![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pointpsubN | Structured version Visualization version GIF version |
Description: A point (singleton of an atom) is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pointpsub.p | ⊢ 𝑃 = (Points‘𝐾) |
pointpsub.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
Ref | Expression |
---|---|
pointpsubN | ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝑃) → 𝑋 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
2 | pointpsub.p | . . . 4 ⊢ 𝑃 = (Points‘𝐾) | |
3 | 1, 2 | ispointN 39725 | . . 3 ⊢ (𝐾 ∈ AtLat → (𝑋 ∈ 𝑃 ↔ ∃𝑞 ∈ (Atoms‘𝐾)𝑋 = {𝑞})) |
4 | pointpsub.s | . . . . . . 7 ⊢ 𝑆 = (PSubSp‘𝐾) | |
5 | 1, 4 | snatpsubN 39733 | . . . . . 6 ⊢ ((𝐾 ∈ AtLat ∧ 𝑞 ∈ (Atoms‘𝐾)) → {𝑞} ∈ 𝑆) |
6 | 5 | ex 412 | . . . . 5 ⊢ (𝐾 ∈ AtLat → (𝑞 ∈ (Atoms‘𝐾) → {𝑞} ∈ 𝑆)) |
7 | eleq1a 2834 | . . . . 5 ⊢ ({𝑞} ∈ 𝑆 → (𝑋 = {𝑞} → 𝑋 ∈ 𝑆)) | |
8 | 6, 7 | syl6 35 | . . . 4 ⊢ (𝐾 ∈ AtLat → (𝑞 ∈ (Atoms‘𝐾) → (𝑋 = {𝑞} → 𝑋 ∈ 𝑆))) |
9 | 8 | rexlimdv 3151 | . . 3 ⊢ (𝐾 ∈ AtLat → (∃𝑞 ∈ (Atoms‘𝐾)𝑋 = {𝑞} → 𝑋 ∈ 𝑆)) |
10 | 3, 9 | sylbid 240 | . 2 ⊢ (𝐾 ∈ AtLat → (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝑆)) |
11 | 10 | imp 406 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝑃) → 𝑋 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 {csn 4631 ‘cfv 6563 Atomscatm 39245 AtLatcal 39246 PointscpointsN 39478 PSubSpcpsubsp 39479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-proset 18352 df-poset 18371 df-plt 18388 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-p0 18483 df-lat 18490 df-covers 39248 df-ats 39249 df-atl 39280 df-pointsN 39485 df-psubsp 39486 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |