| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zrhunitpreima | Structured version Visualization version GIF version | ||
| Description: The preimage by ℤRHom of the units of a division ring is (ℤ ∖ {0}). (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| Ref | Expression |
|---|---|
| zrhker.0 | ⊢ 𝐵 = (Base‘𝑅) |
| zrhker.1 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
| zrhker.2 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| zrhunitpreima | ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ (Unit‘𝑅)) = (ℤ ∖ {0})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhker.0 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2729 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 3 | eqid 2729 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | 1, 2, 3 | isdrng 20642 | . . . . 5 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ {(0g‘𝑅)}))) |
| 5 | 4 | simprbi 496 | . . . 4 ⊢ (𝑅 ∈ DivRing → (Unit‘𝑅) = (𝐵 ∖ {(0g‘𝑅)})) |
| 6 | 5 | imaeq2d 6031 | . . 3 ⊢ (𝑅 ∈ DivRing → (◡𝐿 “ (Unit‘𝑅)) = (◡𝐿 “ (𝐵 ∖ {(0g‘𝑅)}))) |
| 7 | 6 | adantr 480 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ (Unit‘𝑅)) = (◡𝐿 “ (𝐵 ∖ {(0g‘𝑅)}))) |
| 8 | drngring 20645 | . . . 4 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 9 | zrhker.1 | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
| 10 | 9 | zrhrhm 21421 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅)) |
| 11 | zringbas 21363 | . . . . . 6 ⊢ ℤ = (Base‘ℤring) | |
| 12 | 11, 1 | rhmf 20394 | . . . . 5 ⊢ (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿:ℤ⟶𝐵) |
| 13 | ffun 6691 | . . . . 5 ⊢ (𝐿:ℤ⟶𝐵 → Fun 𝐿) | |
| 14 | 10, 12, 13 | 3syl 18 | . . . 4 ⊢ (𝑅 ∈ Ring → Fun 𝐿) |
| 15 | difpreima 7037 | . . . 4 ⊢ (Fun 𝐿 → (◡𝐿 “ (𝐵 ∖ {(0g‘𝑅)})) = ((◡𝐿 “ 𝐵) ∖ (◡𝐿 “ {(0g‘𝑅)}))) | |
| 16 | 8, 14, 15 | 3syl 18 | . . 3 ⊢ (𝑅 ∈ DivRing → (◡𝐿 “ (𝐵 ∖ {(0g‘𝑅)})) = ((◡𝐿 “ 𝐵) ∖ (◡𝐿 “ {(0g‘𝑅)}))) |
| 17 | 16 | adantr 480 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ (𝐵 ∖ {(0g‘𝑅)})) = ((◡𝐿 “ 𝐵) ∖ (◡𝐿 “ {(0g‘𝑅)}))) |
| 18 | fimacnv 6710 | . . . . 5 ⊢ (𝐿:ℤ⟶𝐵 → (◡𝐿 “ 𝐵) = ℤ) | |
| 19 | 8, 10, 12, 18 | 4syl 19 | . . . 4 ⊢ (𝑅 ∈ DivRing → (◡𝐿 “ 𝐵) = ℤ) |
| 20 | 19 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ 𝐵) = ℤ) |
| 21 | 1, 9, 3 | zrhker 33965 | . . . . 5 ⊢ (𝑅 ∈ Ring → ((chr‘𝑅) = 0 ↔ (◡𝐿 “ {(0g‘𝑅)}) = {0})) |
| 22 | 21 | biimpa 476 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (chr‘𝑅) = 0) → (◡𝐿 “ {(0g‘𝑅)}) = {0}) |
| 23 | 8, 22 | sylan 580 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ {(0g‘𝑅)}) = {0}) |
| 24 | 20, 23 | difeq12d 4090 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((◡𝐿 “ 𝐵) ∖ (◡𝐿 “ {(0g‘𝑅)})) = (ℤ ∖ {0})) |
| 25 | 7, 17, 24 | 3eqtrd 2768 | 1 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ (Unit‘𝑅)) = (ℤ ∖ {0})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 {csn 4589 ◡ccnv 5637 “ cima 5641 Fun wfun 6505 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 0cc0 11068 ℤcz 12529 Basecbs 17179 0gc0g 17402 Ringcrg 20142 Unitcui 20264 RingHom crh 20378 DivRingcdr 20638 ℤringczring 21356 ℤRHomczrh 21409 chrcchr 21411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fz 13469 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-od 19458 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-drng 20640 df-cnfld 21265 df-zring 21357 df-zrh 21413 df-chr 21415 |
| This theorem is referenced by: elzrhunit 33967 qqhval2 33972 |
| Copyright terms: Public domain | W3C validator |