Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pointpsubN Structured version   Visualization version   GIF version

Theorem pointpsubN 39738
Description: A point (singleton of an atom) is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
pointpsub.p 𝑃 = (Points‘𝐾)
pointpsub.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
pointpsubN ((𝐾 ∈ AtLat ∧ 𝑋𝑃) → 𝑋𝑆)

Proof of Theorem pointpsubN
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
2 pointpsub.p . . . 4 𝑃 = (Points‘𝐾)
31, 2ispointN 39729 . . 3 (𝐾 ∈ AtLat → (𝑋𝑃 ↔ ∃𝑞 ∈ (Atoms‘𝐾)𝑋 = {𝑞}))
4 pointpsub.s . . . . . . 7 𝑆 = (PSubSp‘𝐾)
51, 4snatpsubN 39737 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑞 ∈ (Atoms‘𝐾)) → {𝑞} ∈ 𝑆)
65ex 412 . . . . 5 (𝐾 ∈ AtLat → (𝑞 ∈ (Atoms‘𝐾) → {𝑞} ∈ 𝑆))
7 eleq1a 2823 . . . . 5 ({𝑞} ∈ 𝑆 → (𝑋 = {𝑞} → 𝑋𝑆))
86, 7syl6 35 . . . 4 (𝐾 ∈ AtLat → (𝑞 ∈ (Atoms‘𝐾) → (𝑋 = {𝑞} → 𝑋𝑆)))
98rexlimdv 3132 . . 3 (𝐾 ∈ AtLat → (∃𝑞 ∈ (Atoms‘𝐾)𝑋 = {𝑞} → 𝑋𝑆))
103, 9sylbid 240 . 2 (𝐾 ∈ AtLat → (𝑋𝑃𝑋𝑆))
1110imp 406 1 ((𝐾 ∈ AtLat ∧ 𝑋𝑃) → 𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  {csn 4585  cfv 6499  Atomscatm 39249  AtLatcal 39250  PointscpointsN 39482  PSubSpcpsubsp 39483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-lat 18373  df-covers 39252  df-ats 39253  df-atl 39284  df-pointsN 39489  df-psubsp 39490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator