Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > zrhunitpreima | Structured version Visualization version GIF version |
Description: The preimage by ℤRHom of the unit of a division ring is (ℤ ∖ {0}). (Contributed by Thierry Arnoux, 22-Oct-2017.) |
Ref | Expression |
---|---|
zrhker.0 | ⊢ 𝐵 = (Base‘𝑅) |
zrhker.1 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
zrhker.2 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
zrhunitpreima | ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ (Unit‘𝑅)) = (ℤ ∖ {0})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrhker.0 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2738 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
3 | eqid 2738 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | 1, 2, 3 | isdrng 19995 | . . . . 5 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ {(0g‘𝑅)}))) |
5 | 4 | simprbi 497 | . . . 4 ⊢ (𝑅 ∈ DivRing → (Unit‘𝑅) = (𝐵 ∖ {(0g‘𝑅)})) |
6 | 5 | imaeq2d 5969 | . . 3 ⊢ (𝑅 ∈ DivRing → (◡𝐿 “ (Unit‘𝑅)) = (◡𝐿 “ (𝐵 ∖ {(0g‘𝑅)}))) |
7 | 6 | adantr 481 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ (Unit‘𝑅)) = (◡𝐿 “ (𝐵 ∖ {(0g‘𝑅)}))) |
8 | drngring 19998 | . . . 4 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
9 | zrhker.1 | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
10 | 9 | zrhrhm 20713 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅)) |
11 | zringbas 20676 | . . . . . 6 ⊢ ℤ = (Base‘ℤring) | |
12 | 11, 1 | rhmf 19970 | . . . . 5 ⊢ (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿:ℤ⟶𝐵) |
13 | ffun 6603 | . . . . 5 ⊢ (𝐿:ℤ⟶𝐵 → Fun 𝐿) | |
14 | 10, 12, 13 | 3syl 18 | . . . 4 ⊢ (𝑅 ∈ Ring → Fun 𝐿) |
15 | difpreima 6942 | . . . 4 ⊢ (Fun 𝐿 → (◡𝐿 “ (𝐵 ∖ {(0g‘𝑅)})) = ((◡𝐿 “ 𝐵) ∖ (◡𝐿 “ {(0g‘𝑅)}))) | |
16 | 8, 14, 15 | 3syl 18 | . . 3 ⊢ (𝑅 ∈ DivRing → (◡𝐿 “ (𝐵 ∖ {(0g‘𝑅)})) = ((◡𝐿 “ 𝐵) ∖ (◡𝐿 “ {(0g‘𝑅)}))) |
17 | 16 | adantr 481 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ (𝐵 ∖ {(0g‘𝑅)})) = ((◡𝐿 “ 𝐵) ∖ (◡𝐿 “ {(0g‘𝑅)}))) |
18 | fimacnv 6622 | . . . . 5 ⊢ (𝐿:ℤ⟶𝐵 → (◡𝐿 “ 𝐵) = ℤ) | |
19 | 8, 10, 12, 18 | 4syl 19 | . . . 4 ⊢ (𝑅 ∈ DivRing → (◡𝐿 “ 𝐵) = ℤ) |
20 | 19 | adantr 481 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ 𝐵) = ℤ) |
21 | 1, 9, 3 | zrhker 31927 | . . . . 5 ⊢ (𝑅 ∈ Ring → ((chr‘𝑅) = 0 ↔ (◡𝐿 “ {(0g‘𝑅)}) = {0})) |
22 | 21 | biimpa 477 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (chr‘𝑅) = 0) → (◡𝐿 “ {(0g‘𝑅)}) = {0}) |
23 | 8, 22 | sylan 580 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ {(0g‘𝑅)}) = {0}) |
24 | 20, 23 | difeq12d 4058 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((◡𝐿 “ 𝐵) ∖ (◡𝐿 “ {(0g‘𝑅)})) = (ℤ ∖ {0})) |
25 | 7, 17, 24 | 3eqtrd 2782 | 1 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ (Unit‘𝑅)) = (ℤ ∖ {0})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 {csn 4561 ◡ccnv 5588 “ cima 5592 Fun wfun 6427 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 0cc0 10871 ℤcz 12319 Basecbs 16912 0gc0g 17150 Ringcrg 19783 Unitcui 19881 RingHom crh 19956 DivRingcdr 19991 ℤringczring 20670 ℤRHomczrh 20701 chrcchr 20703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-rp 12731 df-fz 13240 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-ghm 18832 df-od 19136 df-cmn 19388 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-rnghom 19959 df-drng 19993 df-subrg 20022 df-cnfld 20598 df-zring 20671 df-zrh 20705 df-chr 20707 |
This theorem is referenced by: elzrhunit 31929 qqhval2 31932 |
Copyright terms: Public domain | W3C validator |