![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zrhunitpreima | Structured version Visualization version GIF version |
Description: The preimage by β€RHom of the units of a division ring is (β€ β {0}). (Contributed by Thierry Arnoux, 22-Oct-2017.) |
Ref | Expression |
---|---|
zrhker.0 | β’ π΅ = (Baseβπ ) |
zrhker.1 | β’ πΏ = (β€RHomβπ ) |
zrhker.2 | β’ 0 = (0gβπ ) |
Ref | Expression |
---|---|
zrhunitpreima | β’ ((π β DivRing β§ (chrβπ ) = 0) β (β‘πΏ β (Unitβπ )) = (β€ β {0})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrhker.0 | . . . . . 6 β’ π΅ = (Baseβπ ) | |
2 | eqid 2731 | . . . . . 6 β’ (Unitβπ ) = (Unitβπ ) | |
3 | eqid 2731 | . . . . . 6 β’ (0gβπ ) = (0gβπ ) | |
4 | 1, 2, 3 | isdrng 20505 | . . . . 5 β’ (π β DivRing β (π β Ring β§ (Unitβπ ) = (π΅ β {(0gβπ )}))) |
5 | 4 | simprbi 496 | . . . 4 β’ (π β DivRing β (Unitβπ ) = (π΅ β {(0gβπ )})) |
6 | 5 | imaeq2d 6059 | . . 3 β’ (π β DivRing β (β‘πΏ β (Unitβπ )) = (β‘πΏ β (π΅ β {(0gβπ )}))) |
7 | 6 | adantr 480 | . 2 β’ ((π β DivRing β§ (chrβπ ) = 0) β (β‘πΏ β (Unitβπ )) = (β‘πΏ β (π΅ β {(0gβπ )}))) |
8 | drngring 20508 | . . . 4 β’ (π β DivRing β π β Ring) | |
9 | zrhker.1 | . . . . . 6 β’ πΏ = (β€RHomβπ ) | |
10 | 9 | zrhrhm 21281 | . . . . 5 β’ (π β Ring β πΏ β (β€ring RingHom π )) |
11 | zringbas 21225 | . . . . . 6 β’ β€ = (Baseββ€ring) | |
12 | 11, 1 | rhmf 20377 | . . . . 5 β’ (πΏ β (β€ring RingHom π ) β πΏ:β€βΆπ΅) |
13 | ffun 6720 | . . . . 5 β’ (πΏ:β€βΆπ΅ β Fun πΏ) | |
14 | 10, 12, 13 | 3syl 18 | . . . 4 β’ (π β Ring β Fun πΏ) |
15 | difpreima 7066 | . . . 4 β’ (Fun πΏ β (β‘πΏ β (π΅ β {(0gβπ )})) = ((β‘πΏ β π΅) β (β‘πΏ β {(0gβπ )}))) | |
16 | 8, 14, 15 | 3syl 18 | . . 3 β’ (π β DivRing β (β‘πΏ β (π΅ β {(0gβπ )})) = ((β‘πΏ β π΅) β (β‘πΏ β {(0gβπ )}))) |
17 | 16 | adantr 480 | . 2 β’ ((π β DivRing β§ (chrβπ ) = 0) β (β‘πΏ β (π΅ β {(0gβπ )})) = ((β‘πΏ β π΅) β (β‘πΏ β {(0gβπ )}))) |
18 | fimacnv 6739 | . . . . 5 β’ (πΏ:β€βΆπ΅ β (β‘πΏ β π΅) = β€) | |
19 | 8, 10, 12, 18 | 4syl 19 | . . . 4 β’ (π β DivRing β (β‘πΏ β π΅) = β€) |
20 | 19 | adantr 480 | . . 3 β’ ((π β DivRing β§ (chrβπ ) = 0) β (β‘πΏ β π΅) = β€) |
21 | 1, 9, 3 | zrhker 33256 | . . . . 5 β’ (π β Ring β ((chrβπ ) = 0 β (β‘πΏ β {(0gβπ )}) = {0})) |
22 | 21 | biimpa 476 | . . . 4 β’ ((π β Ring β§ (chrβπ ) = 0) β (β‘πΏ β {(0gβπ )}) = {0}) |
23 | 8, 22 | sylan 579 | . . 3 β’ ((π β DivRing β§ (chrβπ ) = 0) β (β‘πΏ β {(0gβπ )}) = {0}) |
24 | 20, 23 | difeq12d 4123 | . 2 β’ ((π β DivRing β§ (chrβπ ) = 0) β ((β‘πΏ β π΅) β (β‘πΏ β {(0gβπ )})) = (β€ β {0})) |
25 | 7, 17, 24 | 3eqtrd 2775 | 1 β’ ((π β DivRing β§ (chrβπ ) = 0) β (β‘πΏ β (Unitβπ )) = (β€ β {0})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β cdif 3945 {csn 4628 β‘ccnv 5675 β cima 5679 Fun wfun 6537 βΆwf 6539 βcfv 6543 (class class class)co 7412 0cc0 11114 β€cz 12563 Basecbs 17149 0gc0g 17390 Ringcrg 20128 Unitcui 20247 RingHom crh 20361 DivRingcdr 20501 β€ringczring 21218 β€RHomczrh 21269 chrcchr 21271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 ax-addf 11193 ax-mulf 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-sup 9441 df-inf 9442 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-rp 12980 df-fz 13490 df-fl 13762 df-mod 13840 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-dvds 16203 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-mhm 18706 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18988 df-subg 19040 df-ghm 19129 df-od 19438 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-cring 20131 df-rhm 20364 df-subrng 20435 df-subrg 20460 df-drng 20503 df-cnfld 21146 df-zring 21219 df-zrh 21273 df-chr 21275 |
This theorem is referenced by: elzrhunit 33258 qqhval2 33261 |
Copyright terms: Public domain | W3C validator |