| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sradrng | Structured version Visualization version GIF version | ||
| Description: Condition for a subring algebra to be a division ring. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| Ref | Expression |
|---|---|
| sradrng.1 | ⊢ 𝐴 = ((subringAlg ‘𝑅)‘𝑉) |
| sradrng.2 | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| sradrng | ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → 𝐴 ∈ DivRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngring 20652 | . . 3 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 2 | sradrng.1 | . . . 4 ⊢ 𝐴 = ((subringAlg ‘𝑅)‘𝑉) | |
| 3 | sradrng.2 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | 2, 3 | sraring 21121 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → 𝐴 ∈ Ring) |
| 5 | 1, 4 | sylan 580 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → 𝐴 ∈ Ring) |
| 6 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 7 | eqid 2731 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 8 | eqid 2731 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 9 | 6, 7, 8 | isdrng 20649 | . . . . 5 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g‘𝑅)}))) |
| 10 | 9 | simprbi 496 | . . . 4 ⊢ (𝑅 ∈ DivRing → (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g‘𝑅)})) |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g‘𝑅)})) |
| 12 | eqidd 2732 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → (Base‘𝑅) = (Base‘𝑅)) | |
| 13 | 2 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → 𝐴 = ((subringAlg ‘𝑅)‘𝑉)) |
| 14 | simpr 484 | . . . . . 6 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → 𝑉 ⊆ 𝐵) | |
| 15 | 14, 3 | sseqtrdi 3975 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → 𝑉 ⊆ (Base‘𝑅)) |
| 16 | 13, 15 | srabase 21112 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → (Base‘𝑅) = (Base‘𝐴)) |
| 17 | 13, 15 | sramulr 21114 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → (.r‘𝑅) = (.r‘𝐴)) |
| 18 | 17 | oveqdr 7374 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝐴)𝑦)) |
| 19 | 12, 16, 18 | unitpropd 20336 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → (Unit‘𝑅) = (Unit‘𝐴)) |
| 20 | eqidd 2732 | . . . . . 6 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → (0g‘𝑅) = (0g‘𝑅)) | |
| 21 | 13, 20, 15 | sralmod0 21123 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → (0g‘𝑅) = (0g‘𝐴)) |
| 22 | 21 | sneqd 4588 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → {(0g‘𝑅)} = {(0g‘𝐴)}) |
| 23 | 16, 22 | difeq12d 4077 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → ((Base‘𝑅) ∖ {(0g‘𝑅)}) = ((Base‘𝐴) ∖ {(0g‘𝐴)})) |
| 24 | 11, 19, 23 | 3eqtr3d 2774 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → (Unit‘𝐴) = ((Base‘𝐴) ∖ {(0g‘𝐴)})) |
| 25 | eqid 2731 | . . 3 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 26 | eqid 2731 | . . 3 ⊢ (Unit‘𝐴) = (Unit‘𝐴) | |
| 27 | eqid 2731 | . . 3 ⊢ (0g‘𝐴) = (0g‘𝐴) | |
| 28 | 25, 26, 27 | isdrng 20649 | . 2 ⊢ (𝐴 ∈ DivRing ↔ (𝐴 ∈ Ring ∧ (Unit‘𝐴) = ((Base‘𝐴) ∖ {(0g‘𝐴)}))) |
| 29 | 5, 24, 28 | sylanbrc 583 | 1 ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → 𝐴 ∈ DivRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 ⊆ wss 3902 {csn 4576 ‘cfv 6481 Basecbs 17120 .rcmulr 17162 0gc0g 17343 Ringcrg 20152 Unitcui 20274 DivRingcdr 20645 subringAlg csra 21106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-mgp 20060 df-ur 20101 df-ring 20154 df-oppr 20256 df-dvdsr 20276 df-unit 20277 df-drng 20647 df-sra 21108 |
| This theorem is referenced by: rlmdim 33620 rgmoddimOLD 33621 extdggt0 33668 |
| Copyright terms: Public domain | W3C validator |