| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zrhunitpreima | Structured version Visualization version GIF version | ||
| Description: The preimage by ℤRHom of the units of a division ring is (ℤ ∖ {0}). (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| Ref | Expression |
|---|---|
| zrhker.0 | ⊢ 𝐵 = (Base‘𝑅) |
| zrhker.1 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
| zrhker.2 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| zrhunitpreima | ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ (Unit‘𝑅)) = (ℤ ∖ {0})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhker.0 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2729 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 3 | eqid 2729 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | 1, 2, 3 | isdrng 20636 | . . . . 5 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ {(0g‘𝑅)}))) |
| 5 | 4 | simprbi 496 | . . . 4 ⊢ (𝑅 ∈ DivRing → (Unit‘𝑅) = (𝐵 ∖ {(0g‘𝑅)})) |
| 6 | 5 | imaeq2d 6015 | . . 3 ⊢ (𝑅 ∈ DivRing → (◡𝐿 “ (Unit‘𝑅)) = (◡𝐿 “ (𝐵 ∖ {(0g‘𝑅)}))) |
| 7 | 6 | adantr 480 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ (Unit‘𝑅)) = (◡𝐿 “ (𝐵 ∖ {(0g‘𝑅)}))) |
| 8 | drngring 20639 | . . . 4 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 9 | zrhker.1 | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
| 10 | 9 | zrhrhm 21436 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅)) |
| 11 | zringbas 21378 | . . . . . 6 ⊢ ℤ = (Base‘ℤring) | |
| 12 | 11, 1 | rhmf 20388 | . . . . 5 ⊢ (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿:ℤ⟶𝐵) |
| 13 | ffun 6659 | . . . . 5 ⊢ (𝐿:ℤ⟶𝐵 → Fun 𝐿) | |
| 14 | 10, 12, 13 | 3syl 18 | . . . 4 ⊢ (𝑅 ∈ Ring → Fun 𝐿) |
| 15 | difpreima 7003 | . . . 4 ⊢ (Fun 𝐿 → (◡𝐿 “ (𝐵 ∖ {(0g‘𝑅)})) = ((◡𝐿 “ 𝐵) ∖ (◡𝐿 “ {(0g‘𝑅)}))) | |
| 16 | 8, 14, 15 | 3syl 18 | . . 3 ⊢ (𝑅 ∈ DivRing → (◡𝐿 “ (𝐵 ∖ {(0g‘𝑅)})) = ((◡𝐿 “ 𝐵) ∖ (◡𝐿 “ {(0g‘𝑅)}))) |
| 17 | 16 | adantr 480 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ (𝐵 ∖ {(0g‘𝑅)})) = ((◡𝐿 “ 𝐵) ∖ (◡𝐿 “ {(0g‘𝑅)}))) |
| 18 | fimacnv 6678 | . . . . 5 ⊢ (𝐿:ℤ⟶𝐵 → (◡𝐿 “ 𝐵) = ℤ) | |
| 19 | 8, 10, 12, 18 | 4syl 19 | . . . 4 ⊢ (𝑅 ∈ DivRing → (◡𝐿 “ 𝐵) = ℤ) |
| 20 | 19 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ 𝐵) = ℤ) |
| 21 | 1, 9, 3 | zrhker 33944 | . . . . 5 ⊢ (𝑅 ∈ Ring → ((chr‘𝑅) = 0 ↔ (◡𝐿 “ {(0g‘𝑅)}) = {0})) |
| 22 | 21 | biimpa 476 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (chr‘𝑅) = 0) → (◡𝐿 “ {(0g‘𝑅)}) = {0}) |
| 23 | 8, 22 | sylan 580 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ {(0g‘𝑅)}) = {0}) |
| 24 | 20, 23 | difeq12d 4080 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((◡𝐿 “ 𝐵) ∖ (◡𝐿 “ {(0g‘𝑅)})) = (ℤ ∖ {0})) |
| 25 | 7, 17, 24 | 3eqtrd 2768 | 1 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ (Unit‘𝑅)) = (ℤ ∖ {0})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3902 {csn 4579 ◡ccnv 5622 “ cima 5626 Fun wfun 6480 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 0cc0 11028 ℤcz 12489 Basecbs 17138 0gc0g 17361 Ringcrg 20136 Unitcui 20258 RingHom crh 20372 DivRingcdr 20632 ℤringczring 21371 ℤRHomczrh 21424 chrcchr 21426 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-rp 12912 df-fz 13429 df-fl 13714 df-mod 13792 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-dvds 16182 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-ghm 19110 df-od 19425 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-rhm 20375 df-subrng 20449 df-subrg 20473 df-drng 20634 df-cnfld 21280 df-zring 21372 df-zrh 21428 df-chr 21430 |
| This theorem is referenced by: elzrhunit 33946 qqhval2 33951 |
| Copyright terms: Public domain | W3C validator |