![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pointpsubN | Structured version Visualization version GIF version |
Description: A point (singleton of an atom) is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pointpsub.p | β’ π = (PointsβπΎ) |
pointpsub.s | β’ π = (PSubSpβπΎ) |
Ref | Expression |
---|---|
pointpsubN | β’ ((πΎ β AtLat β§ π β π) β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . . 4 β’ (AtomsβπΎ) = (AtomsβπΎ) | |
2 | pointpsub.p | . . . 4 β’ π = (PointsβπΎ) | |
3 | 1, 2 | ispointN 38917 | . . 3 β’ (πΎ β AtLat β (π β π β βπ β (AtomsβπΎ)π = {π})) |
4 | pointpsub.s | . . . . . . 7 β’ π = (PSubSpβπΎ) | |
5 | 1, 4 | snatpsubN 38925 | . . . . . 6 β’ ((πΎ β AtLat β§ π β (AtomsβπΎ)) β {π} β π) |
6 | 5 | ex 412 | . . . . 5 β’ (πΎ β AtLat β (π β (AtomsβπΎ) β {π} β π)) |
7 | eleq1a 2827 | . . . . 5 β’ ({π} β π β (π = {π} β π β π)) | |
8 | 6, 7 | syl6 35 | . . . 4 β’ (πΎ β AtLat β (π β (AtomsβπΎ) β (π = {π} β π β π))) |
9 | 8 | rexlimdv 3152 | . . 3 β’ (πΎ β AtLat β (βπ β (AtomsβπΎ)π = {π} β π β π)) |
10 | 3, 9 | sylbid 239 | . 2 β’ (πΎ β AtLat β (π β π β π β π)) |
11 | 10 | imp 406 | 1 β’ ((πΎ β AtLat β§ π β π) β π β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 βwrex 3069 {csn 4628 βcfv 6543 Atomscatm 38437 AtLatcal 38438 PointscpointsN 38670 PSubSpcpsubsp 38671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-proset 18253 df-poset 18271 df-plt 18288 df-lub 18304 df-glb 18305 df-join 18306 df-meet 18307 df-p0 18383 df-lat 18390 df-covers 38440 df-ats 38441 df-atl 38472 df-pointsN 38677 df-psubsp 38678 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |