Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sradrng Structured version   Visualization version   GIF version

Theorem sradrng 33557
Description: Condition for a subring algebra to be a division ring. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Hypotheses
Ref Expression
sradrng.1 𝐴 = ((subringAlg ‘𝑅)‘𝑉)
sradrng.2 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
sradrng ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝐴 ∈ DivRing)

Proof of Theorem sradrng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 drngring 20639 . . 3 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 sradrng.1 . . . 4 𝐴 = ((subringAlg ‘𝑅)‘𝑉)
3 sradrng.2 . . . 4 𝐵 = (Base‘𝑅)
42, 3sraring 21108 . . 3 ((𝑅 ∈ Ring ∧ 𝑉𝐵) → 𝐴 ∈ Ring)
51, 4sylan 580 . 2 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝐴 ∈ Ring)
6 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2729 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
8 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
96, 7, 8isdrng 20636 . . . . 5 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g𝑅)})))
109simprbi 496 . . . 4 (𝑅 ∈ DivRing → (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g𝑅)}))
1110adantr 480 . . 3 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g𝑅)}))
12 eqidd 2730 . . . 4 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Base‘𝑅) = (Base‘𝑅))
132a1i 11 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝐴 = ((subringAlg ‘𝑅)‘𝑉))
14 simpr 484 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝑉𝐵)
1514, 3sseqtrdi 3978 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝑉 ⊆ (Base‘𝑅))
1613, 15srabase 21099 . . . 4 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Base‘𝑅) = (Base‘𝐴))
1713, 15sramulr 21101 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (.r𝑅) = (.r𝐴))
1817oveqdr 7381 . . . 4 (((𝑅 ∈ DivRing ∧ 𝑉𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝐴)𝑦))
1912, 16, 18unitpropd 20320 . . 3 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Unit‘𝑅) = (Unit‘𝐴))
20 eqidd 2730 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (0g𝑅) = (0g𝑅))
2113, 20, 15sralmod0 21110 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (0g𝑅) = (0g𝐴))
2221sneqd 4591 . . . 4 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → {(0g𝑅)} = {(0g𝐴)})
2316, 22difeq12d 4080 . . 3 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → ((Base‘𝑅) ∖ {(0g𝑅)}) = ((Base‘𝐴) ∖ {(0g𝐴)}))
2411, 19, 233eqtr3d 2772 . 2 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Unit‘𝐴) = ((Base‘𝐴) ∖ {(0g𝐴)}))
25 eqid 2729 . . 3 (Base‘𝐴) = (Base‘𝐴)
26 eqid 2729 . . 3 (Unit‘𝐴) = (Unit‘𝐴)
27 eqid 2729 . . 3 (0g𝐴) = (0g𝐴)
2825, 26, 27isdrng 20636 . 2 (𝐴 ∈ DivRing ↔ (𝐴 ∈ Ring ∧ (Unit‘𝐴) = ((Base‘𝐴) ∖ {(0g𝐴)})))
295, 24, 28sylanbrc 583 1 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝐴 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3902  wss 3905  {csn 4579  cfv 6486  Basecbs 17138  .rcmulr 17180  0gc0g 17361  Ringcrg 20136  Unitcui 20258  DivRingcdr 20632  subringAlg csra 21093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-mgp 20044  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-drng 20634  df-sra 21095
This theorem is referenced by:  rlmdim  33584  rgmoddimOLD  33585  extdggt0  33632
  Copyright terms: Public domain W3C validator