| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pointpsubN | Structured version Visualization version GIF version | ||
| Description: A point (singleton of an atom) is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pointpsub.p | ⊢ 𝑃 = (Points‘𝐾) |
| pointpsub.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| Ref | Expression |
|---|---|
| pointpsubN | ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝑃) → 𝑋 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 2 | pointpsub.p | . . . 4 ⊢ 𝑃 = (Points‘𝐾) | |
| 3 | 1, 2 | ispointN 39736 | . . 3 ⊢ (𝐾 ∈ AtLat → (𝑋 ∈ 𝑃 ↔ ∃𝑞 ∈ (Atoms‘𝐾)𝑋 = {𝑞})) |
| 4 | pointpsub.s | . . . . . . 7 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 5 | 1, 4 | snatpsubN 39744 | . . . . . 6 ⊢ ((𝐾 ∈ AtLat ∧ 𝑞 ∈ (Atoms‘𝐾)) → {𝑞} ∈ 𝑆) |
| 6 | 5 | ex 412 | . . . . 5 ⊢ (𝐾 ∈ AtLat → (𝑞 ∈ (Atoms‘𝐾) → {𝑞} ∈ 𝑆)) |
| 7 | eleq1a 2823 | . . . . 5 ⊢ ({𝑞} ∈ 𝑆 → (𝑋 = {𝑞} → 𝑋 ∈ 𝑆)) | |
| 8 | 6, 7 | syl6 35 | . . . 4 ⊢ (𝐾 ∈ AtLat → (𝑞 ∈ (Atoms‘𝐾) → (𝑋 = {𝑞} → 𝑋 ∈ 𝑆))) |
| 9 | 8 | rexlimdv 3132 | . . 3 ⊢ (𝐾 ∈ AtLat → (∃𝑞 ∈ (Atoms‘𝐾)𝑋 = {𝑞} → 𝑋 ∈ 𝑆)) |
| 10 | 3, 9 | sylbid 240 | . 2 ⊢ (𝐾 ∈ AtLat → (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝑆)) |
| 11 | 10 | imp 406 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝑃) → 𝑋 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {csn 4589 ‘cfv 6511 Atomscatm 39256 AtLatcal 39257 PointscpointsN 39489 PSubSpcpsubsp 39490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-lat 18391 df-covers 39259 df-ats 39260 df-atl 39291 df-pointsN 39496 df-psubsp 39497 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |