Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sradrng Structured version   Visualization version   GIF version

Theorem sradrng 33627
Description: Condition for a subring algebra to be a division ring. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Hypotheses
Ref Expression
sradrng.1 𝐴 = ((subringAlg ‘𝑅)‘𝑉)
sradrng.2 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
sradrng ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝐴 ∈ DivRing)

Proof of Theorem sradrng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 drngring 20701 . . 3 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 sradrng.1 . . . 4 𝐴 = ((subringAlg ‘𝑅)‘𝑉)
3 sradrng.2 . . . 4 𝐵 = (Base‘𝑅)
42, 3sraring 21149 . . 3 ((𝑅 ∈ Ring ∧ 𝑉𝐵) → 𝐴 ∈ Ring)
51, 4sylan 580 . 2 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝐴 ∈ Ring)
6 eqid 2736 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2736 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
8 eqid 2736 . . . . . 6 (0g𝑅) = (0g𝑅)
96, 7, 8isdrng 20698 . . . . 5 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g𝑅)})))
109simprbi 496 . . . 4 (𝑅 ∈ DivRing → (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g𝑅)}))
1110adantr 480 . . 3 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g𝑅)}))
12 eqidd 2737 . . . 4 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Base‘𝑅) = (Base‘𝑅))
132a1i 11 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝐴 = ((subringAlg ‘𝑅)‘𝑉))
14 simpr 484 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝑉𝐵)
1514, 3sseqtrdi 4004 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝑉 ⊆ (Base‘𝑅))
1613, 15srabase 21140 . . . 4 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Base‘𝑅) = (Base‘𝐴))
1713, 15sramulr 21142 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (.r𝑅) = (.r𝐴))
1817oveqdr 7438 . . . 4 (((𝑅 ∈ DivRing ∧ 𝑉𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝐴)𝑦))
1912, 16, 18unitpropd 20382 . . 3 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Unit‘𝑅) = (Unit‘𝐴))
20 eqidd 2737 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (0g𝑅) = (0g𝑅))
2113, 20, 15sralmod0 21151 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (0g𝑅) = (0g𝐴))
2221sneqd 4618 . . . 4 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → {(0g𝑅)} = {(0g𝐴)})
2316, 22difeq12d 4107 . . 3 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → ((Base‘𝑅) ∖ {(0g𝑅)}) = ((Base‘𝐴) ∖ {(0g𝐴)}))
2411, 19, 233eqtr3d 2779 . 2 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Unit‘𝐴) = ((Base‘𝐴) ∖ {(0g𝐴)}))
25 eqid 2736 . . 3 (Base‘𝐴) = (Base‘𝐴)
26 eqid 2736 . . 3 (Unit‘𝐴) = (Unit‘𝐴)
27 eqid 2736 . . 3 (0g𝐴) = (0g𝐴)
2825, 26, 27isdrng 20698 . 2 (𝐴 ∈ DivRing ↔ (𝐴 ∈ Ring ∧ (Unit‘𝐴) = ((Base‘𝐴) ∖ {(0g𝐴)})))
295, 24, 28sylanbrc 583 1 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝐴 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3928  wss 3931  {csn 4606  cfv 6536  Basecbs 17233  .rcmulr 17277  0gc0g 17458  Ringcrg 20198  Unitcui 20320  DivRingcdr 20694  subringAlg csra 21134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-mgp 20106  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-drng 20696  df-sra 21136
This theorem is referenced by:  rlmdim  33654  rgmoddimOLD  33655  extdggt0  33704
  Copyright terms: Public domain W3C validator