Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sradrng | Structured version Visualization version GIF version |
Description: Condition for a subring algebra to be a division ring. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
Ref | Expression |
---|---|
sraring.1 | ⊢ 𝐴 = ((subringAlg ‘𝑅)‘𝑉) |
sraring.2 | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
sradrng | ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → 𝐴 ∈ DivRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngring 20100 | . . 3 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
2 | sraring.1 | . . . 4 ⊢ 𝐴 = ((subringAlg ‘𝑅)‘𝑉) | |
3 | sraring.2 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
4 | 2, 3 | sraring 31970 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → 𝐴 ∈ Ring) |
5 | 1, 4 | sylan 580 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → 𝐴 ∈ Ring) |
6 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
7 | eqid 2736 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
8 | eqid 2736 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
9 | 6, 7, 8 | isdrng 20097 | . . . . 5 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g‘𝑅)}))) |
10 | 9 | simprbi 497 | . . . 4 ⊢ (𝑅 ∈ DivRing → (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g‘𝑅)})) |
11 | 10 | adantr 481 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g‘𝑅)})) |
12 | eqidd 2737 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → (Base‘𝑅) = (Base‘𝑅)) | |
13 | 2 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → 𝐴 = ((subringAlg ‘𝑅)‘𝑉)) |
14 | simpr 485 | . . . . . 6 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → 𝑉 ⊆ 𝐵) | |
15 | 14, 3 | sseqtrdi 3982 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → 𝑉 ⊆ (Base‘𝑅)) |
16 | 13, 15 | srabase 20547 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → (Base‘𝑅) = (Base‘𝐴)) |
17 | 13, 15 | sramulr 20551 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → (.r‘𝑅) = (.r‘𝐴)) |
18 | 17 | oveqdr 7365 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝐴)𝑦)) |
19 | 12, 16, 18 | unitpropd 20034 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → (Unit‘𝑅) = (Unit‘𝐴)) |
20 | eqidd 2737 | . . . . . 6 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → (0g‘𝑅) = (0g‘𝑅)) | |
21 | 13, 20, 15 | sralmod0 20564 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → (0g‘𝑅) = (0g‘𝐴)) |
22 | 21 | sneqd 4585 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → {(0g‘𝑅)} = {(0g‘𝐴)}) |
23 | 16, 22 | difeq12d 4070 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → ((Base‘𝑅) ∖ {(0g‘𝑅)}) = ((Base‘𝐴) ∖ {(0g‘𝐴)})) |
24 | 11, 19, 23 | 3eqtr3d 2784 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → (Unit‘𝐴) = ((Base‘𝐴) ∖ {(0g‘𝐴)})) |
25 | eqid 2736 | . . 3 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
26 | eqid 2736 | . . 3 ⊢ (Unit‘𝐴) = (Unit‘𝐴) | |
27 | eqid 2736 | . . 3 ⊢ (0g‘𝐴) = (0g‘𝐴) | |
28 | 25, 26, 27 | isdrng 20097 | . 2 ⊢ (𝐴 ∈ DivRing ↔ (𝐴 ∈ Ring ∧ (Unit‘𝐴) = ((Base‘𝐴) ∖ {(0g‘𝐴)}))) |
29 | 5, 24, 28 | sylanbrc 583 | 1 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → 𝐴 ∈ DivRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∖ cdif 3895 ⊆ wss 3898 {csn 4573 ‘cfv 6479 Basecbs 17009 .rcmulr 17060 0gc0g 17247 Ringcrg 19878 Unitcui 19976 DivRingcdr 20093 subringAlg csra 20536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-2nd 7900 df-tpos 8112 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-plusg 17072 df-mulr 17073 df-sca 17075 df-vsca 17076 df-ip 17077 df-0g 17249 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-grp 18676 df-mgp 19816 df-ur 19833 df-ring 19880 df-oppr 19957 df-dvdsr 19978 df-unit 19979 df-drng 20095 df-sra 20540 |
This theorem is referenced by: rgmoddim 31991 extdggt0 32030 |
Copyright terms: Public domain | W3C validator |