Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sradrng Structured version   Visualization version   GIF version

 Description: Condition for a subring algebra to be a division ring. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Hypotheses
Ref Expression
sraring.1 𝐴 = ((subringAlg ‘𝑅)‘𝑉)
sraring.2 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
sradrng ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝐴 ∈ DivRing)

Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 drngring 19506 . . 3 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 sraring.1 . . . 4 𝐴 = ((subringAlg ‘𝑅)‘𝑉)
3 sraring.2 . . . 4 𝐵 = (Base‘𝑅)
42, 3sraring 31079 . . 3 ((𝑅 ∈ Ring ∧ 𝑉𝐵) → 𝐴 ∈ Ring)
51, 4sylan 583 . 2 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝐴 ∈ Ring)
6 eqid 2801 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2801 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
8 eqid 2801 . . . . . 6 (0g𝑅) = (0g𝑅)
96, 7, 8isdrng 19503 . . . . 5 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g𝑅)})))
109simprbi 500 . . . 4 (𝑅 ∈ DivRing → (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g𝑅)}))
1110adantr 484 . . 3 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g𝑅)}))
12 eqidd 2802 . . . 4 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Base‘𝑅) = (Base‘𝑅))
132a1i 11 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝐴 = ((subringAlg ‘𝑅)‘𝑉))
14 simpr 488 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝑉𝐵)
1514, 3sseqtrdi 3968 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝑉 ⊆ (Base‘𝑅))
1613, 15srabase 19947 . . . 4 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Base‘𝑅) = (Base‘𝐴))
1713, 15sramulr 19949 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (.r𝑅) = (.r𝐴))
1817oveqdr 7167 . . . 4 (((𝑅 ∈ DivRing ∧ 𝑉𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝐴)𝑦))
1912, 16, 18unitpropd 19447 . . 3 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Unit‘𝑅) = (Unit‘𝐴))
20 eqidd 2802 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (0g𝑅) = (0g𝑅))
2113, 20, 15sralmod0 19957 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (0g𝑅) = (0g𝐴))
2221sneqd 4540 . . . 4 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → {(0g𝑅)} = {(0g𝐴)})
2316, 22difeq12d 4054 . . 3 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → ((Base‘𝑅) ∖ {(0g𝑅)}) = ((Base‘𝐴) ∖ {(0g𝐴)}))
2411, 19, 233eqtr3d 2844 . 2 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → (Unit‘𝐴) = ((Base‘𝐴) ∖ {(0g𝐴)}))
25 eqid 2801 . . 3 (Base‘𝐴) = (Base‘𝐴)
26 eqid 2801 . . 3 (Unit‘𝐴) = (Unit‘𝐴)
27 eqid 2801 . . 3 (0g𝐴) = (0g𝐴)
2825, 26, 27isdrng 19503 . 2 (𝐴 ∈ DivRing ↔ (𝐴 ∈ Ring ∧ (Unit‘𝐴) = ((Base‘𝐴) ∖ {(0g𝐴)})))
295, 24, 28sylanbrc 586 1 ((𝑅 ∈ DivRing ∧ 𝑉𝐵) → 𝐴 ∈ DivRing)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112   ∖ cdif 3881   ⊆ wss 3884  {csn 4528  ‘cfv 6328  Basecbs 16479  .rcmulr 16562  0gc0g 16709  Ringcrg 19294  Unitcui 19389  DivRingcdr 19499  subringAlg csra 19937 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-plusg 16574  df-mulr 16575  df-sca 16577  df-vsca 16578  df-ip 16579  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-grp 18102  df-mgp 19237  df-ur 19249  df-ring 19296  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-drng 19501  df-sra 19941 This theorem is referenced by:  rgmoddim  31100  extdggt0  31139
 Copyright terms: Public domain W3C validator