MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzsdrg Structured version   Visualization version   GIF version

Theorem cntzsdrg 19985
Description: Centralizers in division rings/fields are subfields. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
cntzsdrg.b 𝐵 = (Base‘𝑅)
cntzsdrg.m 𝑀 = (mulGrp‘𝑅)
cntzsdrg.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzsdrg ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubDRing‘𝑅))

Proof of Theorem cntzsdrg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → 𝑅 ∈ DivRing)
2 drngring 19913 . . 3 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
3 cntzsdrg.b . . . 4 𝐵 = (Base‘𝑅)
4 cntzsdrg.m . . . 4 𝑀 = (mulGrp‘𝑅)
5 cntzsdrg.z . . . 4 𝑍 = (Cntz‘𝑀)
63, 4, 5cntzsubr 19972 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubRing‘𝑅))
72, 6sylan 579 . 2 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubRing‘𝑅))
8 oveq2 7263 . . . . . . 7 (𝑦 = (0g𝑅) → (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)))
9 oveq1 7262 . . . . . . 7 (𝑦 = (0g𝑅) → (𝑦(.r𝑅)((invr𝑅)‘𝑥)) = ((0g𝑅)(.r𝑅)((invr𝑅)‘𝑥)))
108, 9eqeq12d 2754 . . . . . 6 (𝑦 = (0g𝑅) → ((((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)) ↔ (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)) = ((0g𝑅)(.r𝑅)((invr𝑅)‘𝑥))))
11 eldifsn 4717 . . . . . . . 8 (𝑦 ∈ (𝑆 ∖ {(0g𝑅)}) ↔ (𝑦𝑆𝑦 ≠ (0g𝑅)))
12 eqid 2738 . . . . . . . . . . . . . 14 (Unit‘𝑅) = (Unit‘𝑅)
134oveq1i 7265 . . . . . . . . . . . . . 14 (𝑀s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
14 eqid 2738 . . . . . . . . . . . . . 14 (invr𝑅) = (invr𝑅)
1512, 13, 14invrfval 19830 . . . . . . . . . . . . 13 (invr𝑅) = (invg‘(𝑀s (Unit‘𝑅)))
16 eqid 2738 . . . . . . . . . . . . . . . . 17 (0g𝑅) = (0g𝑅)
173, 12, 16isdrng 19910 . . . . . . . . . . . . . . . 16 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ {(0g𝑅)})))
1817simprbi 496 . . . . . . . . . . . . . . 15 (𝑅 ∈ DivRing → (Unit‘𝑅) = (𝐵 ∖ {(0g𝑅)}))
1918oveq2d 7271 . . . . . . . . . . . . . 14 (𝑅 ∈ DivRing → (𝑀s (Unit‘𝑅)) = (𝑀s (𝐵 ∖ {(0g𝑅)})))
2019fveq2d 6760 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → (invg‘(𝑀s (Unit‘𝑅))) = (invg‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
2115, 20eqtrid 2790 . . . . . . . . . . . 12 (𝑅 ∈ DivRing → (invr𝑅) = (invg‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
2221ad2antrr 722 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → (invr𝑅) = (invg‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
2322fveq1d 6758 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((invr𝑅)‘𝑥) = ((invg‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘𝑥))
244oveq1i 7265 . . . . . . . . . . . . . 14 (𝑀s (𝐵 ∖ {(0g𝑅)})) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ {(0g𝑅)}))
253, 16, 24drngmgp 19918 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → (𝑀s (𝐵 ∖ {(0g𝑅)})) ∈ Grp)
2625ad2antrr 722 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → (𝑀s (𝐵 ∖ {(0g𝑅)})) ∈ Grp)
27 ssdif 4070 . . . . . . . . . . . . 13 (𝑆𝐵 → (𝑆 ∖ {(0g𝑅)}) ⊆ (𝐵 ∖ {(0g𝑅)}))
2827ad2antlr 723 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → (𝑆 ∖ {(0g𝑅)}) ⊆ (𝐵 ∖ {(0g𝑅)}))
29 difss 4062 . . . . . . . . . . . . . 14 (𝐵 ∖ {(0g𝑅)}) ⊆ 𝐵
30 eqid 2738 . . . . . . . . . . . . . . 15 (𝑀s (𝐵 ∖ {(0g𝑅)})) = (𝑀s (𝐵 ∖ {(0g𝑅)}))
314, 3mgpbas 19641 . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝑀)
3230, 31ressbas2 16875 . . . . . . . . . . . . . 14 ((𝐵 ∖ {(0g𝑅)}) ⊆ 𝐵 → (𝐵 ∖ {(0g𝑅)}) = (Base‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
3329, 32ax-mp 5 . . . . . . . . . . . . 13 (𝐵 ∖ {(0g𝑅)}) = (Base‘(𝑀s (𝐵 ∖ {(0g𝑅)})))
34 eqid 2738 . . . . . . . . . . . . 13 (Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)}))) = (Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))
3533, 34cntzsubg 18858 . . . . . . . . . . . 12 (((𝑀s (𝐵 ∖ {(0g𝑅)})) ∈ Grp ∧ (𝑆 ∖ {(0g𝑅)}) ⊆ (𝐵 ∖ {(0g𝑅)})) → ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})) ∈ (SubGrp‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
3626, 28, 35syl2anc 583 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})) ∈ (SubGrp‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
37 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → 𝑆𝐵)
38 difss 4062 . . . . . . . . . . . . . . . 16 (𝑆 ∖ {(0g𝑅)}) ⊆ 𝑆
3931, 5cntz2ss 18854 . . . . . . . . . . . . . . . 16 ((𝑆𝐵 ∧ (𝑆 ∖ {(0g𝑅)}) ⊆ 𝑆) → (𝑍𝑆) ⊆ (𝑍‘(𝑆 ∖ {(0g𝑅)})))
4037, 38, 39sylancl 585 . . . . . . . . . . . . . . 15 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → (𝑍𝑆) ⊆ (𝑍‘(𝑆 ∖ {(0g𝑅)})))
4140ssdifssd 4073 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → ((𝑍𝑆) ∖ {(0g𝑅)}) ⊆ (𝑍‘(𝑆 ∖ {(0g𝑅)})))
4241sselda 3917 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥 ∈ (𝑍‘(𝑆 ∖ {(0g𝑅)})))
4331, 5cntzssv 18849 . . . . . . . . . . . . . . 15 (𝑍𝑆) ⊆ 𝐵
44 ssdif 4070 . . . . . . . . . . . . . . 15 ((𝑍𝑆) ⊆ 𝐵 → ((𝑍𝑆) ∖ {(0g𝑅)}) ⊆ (𝐵 ∖ {(0g𝑅)}))
4543, 44mp1i 13 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → ((𝑍𝑆) ∖ {(0g𝑅)}) ⊆ (𝐵 ∖ {(0g𝑅)}))
4645sselda 3917 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥 ∈ (𝐵 ∖ {(0g𝑅)}))
4742, 46elind 4124 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥 ∈ ((𝑍‘(𝑆 ∖ {(0g𝑅)})) ∩ (𝐵 ∖ {(0g𝑅)})))
483fvexi 6770 . . . . . . . . . . . . . 14 𝐵 ∈ V
4948difexi 5247 . . . . . . . . . . . . 13 (𝐵 ∖ {(0g𝑅)}) ∈ V
5030, 5, 34resscntz 18853 . . . . . . . . . . . . 13 (((𝐵 ∖ {(0g𝑅)}) ∈ V ∧ (𝑆 ∖ {(0g𝑅)}) ⊆ (𝐵 ∖ {(0g𝑅)})) → ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})) = ((𝑍‘(𝑆 ∖ {(0g𝑅)})) ∩ (𝐵 ∖ {(0g𝑅)})))
5149, 28, 50sylancr 586 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})) = ((𝑍‘(𝑆 ∖ {(0g𝑅)})) ∩ (𝐵 ∖ {(0g𝑅)})))
5247, 51eleqtrrd 2842 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥 ∈ ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})))
53 eqid 2738 . . . . . . . . . . . 12 (invg‘(𝑀s (𝐵 ∖ {(0g𝑅)}))) = (invg‘(𝑀s (𝐵 ∖ {(0g𝑅)})))
5453subginvcl 18679 . . . . . . . . . . 11 ((((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})) ∈ (SubGrp‘(𝑀s (𝐵 ∖ {(0g𝑅)}))) ∧ 𝑥 ∈ ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)}))) → ((invg‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘𝑥) ∈ ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})))
5536, 52, 54syl2anc 583 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((invg‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘𝑥) ∈ ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})))
5623, 55eqeltrd 2839 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((invr𝑅)‘𝑥) ∈ ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})))
57 eqid 2738 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
584, 57mgpplusg 19639 . . . . . . . . . . . 12 (.r𝑅) = (+g𝑀)
5930, 58ressplusg 16926 . . . . . . . . . . 11 ((𝐵 ∖ {(0g𝑅)}) ∈ V → (.r𝑅) = (+g‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
6049, 59ax-mp 5 . . . . . . . . . 10 (.r𝑅) = (+g‘(𝑀s (𝐵 ∖ {(0g𝑅)})))
6160, 34cntzi 18850 . . . . . . . . 9 ((((invr𝑅)‘𝑥) ∈ ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})) ∧ 𝑦 ∈ (𝑆 ∖ {(0g𝑅)})) → (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)))
6256, 61sylan 579 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦 ∈ (𝑆 ∖ {(0g𝑅)})) → (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)))
6311, 62sylan2br 594 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ (𝑦𝑆𝑦 ≠ (0g𝑅))) → (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)))
6463anassrs 467 . . . . . 6 (((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) ∧ 𝑦 ≠ (0g𝑅)) → (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)))
652ad3antrrr 726 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) → 𝑅 ∈ Ring)
661adantr 480 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑅 ∈ DivRing)
67 eldifi 4057 . . . . . . . . . . . 12 (𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)}) → 𝑥 ∈ (𝑍𝑆))
6867adantl 481 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥 ∈ (𝑍𝑆))
6943, 68sselid 3915 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥𝐵)
70 eldifsni 4720 . . . . . . . . . . 11 (𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)}) → 𝑥 ≠ (0g𝑅))
7170adantl 481 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥 ≠ (0g𝑅))
723, 16, 14drnginvrcl 19923 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ 𝑥𝐵𝑥 ≠ (0g𝑅)) → ((invr𝑅)‘𝑥) ∈ 𝐵)
7366, 69, 71, 72syl3anc 1369 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((invr𝑅)‘𝑥) ∈ 𝐵)
7473adantr 480 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) → ((invr𝑅)‘𝑥) ∈ 𝐵)
753, 57, 16ringrz 19742 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘𝑥) ∈ 𝐵) → (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)) = (0g𝑅))
7665, 74, 75syl2anc 583 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) → (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)) = (0g𝑅))
773, 57, 16ringlz 19741 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘𝑥) ∈ 𝐵) → ((0g𝑅)(.r𝑅)((invr𝑅)‘𝑥)) = (0g𝑅))
7865, 74, 77syl2anc 583 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) → ((0g𝑅)(.r𝑅)((invr𝑅)‘𝑥)) = (0g𝑅))
7976, 78eqtr4d 2781 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) → (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)) = ((0g𝑅)(.r𝑅)((invr𝑅)‘𝑥)))
8010, 64, 79pm2.61ne 3029 . . . . 5 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) → (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)))
8180ralrimiva 3107 . . . 4 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ∀𝑦𝑆 (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)))
82 simplr 765 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑆𝐵)
8331, 58, 5cntzel 18844 . . . . 5 ((𝑆𝐵 ∧ ((invr𝑅)‘𝑥) ∈ 𝐵) → (((invr𝑅)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑦𝑆 (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥))))
8482, 73, 83syl2anc 583 . . . 4 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → (((invr𝑅)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑦𝑆 (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥))))
8581, 84mpbird 256 . . 3 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((invr𝑅)‘𝑥) ∈ (𝑍𝑆))
8685ralrimiva 3107 . 2 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → ∀𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ (𝑍𝑆))
8714, 16issdrg2 19981 . 2 ((𝑍𝑆) ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ (𝑍𝑆) ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ (𝑍𝑆)))
881, 7, 86, 87syl3anbrc 1341 1 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubDRing‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  cdif 3880  cin 3882  wss 3883  {csn 4558  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  +gcplusg 16888  .rcmulr 16889  0gc0g 17067  Grpcgrp 18492  invgcminusg 18493  SubGrpcsubg 18664  Cntzccntz 18836  mulGrpcmgp 19635  Ringcrg 19698  Unitcui 19796  invrcinvr 19828  DivRingcdr 19906  SubRingcsubrg 19935  SubDRingcsdrg 19976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-subg 18667  df-cntz 18838  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-drng 19908  df-subrg 19937  df-sdrg 19977
This theorem is referenced by:  primefld  19988
  Copyright terms: Public domain W3C validator