𝐿) | |
| 24 | eqid 2731 | . . 3 ⊢ (0g‘𝐿) = (0g‘𝐿) | |
| 25 | 2, 23, 24 | isdrng 20643 | . 2 ⊢ (𝐿 ∈ DivRing ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g‘𝐿)}))) |
| 26 | 18, 22, 25 | 3bitr4i 303 | 1 ⊢ (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 {csn 4571 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 +gcplusg 17156 .rcmulr 17157 0gc0g 17338 Ringcrg 20146 Unitcui 20268 DivRingcdr 20639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-mulr 17170 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-mgp 20054 df-ur 20095 df-ring 20148 df-oppr 20250 df-dvdsr 20270 df-unit 20271 df-drng 20641 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |