| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. 2
⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) → 𝑅 ∈ DivRing) |
| 2 | | drngring 20736 |
. . 3
⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
| 3 | | cntzsdrg.b |
. . . 4
⊢ 𝐵 = (Base‘𝑅) |
| 4 | | cntzsdrg.m |
. . . 4
⊢ 𝑀 = (mulGrp‘𝑅) |
| 5 | | cntzsdrg.z |
. . . 4
⊢ 𝑍 = (Cntz‘𝑀) |
| 6 | 3, 4, 5 | cntzsubr 20606 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubRing‘𝑅)) |
| 7 | 2, 6 | sylan 580 |
. 2
⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubRing‘𝑅)) |
| 8 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑦 = (0g‘𝑅) →
(((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑦) = (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅))) |
| 9 | | oveq1 7438 |
. . . . . . 7
⊢ (𝑦 = (0g‘𝑅) → (𝑦(.r‘𝑅)((invr‘𝑅)‘𝑥)) = ((0g‘𝑅)(.r‘𝑅)((invr‘𝑅)‘𝑥))) |
| 10 | 8, 9 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑦 = (0g‘𝑅) →
((((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑦) = (𝑦(.r‘𝑅)((invr‘𝑅)‘𝑥)) ↔ (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅)) = ((0g‘𝑅)(.r‘𝑅)((invr‘𝑅)‘𝑥)))) |
| 11 | | eldifsn 4786 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝑆 ∖ {(0g‘𝑅)}) ↔ (𝑦 ∈ 𝑆 ∧ 𝑦 ≠ (0g‘𝑅))) |
| 12 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
| 13 | 4 | oveq1i 7441 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ↾s
(Unit‘𝑅)) =
((mulGrp‘𝑅)
↾s (Unit‘𝑅)) |
| 14 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(invr‘𝑅) = (invr‘𝑅) |
| 15 | 12, 13, 14 | invrfval 20389 |
. . . . . . . . . . . . 13
⊢
(invr‘𝑅) = (invg‘(𝑀 ↾s
(Unit‘𝑅))) |
| 16 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 17 | 3, 12, 16 | isdrng 20733 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧
(Unit‘𝑅) = (𝐵 ∖
{(0g‘𝑅)}))) |
| 18 | 17 | simprbi 496 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ DivRing →
(Unit‘𝑅) = (𝐵 ∖
{(0g‘𝑅)})) |
| 19 | 18 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ DivRing → (𝑀 ↾s
(Unit‘𝑅)) = (𝑀 ↾s (𝐵 ∖
{(0g‘𝑅)}))) |
| 20 | 19 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ DivRing →
(invg‘(𝑀
↾s (Unit‘𝑅))) = (invg‘(𝑀 ↾s (𝐵 ∖
{(0g‘𝑅)})))) |
| 21 | 15, 20 | eqtrid 2789 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ DivRing →
(invr‘𝑅) =
(invg‘(𝑀
↾s (𝐵
∖ {(0g‘𝑅)})))) |
| 22 | 21 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) →
(invr‘𝑅) =
(invg‘(𝑀
↾s (𝐵
∖ {(0g‘𝑅)})))) |
| 23 | 22 | fveq1d 6908 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) →
((invr‘𝑅)‘𝑥) = ((invg‘(𝑀 ↾s (𝐵 ∖
{(0g‘𝑅)})))‘𝑥)) |
| 24 | 4 | oveq1i 7441 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ↾s (𝐵 ∖
{(0g‘𝑅)}))
= ((mulGrp‘𝑅)
↾s (𝐵
∖ {(0g‘𝑅)})) |
| 25 | 3, 16, 24 | drngmgp 20745 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ DivRing → (𝑀 ↾s (𝐵 ∖
{(0g‘𝑅)}))
∈ Grp) |
| 26 | 25 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) → (𝑀 ↾s (𝐵 ∖ {(0g‘𝑅)})) ∈
Grp) |
| 27 | | ssdif 4144 |
. . . . . . . . . . . . 13
⊢ (𝑆 ⊆ 𝐵 → (𝑆 ∖ {(0g‘𝑅)}) ⊆ (𝐵 ∖ {(0g‘𝑅)})) |
| 28 | 27 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) → (𝑆 ∖ {(0g‘𝑅)}) ⊆ (𝐵 ∖ {(0g‘𝑅)})) |
| 29 | | difss 4136 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∖
{(0g‘𝑅)})
⊆ 𝐵 |
| 30 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ↾s (𝐵 ∖
{(0g‘𝑅)}))
= (𝑀 ↾s
(𝐵 ∖
{(0g‘𝑅)})) |
| 31 | 4, 3 | mgpbas 20142 |
. . . . . . . . . . . . . . 15
⊢ 𝐵 = (Base‘𝑀) |
| 32 | 30, 31 | ressbas2 17283 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∖
{(0g‘𝑅)})
⊆ 𝐵 → (𝐵 ∖
{(0g‘𝑅)})
= (Base‘(𝑀
↾s (𝐵
∖ {(0g‘𝑅)})))) |
| 33 | 29, 32 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∖
{(0g‘𝑅)})
= (Base‘(𝑀
↾s (𝐵
∖ {(0g‘𝑅)}))) |
| 34 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(Cntz‘(𝑀
↾s (𝐵
∖ {(0g‘𝑅)}))) = (Cntz‘(𝑀 ↾s (𝐵 ∖ {(0g‘𝑅)}))) |
| 35 | 33, 34 | cntzsubg 19357 |
. . . . . . . . . . . 12
⊢ (((𝑀 ↾s (𝐵 ∖
{(0g‘𝑅)}))
∈ Grp ∧ (𝑆 ∖
{(0g‘𝑅)})
⊆ (𝐵 ∖
{(0g‘𝑅)}))
→ ((Cntz‘(𝑀
↾s (𝐵
∖ {(0g‘𝑅)})))‘(𝑆 ∖ {(0g‘𝑅)})) ∈ (SubGrp‘(𝑀 ↾s (𝐵 ∖
{(0g‘𝑅)})))) |
| 36 | 26, 28, 35 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) → ((Cntz‘(𝑀 ↾s (𝐵 ∖
{(0g‘𝑅)})))‘(𝑆 ∖ {(0g‘𝑅)})) ∈ (SubGrp‘(𝑀 ↾s (𝐵 ∖
{(0g‘𝑅)})))) |
| 37 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) → 𝑆 ⊆ 𝐵) |
| 38 | | difss 4136 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 ∖
{(0g‘𝑅)})
⊆ 𝑆 |
| 39 | 31, 5 | cntz2ss 19353 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 ⊆ 𝐵 ∧ (𝑆 ∖ {(0g‘𝑅)}) ⊆ 𝑆) → (𝑍‘𝑆) ⊆ (𝑍‘(𝑆 ∖ {(0g‘𝑅)}))) |
| 40 | 37, 38, 39 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ⊆ (𝑍‘(𝑆 ∖ {(0g‘𝑅)}))) |
| 41 | 40 | ssdifssd 4147 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) → ((𝑍‘𝑆) ∖ {(0g‘𝑅)}) ⊆ (𝑍‘(𝑆 ∖ {(0g‘𝑅)}))) |
| 42 | 41 | sselda 3983 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) → 𝑥 ∈ (𝑍‘(𝑆 ∖ {(0g‘𝑅)}))) |
| 43 | 31, 5 | cntzssv 19346 |
. . . . . . . . . . . . . . 15
⊢ (𝑍‘𝑆) ⊆ 𝐵 |
| 44 | | ssdif 4144 |
. . . . . . . . . . . . . . 15
⊢ ((𝑍‘𝑆) ⊆ 𝐵 → ((𝑍‘𝑆) ∖ {(0g‘𝑅)}) ⊆ (𝐵 ∖ {(0g‘𝑅)})) |
| 45 | 43, 44 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) → ((𝑍‘𝑆) ∖ {(0g‘𝑅)}) ⊆ (𝐵 ∖ {(0g‘𝑅)})) |
| 46 | 45 | sselda 3983 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) → 𝑥 ∈ (𝐵 ∖ {(0g‘𝑅)})) |
| 47 | 42, 46 | elind 4200 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) → 𝑥 ∈ ((𝑍‘(𝑆 ∖ {(0g‘𝑅)})) ∩ (𝐵 ∖ {(0g‘𝑅)}))) |
| 48 | 3 | fvexi 6920 |
. . . . . . . . . . . . . 14
⊢ 𝐵 ∈ V |
| 49 | 48 | difexi 5330 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∖
{(0g‘𝑅)})
∈ V |
| 50 | 30, 5, 34 | resscntz 19351 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ∖
{(0g‘𝑅)})
∈ V ∧ (𝑆 ∖
{(0g‘𝑅)})
⊆ (𝐵 ∖
{(0g‘𝑅)}))
→ ((Cntz‘(𝑀
↾s (𝐵
∖ {(0g‘𝑅)})))‘(𝑆 ∖ {(0g‘𝑅)})) = ((𝑍‘(𝑆 ∖ {(0g‘𝑅)})) ∩ (𝐵 ∖ {(0g‘𝑅)}))) |
| 51 | 49, 28, 50 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) → ((Cntz‘(𝑀 ↾s (𝐵 ∖
{(0g‘𝑅)})))‘(𝑆 ∖ {(0g‘𝑅)})) = ((𝑍‘(𝑆 ∖ {(0g‘𝑅)})) ∩ (𝐵 ∖ {(0g‘𝑅)}))) |
| 52 | 47, 51 | eleqtrrd 2844 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) → 𝑥 ∈ ((Cntz‘(𝑀 ↾s (𝐵 ∖ {(0g‘𝑅)})))‘(𝑆 ∖ {(0g‘𝑅)}))) |
| 53 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(invg‘(𝑀 ↾s (𝐵 ∖ {(0g‘𝑅)}))) =
(invg‘(𝑀
↾s (𝐵
∖ {(0g‘𝑅)}))) |
| 54 | 53 | subginvcl 19153 |
. . . . . . . . . . 11
⊢
((((Cntz‘(𝑀
↾s (𝐵
∖ {(0g‘𝑅)})))‘(𝑆 ∖ {(0g‘𝑅)})) ∈ (SubGrp‘(𝑀 ↾s (𝐵 ∖
{(0g‘𝑅)}))) ∧ 𝑥 ∈ ((Cntz‘(𝑀 ↾s (𝐵 ∖ {(0g‘𝑅)})))‘(𝑆 ∖ {(0g‘𝑅)}))) →
((invg‘(𝑀
↾s (𝐵
∖ {(0g‘𝑅)})))‘𝑥) ∈ ((Cntz‘(𝑀 ↾s (𝐵 ∖ {(0g‘𝑅)})))‘(𝑆 ∖ {(0g‘𝑅)}))) |
| 55 | 36, 52, 54 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) →
((invg‘(𝑀
↾s (𝐵
∖ {(0g‘𝑅)})))‘𝑥) ∈ ((Cntz‘(𝑀 ↾s (𝐵 ∖ {(0g‘𝑅)})))‘(𝑆 ∖ {(0g‘𝑅)}))) |
| 56 | 23, 55 | eqeltrd 2841 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) →
((invr‘𝑅)‘𝑥) ∈ ((Cntz‘(𝑀 ↾s (𝐵 ∖ {(0g‘𝑅)})))‘(𝑆 ∖ {(0g‘𝑅)}))) |
| 57 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 58 | 4, 57 | mgpplusg 20141 |
. . . . . . . . . . . 12
⊢
(.r‘𝑅) = (+g‘𝑀) |
| 59 | 30, 58 | ressplusg 17334 |
. . . . . . . . . . 11
⊢ ((𝐵 ∖
{(0g‘𝑅)})
∈ V → (.r‘𝑅) = (+g‘(𝑀 ↾s (𝐵 ∖ {(0g‘𝑅)})))) |
| 60 | 49, 59 | ax-mp 5 |
. . . . . . . . . 10
⊢
(.r‘𝑅) = (+g‘(𝑀 ↾s (𝐵 ∖ {(0g‘𝑅)}))) |
| 61 | 60, 34 | cntzi 19347 |
. . . . . . . . 9
⊢
((((invr‘𝑅)‘𝑥) ∈ ((Cntz‘(𝑀 ↾s (𝐵 ∖ {(0g‘𝑅)})))‘(𝑆 ∖ {(0g‘𝑅)})) ∧ 𝑦 ∈ (𝑆 ∖ {(0g‘𝑅)})) →
(((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑦) = (𝑦(.r‘𝑅)((invr‘𝑅)‘𝑥))) |
| 62 | 56, 61 | sylan 580 |
. . . . . . . 8
⊢ ((((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) ∧ 𝑦 ∈ (𝑆 ∖ {(0g‘𝑅)})) →
(((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑦) = (𝑦(.r‘𝑅)((invr‘𝑅)‘𝑥))) |
| 63 | 11, 62 | sylan2br 595 |
. . . . . . 7
⊢ ((((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) ∧ (𝑦 ∈ 𝑆 ∧ 𝑦 ≠ (0g‘𝑅))) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑦) = (𝑦(.r‘𝑅)((invr‘𝑅)‘𝑥))) |
| 64 | 63 | anassrs 467 |
. . . . . 6
⊢
(((((𝑅 ∈
DivRing ∧ 𝑆 ⊆
𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ≠ (0g‘𝑅)) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑦) = (𝑦(.r‘𝑅)((invr‘𝑅)‘𝑥))) |
| 65 | 2 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) ∧ 𝑦 ∈ 𝑆) → 𝑅 ∈ Ring) |
| 66 | 1 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) → 𝑅 ∈ DivRing) |
| 67 | | eldifi 4131 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)}) → 𝑥 ∈ (𝑍‘𝑆)) |
| 68 | 67 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) → 𝑥 ∈ (𝑍‘𝑆)) |
| 69 | 43, 68 | sselid 3981 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) → 𝑥 ∈ 𝐵) |
| 70 | | eldifsni 4790 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)}) → 𝑥 ≠ (0g‘𝑅)) |
| 71 | 70 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) → 𝑥 ≠ (0g‘𝑅)) |
| 72 | 3, 16, 14 | drnginvrcl 20753 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ DivRing ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ (0g‘𝑅)) → ((invr‘𝑅)‘𝑥) ∈ 𝐵) |
| 73 | 66, 69, 71, 72 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) →
((invr‘𝑅)‘𝑥) ∈ 𝐵) |
| 74 | 73 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) ∧ 𝑦 ∈ 𝑆) → ((invr‘𝑅)‘𝑥) ∈ 𝐵) |
| 75 | 3, 57, 16 | ringrz 20291 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧
((invr‘𝑅)‘𝑥) ∈ 𝐵) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 76 | 65, 74, 75 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) ∧ 𝑦 ∈ 𝑆) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 77 | 3, 57, 16 | ringlz 20290 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧
((invr‘𝑅)‘𝑥) ∈ 𝐵) → ((0g‘𝑅)(.r‘𝑅)((invr‘𝑅)‘𝑥)) = (0g‘𝑅)) |
| 78 | 65, 74, 77 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) ∧ 𝑦 ∈ 𝑆) → ((0g‘𝑅)(.r‘𝑅)((invr‘𝑅)‘𝑥)) = (0g‘𝑅)) |
| 79 | 76, 78 | eqtr4d 2780 |
. . . . . 6
⊢ ((((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) ∧ 𝑦 ∈ 𝑆) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅)) = ((0g‘𝑅)(.r‘𝑅)((invr‘𝑅)‘𝑥))) |
| 80 | 10, 64, 79 | pm2.61ne 3027 |
. . . . 5
⊢ ((((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) ∧ 𝑦 ∈ 𝑆) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑦) = (𝑦(.r‘𝑅)((invr‘𝑅)‘𝑥))) |
| 81 | 80 | ralrimiva 3146 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) → ∀𝑦 ∈ 𝑆 (((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑦) = (𝑦(.r‘𝑅)((invr‘𝑅)‘𝑥))) |
| 82 | | simplr 769 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) → 𝑆 ⊆ 𝐵) |
| 83 | 31, 58, 5 | cntzel 19341 |
. . . . 5
⊢ ((𝑆 ⊆ 𝐵 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝐵) → (((invr‘𝑅)‘𝑥) ∈ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑦) = (𝑦(.r‘𝑅)((invr‘𝑅)‘𝑥)))) |
| 84 | 82, 73, 83 | syl2anc 584 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) →
(((invr‘𝑅)‘𝑥) ∈ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑦) = (𝑦(.r‘𝑅)((invr‘𝑅)‘𝑥)))) |
| 85 | 81, 84 | mpbird 257 |
. . 3
⊢ (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})) →
((invr‘𝑅)‘𝑥) ∈ (𝑍‘𝑆)) |
| 86 | 85 | ralrimiva 3146 |
. 2
⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) → ∀𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})((invr‘𝑅)‘𝑥) ∈ (𝑍‘𝑆)) |
| 87 | 14, 16 | issdrg2 20796 |
. 2
⊢ ((𝑍‘𝑆) ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ (𝑍‘𝑆) ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ ((𝑍‘𝑆) ∖ {(0g‘𝑅)})((invr‘𝑅)‘𝑥) ∈ (𝑍‘𝑆))) |
| 88 | 1, 7, 86, 87 | syl3anbrc 1344 |
1
⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubDRing‘𝑅)) |