Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sradrng Structured version   Visualization version   GIF version

Theorem sradrng 33585
Description: Condition for a subring algebra to be a division ring. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Hypotheses
Ref Expression
sradrng.1 𝐴 = ((subringAlg ‘𝑅)‘𝑉)
sradrng.2 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
sradrng ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝐴 ∈ DivRing)

Proof of Theorem sradrng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 drngring 20652 . . 3 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 sradrng.1 . . . 4 𝐴 = ((subringAlg ‘𝑅)‘𝑉)
3 sradrng.2 . . . 4 𝐵 = (Base‘𝑅)
42, 3sraring 21100 . . 3 ((𝑅 ∈ Ring ∧ 𝑉𝐵) → 𝐴 ∈ Ring)
51, 4sylan 580 . 2 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝐴 ∈ Ring)
6 eqid 2730 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2730 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
8 eqid 2730 . . . . . 6 (0g𝑅) = (0g𝑅)
96, 7, 8isdrng 20649 . . . . 5 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g𝑅)})))
109simprbi 496 . . . 4 (𝑅 ∈ DivRing → (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g𝑅)}))
1110adantr 480 . . 3 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g𝑅)}))
12 eqidd 2731 . . . 4 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Base‘𝑅) = (Base‘𝑅))
132a1i 11 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝐴 = ((subringAlg ‘𝑅)‘𝑉))
14 simpr 484 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝑉𝐵)
1514, 3sseqtrdi 3990 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝑉 ⊆ (Base‘𝑅))
1613, 15srabase 21091 . . . 4 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Base‘𝑅) = (Base‘𝐴))
1713, 15sramulr 21093 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (.r𝑅) = (.r𝐴))
1817oveqdr 7418 . . . 4 (((𝑅 ∈ DivRing ∧ 𝑉𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝐴)𝑦))
1912, 16, 18unitpropd 20333 . . 3 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Unit‘𝑅) = (Unit‘𝐴))
20 eqidd 2731 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (0g𝑅) = (0g𝑅))
2113, 20, 15sralmod0 21102 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (0g𝑅) = (0g𝐴))
2221sneqd 4604 . . . 4 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → {(0g𝑅)} = {(0g𝐴)})
2316, 22difeq12d 4093 . . 3 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → ((Base‘𝑅) ∖ {(0g𝑅)}) = ((Base‘𝐴) ∖ {(0g𝐴)}))
2411, 19, 233eqtr3d 2773 . 2 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Unit‘𝐴) = ((Base‘𝐴) ∖ {(0g𝐴)}))
25 eqid 2730 . . 3 (Base‘𝐴) = (Base‘𝐴)
26 eqid 2730 . . 3 (Unit‘𝐴) = (Unit‘𝐴)
27 eqid 2730 . . 3 (0g𝐴) = (0g𝐴)
2825, 26, 27isdrng 20649 . 2 (𝐴 ∈ DivRing ↔ (𝐴 ∈ Ring ∧ (Unit‘𝐴) = ((Base‘𝐴) ∖ {(0g𝐴)})))
295, 24, 28sylanbrc 583 1 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝐴 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3914  wss 3917  {csn 4592  cfv 6514  Basecbs 17186  .rcmulr 17228  0gc0g 17409  Ringcrg 20149  Unitcui 20271  DivRingcdr 20645  subringAlg csra 21085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-mgp 20057  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-drng 20647  df-sra 21087
This theorem is referenced by:  rlmdim  33612  rgmoddimOLD  33613  extdggt0  33660
  Copyright terms: Public domain W3C validator