MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzsdrg Structured version   Visualization version   GIF version

Theorem cntzsdrg 19574
Description: Centralizers in division rings/fields are subfields. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
cntzsdrg.b 𝐵 = (Base‘𝑅)
cntzsdrg.m 𝑀 = (mulGrp‘𝑅)
cntzsdrg.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzsdrg ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubDRing‘𝑅))

Proof of Theorem cntzsdrg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 486 . 2 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → 𝑅 ∈ DivRing)
2 drngring 19502 . . 3 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
3 cntzsdrg.b . . . 4 𝐵 = (Base‘𝑅)
4 cntzsdrg.m . . . 4 𝑀 = (mulGrp‘𝑅)
5 cntzsdrg.z . . . 4 𝑍 = (Cntz‘𝑀)
63, 4, 5cntzsubr 19561 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubRing‘𝑅))
72, 6sylan 583 . 2 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubRing‘𝑅))
8 oveq2 7143 . . . . . . 7 (𝑦 = (0g𝑅) → (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)))
9 oveq1 7142 . . . . . . 7 (𝑦 = (0g𝑅) → (𝑦(.r𝑅)((invr𝑅)‘𝑥)) = ((0g𝑅)(.r𝑅)((invr𝑅)‘𝑥)))
108, 9eqeq12d 2814 . . . . . 6 (𝑦 = (0g𝑅) → ((((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)) ↔ (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)) = ((0g𝑅)(.r𝑅)((invr𝑅)‘𝑥))))
11 eldifsn 4680 . . . . . . . 8 (𝑦 ∈ (𝑆 ∖ {(0g𝑅)}) ↔ (𝑦𝑆𝑦 ≠ (0g𝑅)))
12 eqid 2798 . . . . . . . . . . . . . 14 (Unit‘𝑅) = (Unit‘𝑅)
134oveq1i 7145 . . . . . . . . . . . . . 14 (𝑀s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
14 eqid 2798 . . . . . . . . . . . . . 14 (invr𝑅) = (invr𝑅)
1512, 13, 14invrfval 19419 . . . . . . . . . . . . 13 (invr𝑅) = (invg‘(𝑀s (Unit‘𝑅)))
16 eqid 2798 . . . . . . . . . . . . . . . . 17 (0g𝑅) = (0g𝑅)
173, 12, 16isdrng 19499 . . . . . . . . . . . . . . . 16 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ {(0g𝑅)})))
1817simprbi 500 . . . . . . . . . . . . . . 15 (𝑅 ∈ DivRing → (Unit‘𝑅) = (𝐵 ∖ {(0g𝑅)}))
1918oveq2d 7151 . . . . . . . . . . . . . 14 (𝑅 ∈ DivRing → (𝑀s (Unit‘𝑅)) = (𝑀s (𝐵 ∖ {(0g𝑅)})))
2019fveq2d 6649 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → (invg‘(𝑀s (Unit‘𝑅))) = (invg‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
2115, 20syl5eq 2845 . . . . . . . . . . . 12 (𝑅 ∈ DivRing → (invr𝑅) = (invg‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
2221ad2antrr 725 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → (invr𝑅) = (invg‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
2322fveq1d 6647 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((invr𝑅)‘𝑥) = ((invg‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘𝑥))
244oveq1i 7145 . . . . . . . . . . . . . 14 (𝑀s (𝐵 ∖ {(0g𝑅)})) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ {(0g𝑅)}))
253, 16, 24drngmgp 19507 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → (𝑀s (𝐵 ∖ {(0g𝑅)})) ∈ Grp)
2625ad2antrr 725 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → (𝑀s (𝐵 ∖ {(0g𝑅)})) ∈ Grp)
27 ssdif 4067 . . . . . . . . . . . . 13 (𝑆𝐵 → (𝑆 ∖ {(0g𝑅)}) ⊆ (𝐵 ∖ {(0g𝑅)}))
2827ad2antlr 726 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → (𝑆 ∖ {(0g𝑅)}) ⊆ (𝐵 ∖ {(0g𝑅)}))
29 difss 4059 . . . . . . . . . . . . . 14 (𝐵 ∖ {(0g𝑅)}) ⊆ 𝐵
30 eqid 2798 . . . . . . . . . . . . . . 15 (𝑀s (𝐵 ∖ {(0g𝑅)})) = (𝑀s (𝐵 ∖ {(0g𝑅)}))
314, 3mgpbas 19238 . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝑀)
3230, 31ressbas2 16547 . . . . . . . . . . . . . 14 ((𝐵 ∖ {(0g𝑅)}) ⊆ 𝐵 → (𝐵 ∖ {(0g𝑅)}) = (Base‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
3329, 32ax-mp 5 . . . . . . . . . . . . 13 (𝐵 ∖ {(0g𝑅)}) = (Base‘(𝑀s (𝐵 ∖ {(0g𝑅)})))
34 eqid 2798 . . . . . . . . . . . . 13 (Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)}))) = (Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))
3533, 34cntzsubg 18459 . . . . . . . . . . . 12 (((𝑀s (𝐵 ∖ {(0g𝑅)})) ∈ Grp ∧ (𝑆 ∖ {(0g𝑅)}) ⊆ (𝐵 ∖ {(0g𝑅)})) → ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})) ∈ (SubGrp‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
3626, 28, 35syl2anc 587 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})) ∈ (SubGrp‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
37 simpr 488 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → 𝑆𝐵)
38 difss 4059 . . . . . . . . . . . . . . . 16 (𝑆 ∖ {(0g𝑅)}) ⊆ 𝑆
3931, 5cntz2ss 18455 . . . . . . . . . . . . . . . 16 ((𝑆𝐵 ∧ (𝑆 ∖ {(0g𝑅)}) ⊆ 𝑆) → (𝑍𝑆) ⊆ (𝑍‘(𝑆 ∖ {(0g𝑅)})))
4037, 38, 39sylancl 589 . . . . . . . . . . . . . . 15 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → (𝑍𝑆) ⊆ (𝑍‘(𝑆 ∖ {(0g𝑅)})))
4140ssdifssd 4070 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → ((𝑍𝑆) ∖ {(0g𝑅)}) ⊆ (𝑍‘(𝑆 ∖ {(0g𝑅)})))
4241sselda 3915 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥 ∈ (𝑍‘(𝑆 ∖ {(0g𝑅)})))
4331, 5cntzssv 18450 . . . . . . . . . . . . . . 15 (𝑍𝑆) ⊆ 𝐵
44 ssdif 4067 . . . . . . . . . . . . . . 15 ((𝑍𝑆) ⊆ 𝐵 → ((𝑍𝑆) ∖ {(0g𝑅)}) ⊆ (𝐵 ∖ {(0g𝑅)}))
4543, 44mp1i 13 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → ((𝑍𝑆) ∖ {(0g𝑅)}) ⊆ (𝐵 ∖ {(0g𝑅)}))
4645sselda 3915 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥 ∈ (𝐵 ∖ {(0g𝑅)}))
4742, 46elind 4121 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥 ∈ ((𝑍‘(𝑆 ∖ {(0g𝑅)})) ∩ (𝐵 ∖ {(0g𝑅)})))
483fvexi 6659 . . . . . . . . . . . . . 14 𝐵 ∈ V
4948difexi 5196 . . . . . . . . . . . . 13 (𝐵 ∖ {(0g𝑅)}) ∈ V
5030, 5, 34resscntz 18454 . . . . . . . . . . . . 13 (((𝐵 ∖ {(0g𝑅)}) ∈ V ∧ (𝑆 ∖ {(0g𝑅)}) ⊆ (𝐵 ∖ {(0g𝑅)})) → ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})) = ((𝑍‘(𝑆 ∖ {(0g𝑅)})) ∩ (𝐵 ∖ {(0g𝑅)})))
5149, 28, 50sylancr 590 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})) = ((𝑍‘(𝑆 ∖ {(0g𝑅)})) ∩ (𝐵 ∖ {(0g𝑅)})))
5247, 51eleqtrrd 2893 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥 ∈ ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})))
53 eqid 2798 . . . . . . . . . . . 12 (invg‘(𝑀s (𝐵 ∖ {(0g𝑅)}))) = (invg‘(𝑀s (𝐵 ∖ {(0g𝑅)})))
5453subginvcl 18280 . . . . . . . . . . 11 ((((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})) ∈ (SubGrp‘(𝑀s (𝐵 ∖ {(0g𝑅)}))) ∧ 𝑥 ∈ ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)}))) → ((invg‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘𝑥) ∈ ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})))
5536, 52, 54syl2anc 587 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((invg‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘𝑥) ∈ ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})))
5623, 55eqeltrd 2890 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((invr𝑅)‘𝑥) ∈ ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})))
57 eqid 2798 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
584, 57mgpplusg 19236 . . . . . . . . . . . 12 (.r𝑅) = (+g𝑀)
5930, 58ressplusg 16604 . . . . . . . . . . 11 ((𝐵 ∖ {(0g𝑅)}) ∈ V → (.r𝑅) = (+g‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
6049, 59ax-mp 5 . . . . . . . . . 10 (.r𝑅) = (+g‘(𝑀s (𝐵 ∖ {(0g𝑅)})))
6160, 34cntzi 18451 . . . . . . . . 9 ((((invr𝑅)‘𝑥) ∈ ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})) ∧ 𝑦 ∈ (𝑆 ∖ {(0g𝑅)})) → (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)))
6256, 61sylan 583 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦 ∈ (𝑆 ∖ {(0g𝑅)})) → (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)))
6311, 62sylan2br 597 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ (𝑦𝑆𝑦 ≠ (0g𝑅))) → (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)))
6463anassrs 471 . . . . . 6 (((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) ∧ 𝑦 ≠ (0g𝑅)) → (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)))
652ad3antrrr 729 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) → 𝑅 ∈ Ring)
661adantr 484 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑅 ∈ DivRing)
67 eldifi 4054 . . . . . . . . . . . 12 (𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)}) → 𝑥 ∈ (𝑍𝑆))
6867adantl 485 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥 ∈ (𝑍𝑆))
6943, 68sseldi 3913 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥𝐵)
70 eldifsni 4683 . . . . . . . . . . 11 (𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)}) → 𝑥 ≠ (0g𝑅))
7170adantl 485 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥 ≠ (0g𝑅))
723, 16, 14drnginvrcl 19512 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ 𝑥𝐵𝑥 ≠ (0g𝑅)) → ((invr𝑅)‘𝑥) ∈ 𝐵)
7366, 69, 71, 72syl3anc 1368 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((invr𝑅)‘𝑥) ∈ 𝐵)
7473adantr 484 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) → ((invr𝑅)‘𝑥) ∈ 𝐵)
753, 57, 16ringrz 19334 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘𝑥) ∈ 𝐵) → (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)) = (0g𝑅))
7665, 74, 75syl2anc 587 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) → (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)) = (0g𝑅))
773, 57, 16ringlz 19333 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘𝑥) ∈ 𝐵) → ((0g𝑅)(.r𝑅)((invr𝑅)‘𝑥)) = (0g𝑅))
7865, 74, 77syl2anc 587 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) → ((0g𝑅)(.r𝑅)((invr𝑅)‘𝑥)) = (0g𝑅))
7976, 78eqtr4d 2836 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) → (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)) = ((0g𝑅)(.r𝑅)((invr𝑅)‘𝑥)))
8010, 64, 79pm2.61ne 3072 . . . . 5 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) → (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)))
8180ralrimiva 3149 . . . 4 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ∀𝑦𝑆 (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)))
82 simplr 768 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑆𝐵)
8331, 58, 5cntzel 18445 . . . . 5 ((𝑆𝐵 ∧ ((invr𝑅)‘𝑥) ∈ 𝐵) → (((invr𝑅)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑦𝑆 (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥))))
8482, 73, 83syl2anc 587 . . . 4 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → (((invr𝑅)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑦𝑆 (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥))))
8581, 84mpbird 260 . . 3 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((invr𝑅)‘𝑥) ∈ (𝑍𝑆))
8685ralrimiva 3149 . 2 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → ∀𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ (𝑍𝑆))
8714, 16issdrg2 19570 . 2 ((𝑍𝑆) ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ (𝑍𝑆) ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ (𝑍𝑆)))
881, 7, 86, 87syl3anbrc 1340 1 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubDRing‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  Vcvv 3441  cdif 3878  cin 3880  wss 3881  {csn 4525  cfv 6324  (class class class)co 7135  Basecbs 16475  s cress 16476  +gcplusg 16557  .rcmulr 16558  0gc0g 16705  Grpcgrp 18095  invgcminusg 18096  SubGrpcsubg 18265  Cntzccntz 18437  mulGrpcmgp 19232  Ringcrg 19290  Unitcui 19385  invrcinvr 19417  DivRingcdr 19495  SubRingcsubrg 19524  SubDRingcsdrg 19565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-subg 18268  df-cntz 18439  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497  df-subrg 19526  df-sdrg 19566
This theorem is referenced by:  primefld  19577
  Copyright terms: Public domain W3C validator