Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pointpsubN Structured version   Visualization version   GIF version

Theorem pointpsubN 39745
Description: A point (singleton of an atom) is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
pointpsub.p 𝑃 = (Points‘𝐾)
pointpsub.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
pointpsubN ((𝐾 ∈ AtLat ∧ 𝑋𝑃) → 𝑋𝑆)

Proof of Theorem pointpsubN
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
2 pointpsub.p . . . 4 𝑃 = (Points‘𝐾)
31, 2ispointN 39736 . . 3 (𝐾 ∈ AtLat → (𝑋𝑃 ↔ ∃𝑞 ∈ (Atoms‘𝐾)𝑋 = {𝑞}))
4 pointpsub.s . . . . . . 7 𝑆 = (PSubSp‘𝐾)
51, 4snatpsubN 39744 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑞 ∈ (Atoms‘𝐾)) → {𝑞} ∈ 𝑆)
65ex 412 . . . . 5 (𝐾 ∈ AtLat → (𝑞 ∈ (Atoms‘𝐾) → {𝑞} ∈ 𝑆))
7 eleq1a 2823 . . . . 5 ({𝑞} ∈ 𝑆 → (𝑋 = {𝑞} → 𝑋𝑆))
86, 7syl6 35 . . . 4 (𝐾 ∈ AtLat → (𝑞 ∈ (Atoms‘𝐾) → (𝑋 = {𝑞} → 𝑋𝑆)))
98rexlimdv 3132 . . 3 (𝐾 ∈ AtLat → (∃𝑞 ∈ (Atoms‘𝐾)𝑋 = {𝑞} → 𝑋𝑆))
103, 9sylbid 240 . 2 (𝐾 ∈ AtLat → (𝑋𝑃𝑋𝑆))
1110imp 406 1 ((𝐾 ∈ AtLat ∧ 𝑋𝑃) → 𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  {csn 4589  cfv 6511  Atomscatm 39256  AtLatcal 39257  PointscpointsN 39489  PSubSpcpsubsp 39490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-covers 39259  df-ats 39260  df-atl 39291  df-pointsN 39496  df-psubsp 39497
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator