|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zrhunitpreima | Structured version Visualization version GIF version | ||
| Description: The preimage by ℤRHom of the units of a division ring is (ℤ ∖ {0}). (Contributed by Thierry Arnoux, 22-Oct-2017.) | 
| Ref | Expression | 
|---|---|
| zrhker.0 | ⊢ 𝐵 = (Base‘𝑅) | 
| zrhker.1 | ⊢ 𝐿 = (ℤRHom‘𝑅) | 
| zrhker.2 | ⊢ 0 = (0g‘𝑅) | 
| Ref | Expression | 
|---|---|
| zrhunitpreima | ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ (Unit‘𝑅)) = (ℤ ∖ {0})) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zrhker.0 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2737 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 3 | eqid 2737 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | 1, 2, 3 | isdrng 20733 | . . . . 5 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ {(0g‘𝑅)}))) | 
| 5 | 4 | simprbi 496 | . . . 4 ⊢ (𝑅 ∈ DivRing → (Unit‘𝑅) = (𝐵 ∖ {(0g‘𝑅)})) | 
| 6 | 5 | imaeq2d 6078 | . . 3 ⊢ (𝑅 ∈ DivRing → (◡𝐿 “ (Unit‘𝑅)) = (◡𝐿 “ (𝐵 ∖ {(0g‘𝑅)}))) | 
| 7 | 6 | adantr 480 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ (Unit‘𝑅)) = (◡𝐿 “ (𝐵 ∖ {(0g‘𝑅)}))) | 
| 8 | drngring 20736 | . . . 4 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 9 | zrhker.1 | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
| 10 | 9 | zrhrhm 21522 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅)) | 
| 11 | zringbas 21464 | . . . . . 6 ⊢ ℤ = (Base‘ℤring) | |
| 12 | 11, 1 | rhmf 20485 | . . . . 5 ⊢ (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿:ℤ⟶𝐵) | 
| 13 | ffun 6739 | . . . . 5 ⊢ (𝐿:ℤ⟶𝐵 → Fun 𝐿) | |
| 14 | 10, 12, 13 | 3syl 18 | . . . 4 ⊢ (𝑅 ∈ Ring → Fun 𝐿) | 
| 15 | difpreima 7085 | . . . 4 ⊢ (Fun 𝐿 → (◡𝐿 “ (𝐵 ∖ {(0g‘𝑅)})) = ((◡𝐿 “ 𝐵) ∖ (◡𝐿 “ {(0g‘𝑅)}))) | |
| 16 | 8, 14, 15 | 3syl 18 | . . 3 ⊢ (𝑅 ∈ DivRing → (◡𝐿 “ (𝐵 ∖ {(0g‘𝑅)})) = ((◡𝐿 “ 𝐵) ∖ (◡𝐿 “ {(0g‘𝑅)}))) | 
| 17 | 16 | adantr 480 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ (𝐵 ∖ {(0g‘𝑅)})) = ((◡𝐿 “ 𝐵) ∖ (◡𝐿 “ {(0g‘𝑅)}))) | 
| 18 | fimacnv 6758 | . . . . 5 ⊢ (𝐿:ℤ⟶𝐵 → (◡𝐿 “ 𝐵) = ℤ) | |
| 19 | 8, 10, 12, 18 | 4syl 19 | . . . 4 ⊢ (𝑅 ∈ DivRing → (◡𝐿 “ 𝐵) = ℤ) | 
| 20 | 19 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ 𝐵) = ℤ) | 
| 21 | 1, 9, 3 | zrhker 33976 | . . . . 5 ⊢ (𝑅 ∈ Ring → ((chr‘𝑅) = 0 ↔ (◡𝐿 “ {(0g‘𝑅)}) = {0})) | 
| 22 | 21 | biimpa 476 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (chr‘𝑅) = 0) → (◡𝐿 “ {(0g‘𝑅)}) = {0}) | 
| 23 | 8, 22 | sylan 580 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ {(0g‘𝑅)}) = {0}) | 
| 24 | 20, 23 | difeq12d 4127 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((◡𝐿 “ 𝐵) ∖ (◡𝐿 “ {(0g‘𝑅)})) = (ℤ ∖ {0})) | 
| 25 | 7, 17, 24 | 3eqtrd 2781 | 1 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ (Unit‘𝑅)) = (ℤ ∖ {0})) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∖ cdif 3948 {csn 4626 ◡ccnv 5684 “ cima 5688 Fun wfun 6555 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 0cc0 11155 ℤcz 12613 Basecbs 17247 0gc0g 17484 Ringcrg 20230 Unitcui 20355 RingHom crh 20469 DivRingcdr 20729 ℤringczring 21457 ℤRHomczrh 21510 chrcchr 21512 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 ax-mulf 11235 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-rp 13035 df-fz 13548 df-fl 13832 df-mod 13910 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-dvds 16291 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-ghm 19231 df-od 19546 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-cring 20233 df-rhm 20472 df-subrng 20546 df-subrg 20570 df-drng 20731 df-cnfld 21365 df-zring 21458 df-zrh 21514 df-chr 21516 | 
| This theorem is referenced by: elzrhunit 33978 qqhval2 33983 | 
| Copyright terms: Public domain | W3C validator |