Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzsdrg Structured version   Visualization version   GIF version

Theorem cntzsdrg 19517
 Description: Centralizers in division rings/fields are subfields. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
cntzsdrg.b 𝐵 = (Base‘𝑅)
cntzsdrg.m 𝑀 = (mulGrp‘𝑅)
cntzsdrg.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzsdrg ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubDRing‘𝑅))

Proof of Theorem cntzsdrg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 483 . 2 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → 𝑅 ∈ DivRing)
2 drngring 19445 . . 3 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
3 cntzsdrg.b . . . 4 𝐵 = (Base‘𝑅)
4 cntzsdrg.m . . . 4 𝑀 = (mulGrp‘𝑅)
5 cntzsdrg.z . . . 4 𝑍 = (Cntz‘𝑀)
63, 4, 5cntzsubr 19504 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubRing‘𝑅))
72, 6sylan 580 . 2 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubRing‘𝑅))
8 oveq2 7158 . . . . . . 7 (𝑦 = (0g𝑅) → (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)))
9 oveq1 7157 . . . . . . 7 (𝑦 = (0g𝑅) → (𝑦(.r𝑅)((invr𝑅)‘𝑥)) = ((0g𝑅)(.r𝑅)((invr𝑅)‘𝑥)))
108, 9eqeq12d 2842 . . . . . 6 (𝑦 = (0g𝑅) → ((((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)) ↔ (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)) = ((0g𝑅)(.r𝑅)((invr𝑅)‘𝑥))))
11 eldifsn 4718 . . . . . . . 8 (𝑦 ∈ (𝑆 ∖ {(0g𝑅)}) ↔ (𝑦𝑆𝑦 ≠ (0g𝑅)))
12 eqid 2826 . . . . . . . . . . . . . 14 (Unit‘𝑅) = (Unit‘𝑅)
134oveq1i 7160 . . . . . . . . . . . . . 14 (𝑀s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
14 eqid 2826 . . . . . . . . . . . . . 14 (invr𝑅) = (invr𝑅)
1512, 13, 14invrfval 19359 . . . . . . . . . . . . 13 (invr𝑅) = (invg‘(𝑀s (Unit‘𝑅)))
16 eqid 2826 . . . . . . . . . . . . . . . . 17 (0g𝑅) = (0g𝑅)
173, 12, 16isdrng 19442 . . . . . . . . . . . . . . . 16 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ {(0g𝑅)})))
1817simprbi 497 . . . . . . . . . . . . . . 15 (𝑅 ∈ DivRing → (Unit‘𝑅) = (𝐵 ∖ {(0g𝑅)}))
1918oveq2d 7166 . . . . . . . . . . . . . 14 (𝑅 ∈ DivRing → (𝑀s (Unit‘𝑅)) = (𝑀s (𝐵 ∖ {(0g𝑅)})))
2019fveq2d 6673 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → (invg‘(𝑀s (Unit‘𝑅))) = (invg‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
2115, 20syl5eq 2873 . . . . . . . . . . . 12 (𝑅 ∈ DivRing → (invr𝑅) = (invg‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
2221ad2antrr 722 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → (invr𝑅) = (invg‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
2322fveq1d 6671 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((invr𝑅)‘𝑥) = ((invg‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘𝑥))
244oveq1i 7160 . . . . . . . . . . . . . 14 (𝑀s (𝐵 ∖ {(0g𝑅)})) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ {(0g𝑅)}))
253, 16, 24drngmgp 19450 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → (𝑀s (𝐵 ∖ {(0g𝑅)})) ∈ Grp)
2625ad2antrr 722 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → (𝑀s (𝐵 ∖ {(0g𝑅)})) ∈ Grp)
27 ssdif 4120 . . . . . . . . . . . . 13 (𝑆𝐵 → (𝑆 ∖ {(0g𝑅)}) ⊆ (𝐵 ∖ {(0g𝑅)}))
2827ad2antlr 723 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → (𝑆 ∖ {(0g𝑅)}) ⊆ (𝐵 ∖ {(0g𝑅)}))
29 difss 4112 . . . . . . . . . . . . . 14 (𝐵 ∖ {(0g𝑅)}) ⊆ 𝐵
30 eqid 2826 . . . . . . . . . . . . . . 15 (𝑀s (𝐵 ∖ {(0g𝑅)})) = (𝑀s (𝐵 ∖ {(0g𝑅)}))
314, 3mgpbas 19181 . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝑀)
3230, 31ressbas2 16550 . . . . . . . . . . . . . 14 ((𝐵 ∖ {(0g𝑅)}) ⊆ 𝐵 → (𝐵 ∖ {(0g𝑅)}) = (Base‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
3329, 32ax-mp 5 . . . . . . . . . . . . 13 (𝐵 ∖ {(0g𝑅)}) = (Base‘(𝑀s (𝐵 ∖ {(0g𝑅)})))
34 eqid 2826 . . . . . . . . . . . . 13 (Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)}))) = (Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))
3533, 34cntzsubg 18412 . . . . . . . . . . . 12 (((𝑀s (𝐵 ∖ {(0g𝑅)})) ∈ Grp ∧ (𝑆 ∖ {(0g𝑅)}) ⊆ (𝐵 ∖ {(0g𝑅)})) → ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})) ∈ (SubGrp‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
3626, 28, 35syl2anc 584 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})) ∈ (SubGrp‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
37 simpr 485 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → 𝑆𝐵)
38 difss 4112 . . . . . . . . . . . . . . . 16 (𝑆 ∖ {(0g𝑅)}) ⊆ 𝑆
3931, 5cntz2ss 18408 . . . . . . . . . . . . . . . 16 ((𝑆𝐵 ∧ (𝑆 ∖ {(0g𝑅)}) ⊆ 𝑆) → (𝑍𝑆) ⊆ (𝑍‘(𝑆 ∖ {(0g𝑅)})))
4037, 38, 39sylancl 586 . . . . . . . . . . . . . . 15 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → (𝑍𝑆) ⊆ (𝑍‘(𝑆 ∖ {(0g𝑅)})))
4140ssdifssd 4123 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → ((𝑍𝑆) ∖ {(0g𝑅)}) ⊆ (𝑍‘(𝑆 ∖ {(0g𝑅)})))
4241sselda 3971 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥 ∈ (𝑍‘(𝑆 ∖ {(0g𝑅)})))
4331, 5cntzssv 18403 . . . . . . . . . . . . . . 15 (𝑍𝑆) ⊆ 𝐵
44 ssdif 4120 . . . . . . . . . . . . . . 15 ((𝑍𝑆) ⊆ 𝐵 → ((𝑍𝑆) ∖ {(0g𝑅)}) ⊆ (𝐵 ∖ {(0g𝑅)}))
4543, 44mp1i 13 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → ((𝑍𝑆) ∖ {(0g𝑅)}) ⊆ (𝐵 ∖ {(0g𝑅)}))
4645sselda 3971 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥 ∈ (𝐵 ∖ {(0g𝑅)}))
4742, 46elind 4175 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥 ∈ ((𝑍‘(𝑆 ∖ {(0g𝑅)})) ∩ (𝐵 ∖ {(0g𝑅)})))
483fvexi 6683 . . . . . . . . . . . . . 14 𝐵 ∈ V
4948difexi 5229 . . . . . . . . . . . . 13 (𝐵 ∖ {(0g𝑅)}) ∈ V
5030, 5, 34resscntz 18407 . . . . . . . . . . . . 13 (((𝐵 ∖ {(0g𝑅)}) ∈ V ∧ (𝑆 ∖ {(0g𝑅)}) ⊆ (𝐵 ∖ {(0g𝑅)})) → ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})) = ((𝑍‘(𝑆 ∖ {(0g𝑅)})) ∩ (𝐵 ∖ {(0g𝑅)})))
5149, 28, 50sylancr 587 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})) = ((𝑍‘(𝑆 ∖ {(0g𝑅)})) ∩ (𝐵 ∖ {(0g𝑅)})))
5247, 51eleqtrrd 2921 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥 ∈ ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})))
53 eqid 2826 . . . . . . . . . . . 12 (invg‘(𝑀s (𝐵 ∖ {(0g𝑅)}))) = (invg‘(𝑀s (𝐵 ∖ {(0g𝑅)})))
5453subginvcl 18233 . . . . . . . . . . 11 ((((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})) ∈ (SubGrp‘(𝑀s (𝐵 ∖ {(0g𝑅)}))) ∧ 𝑥 ∈ ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)}))) → ((invg‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘𝑥) ∈ ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})))
5536, 52, 54syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((invg‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘𝑥) ∈ ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})))
5623, 55eqeltrd 2918 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((invr𝑅)‘𝑥) ∈ ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})))
57 eqid 2826 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
584, 57mgpplusg 19179 . . . . . . . . . . . 12 (.r𝑅) = (+g𝑀)
5930, 58ressplusg 16607 . . . . . . . . . . 11 ((𝐵 ∖ {(0g𝑅)}) ∈ V → (.r𝑅) = (+g‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
6049, 59ax-mp 5 . . . . . . . . . 10 (.r𝑅) = (+g‘(𝑀s (𝐵 ∖ {(0g𝑅)})))
6160, 34cntzi 18404 . . . . . . . . 9 ((((invr𝑅)‘𝑥) ∈ ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})) ∧ 𝑦 ∈ (𝑆 ∖ {(0g𝑅)})) → (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)))
6256, 61sylan 580 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦 ∈ (𝑆 ∖ {(0g𝑅)})) → (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)))
6311, 62sylan2br 594 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ (𝑦𝑆𝑦 ≠ (0g𝑅))) → (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)))
6463anassrs 468 . . . . . 6 (((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) ∧ 𝑦 ≠ (0g𝑅)) → (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)))
652ad3antrrr 726 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) → 𝑅 ∈ Ring)
661adantr 481 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑅 ∈ DivRing)
67 eldifi 4107 . . . . . . . . . . . 12 (𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)}) → 𝑥 ∈ (𝑍𝑆))
6867adantl 482 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥 ∈ (𝑍𝑆))
6943, 68sseldi 3969 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥𝐵)
70 eldifsni 4721 . . . . . . . . . . 11 (𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)}) → 𝑥 ≠ (0g𝑅))
7170adantl 482 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥 ≠ (0g𝑅))
723, 16, 14drnginvrcl 19455 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ 𝑥𝐵𝑥 ≠ (0g𝑅)) → ((invr𝑅)‘𝑥) ∈ 𝐵)
7366, 69, 71, 72syl3anc 1365 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((invr𝑅)‘𝑥) ∈ 𝐵)
7473adantr 481 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) → ((invr𝑅)‘𝑥) ∈ 𝐵)
753, 57, 16ringrz 19274 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘𝑥) ∈ 𝐵) → (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)) = (0g𝑅))
7665, 74, 75syl2anc 584 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) → (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)) = (0g𝑅))
773, 57, 16ringlz 19273 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘𝑥) ∈ 𝐵) → ((0g𝑅)(.r𝑅)((invr𝑅)‘𝑥)) = (0g𝑅))
7865, 74, 77syl2anc 584 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) → ((0g𝑅)(.r𝑅)((invr𝑅)‘𝑥)) = (0g𝑅))
7976, 78eqtr4d 2864 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) → (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)) = ((0g𝑅)(.r𝑅)((invr𝑅)‘𝑥)))
8010, 64, 79pm2.61ne 3107 . . . . 5 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) → (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)))
8180ralrimiva 3187 . . . 4 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ∀𝑦𝑆 (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)))
82 simplr 765 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑆𝐵)
8331, 58, 5cntzel 18398 . . . . 5 ((𝑆𝐵 ∧ ((invr𝑅)‘𝑥) ∈ 𝐵) → (((invr𝑅)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑦𝑆 (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥))))
8482, 73, 83syl2anc 584 . . . 4 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → (((invr𝑅)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑦𝑆 (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥))))
8581, 84mpbird 258 . . 3 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((invr𝑅)‘𝑥) ∈ (𝑍𝑆))
8685ralrimiva 3187 . 2 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → ∀𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ (𝑍𝑆))
8714, 16issdrg2 19513 . 2 ((𝑍𝑆) ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ (𝑍𝑆) ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ (𝑍𝑆)))
881, 7, 86, 87syl3anbrc 1337 1 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubDRing‘𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   = wceq 1530   ∈ wcel 2107   ≠ wne 3021  ∀wral 3143  Vcvv 3500   ∖ cdif 3937   ∩ cin 3939   ⊆ wss 3940  {csn 4564  ‘cfv 6354  (class class class)co 7150  Basecbs 16478   ↾s cress 16479  +gcplusg 16560  .rcmulr 16561  0gc0g 16708  Grpcgrp 18048  invgcminusg 18049  SubGrpcsubg 18218  Cntzccntz 18390  mulGrpcmgp 19175  Ringcrg 19233  Unitcui 19325  invrcinvr 19357  DivRingcdr 19438  SubRingcsubrg 19467  SubDRingcsdrg 19508 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-tpos 7888  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-grp 18051  df-minusg 18052  df-subg 18221  df-cntz 18392  df-mgp 19176  df-ur 19188  df-ring 19235  df-oppr 19309  df-dvdsr 19327  df-unit 19328  df-invr 19358  df-dvr 19369  df-drng 19440  df-subrg 19469  df-sdrg 19509 This theorem is referenced by:  primefld  19520
 Copyright terms: Public domain W3C validator