Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sradrng | Structured version Visualization version GIF version |
Description: Condition for a subring algebra to be a division ring. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
Ref | Expression |
---|---|
sraring.1 | ⊢ 𝐴 = ((subringAlg ‘𝑅)‘𝑉) |
sraring.2 | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
sradrng | ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → 𝐴 ∈ DivRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngring 19998 | . . 3 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
2 | sraring.1 | . . . 4 ⊢ 𝐴 = ((subringAlg ‘𝑅)‘𝑉) | |
3 | sraring.2 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
4 | 2, 3 | sraring 31672 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → 𝐴 ∈ Ring) |
5 | 1, 4 | sylan 580 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → 𝐴 ∈ Ring) |
6 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
7 | eqid 2738 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
8 | eqid 2738 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
9 | 6, 7, 8 | isdrng 19995 | . . . . 5 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g‘𝑅)}))) |
10 | 9 | simprbi 497 | . . . 4 ⊢ (𝑅 ∈ DivRing → (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g‘𝑅)})) |
11 | 10 | adantr 481 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g‘𝑅)})) |
12 | eqidd 2739 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → (Base‘𝑅) = (Base‘𝑅)) | |
13 | 2 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → 𝐴 = ((subringAlg ‘𝑅)‘𝑉)) |
14 | simpr 485 | . . . . . 6 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → 𝑉 ⊆ 𝐵) | |
15 | 14, 3 | sseqtrdi 3971 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → 𝑉 ⊆ (Base‘𝑅)) |
16 | 13, 15 | srabase 20441 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → (Base‘𝑅) = (Base‘𝐴)) |
17 | 13, 15 | sramulr 20445 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → (.r‘𝑅) = (.r‘𝐴)) |
18 | 17 | oveqdr 7303 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝐴)𝑦)) |
19 | 12, 16, 18 | unitpropd 19939 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → (Unit‘𝑅) = (Unit‘𝐴)) |
20 | eqidd 2739 | . . . . . 6 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → (0g‘𝑅) = (0g‘𝑅)) | |
21 | 13, 20, 15 | sralmod0 20458 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → (0g‘𝑅) = (0g‘𝐴)) |
22 | 21 | sneqd 4573 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → {(0g‘𝑅)} = {(0g‘𝐴)}) |
23 | 16, 22 | difeq12d 4058 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → ((Base‘𝑅) ∖ {(0g‘𝑅)}) = ((Base‘𝐴) ∖ {(0g‘𝐴)})) |
24 | 11, 19, 23 | 3eqtr3d 2786 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → (Unit‘𝐴) = ((Base‘𝐴) ∖ {(0g‘𝐴)})) |
25 | eqid 2738 | . . 3 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
26 | eqid 2738 | . . 3 ⊢ (Unit‘𝐴) = (Unit‘𝐴) | |
27 | eqid 2738 | . . 3 ⊢ (0g‘𝐴) = (0g‘𝐴) | |
28 | 25, 26, 27 | isdrng 19995 | . 2 ⊢ (𝐴 ∈ DivRing ↔ (𝐴 ∈ Ring ∧ (Unit‘𝐴) = ((Base‘𝐴) ∖ {(0g‘𝐴)}))) |
29 | 5, 24, 28 | sylanbrc 583 | 1 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → 𝐴 ∈ DivRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ⊆ wss 3887 {csn 4561 ‘cfv 6433 Basecbs 16912 .rcmulr 16963 0gc0g 17150 Ringcrg 19783 Unitcui 19881 DivRingcdr 19991 subringAlg csra 20430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-drng 19993 df-sra 20434 |
This theorem is referenced by: rgmoddim 31693 extdggt0 31732 |
Copyright terms: Public domain | W3C validator |