Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sradrng Structured version   Visualization version   GIF version

Theorem sradrng 33598
Description: Condition for a subring algebra to be a division ring. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Hypotheses
Ref Expression
sradrng.1 𝐴 = ((subringAlg ‘𝑅)‘𝑉)
sradrng.2 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
sradrng ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝐴 ∈ DivRing)

Proof of Theorem sradrng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 drngring 20758 . . 3 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 sradrng.1 . . . 4 𝐴 = ((subringAlg ‘𝑅)‘𝑉)
3 sradrng.2 . . . 4 𝐵 = (Base‘𝑅)
42, 3sraring 21216 . . 3 ((𝑅 ∈ Ring ∧ 𝑉𝐵) → 𝐴 ∈ Ring)
51, 4sylan 579 . 2 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝐴 ∈ Ring)
6 eqid 2740 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2740 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
8 eqid 2740 . . . . . 6 (0g𝑅) = (0g𝑅)
96, 7, 8isdrng 20755 . . . . 5 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g𝑅)})))
109simprbi 496 . . . 4 (𝑅 ∈ DivRing → (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g𝑅)}))
1110adantr 480 . . 3 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g𝑅)}))
12 eqidd 2741 . . . 4 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Base‘𝑅) = (Base‘𝑅))
132a1i 11 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝐴 = ((subringAlg ‘𝑅)‘𝑉))
14 simpr 484 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝑉𝐵)
1514, 3sseqtrdi 4059 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝑉 ⊆ (Base‘𝑅))
1613, 15srabase 21200 . . . 4 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Base‘𝑅) = (Base‘𝐴))
1713, 15sramulr 21204 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (.r𝑅) = (.r𝐴))
1817oveqdr 7476 . . . 4 (((𝑅 ∈ DivRing ∧ 𝑉𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝐴)𝑦))
1912, 16, 18unitpropd 20443 . . 3 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Unit‘𝑅) = (Unit‘𝐴))
20 eqidd 2741 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (0g𝑅) = (0g𝑅))
2113, 20, 15sralmod0 21218 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (0g𝑅) = (0g𝐴))
2221sneqd 4660 . . . 4 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → {(0g𝑅)} = {(0g𝐴)})
2316, 22difeq12d 4150 . . 3 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → ((Base‘𝑅) ∖ {(0g𝑅)}) = ((Base‘𝐴) ∖ {(0g𝐴)}))
2411, 19, 233eqtr3d 2788 . 2 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Unit‘𝐴) = ((Base‘𝐴) ∖ {(0g𝐴)}))
25 eqid 2740 . . 3 (Base‘𝐴) = (Base‘𝐴)
26 eqid 2740 . . 3 (Unit‘𝐴) = (Unit‘𝐴)
27 eqid 2740 . . 3 (0g𝐴) = (0g𝐴)
2825, 26, 27isdrng 20755 . 2 (𝐴 ∈ DivRing ↔ (𝐴 ∈ Ring ∧ (Unit‘𝐴) = ((Base‘𝐴) ∖ {(0g𝐴)})))
295, 24, 28sylanbrc 582 1 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝐴 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cdif 3973  wss 3976  {csn 4648  cfv 6573  Basecbs 17258  .rcmulr 17312  0gc0g 17499  Ringcrg 20260  Unitcui 20381  DivRingcdr 20751  subringAlg csra 21193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-mgp 20162  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-drng 20753  df-sra 21195
This theorem is referenced by:  rlmdim  33622  rgmoddimOLD  33623  extdggt0  33670
  Copyright terms: Public domain W3C validator