| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isrrg | Structured version Visualization version GIF version | ||
| Description: Membership in the set of left-regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| Ref | Expression |
|---|---|
| rrgval.e | ⊢ 𝐸 = (RLReg‘𝑅) |
| rrgval.b | ⊢ 𝐵 = (Base‘𝑅) |
| rrgval.t | ⊢ · = (.r‘𝑅) |
| rrgval.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| isrrg | ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7362 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦)) | |
| 2 | 1 | eqeq1d 2735 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥 · 𝑦) = 0 ↔ (𝑋 · 𝑦) = 0 )) |
| 3 | 2 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝑋 → (((𝑥 · 𝑦) = 0 → 𝑦 = 0 ) ↔ ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ))) |
| 4 | 3 | ralbidv 3156 | . 2 ⊢ (𝑥 = 𝑋 → (∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 ) ↔ ∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ))) |
| 5 | rrgval.e | . . 3 ⊢ 𝐸 = (RLReg‘𝑅) | |
| 6 | rrgval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 7 | rrgval.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 8 | rrgval.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 9 | 5, 6, 7, 8 | rrgval 20621 | . 2 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 )} |
| 10 | 4, 9 | elrab2 3646 | 1 ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 .rcmulr 17169 0gc0g 17350 RLRegcrlreg 20615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6445 df-fun 6491 df-fv 6497 df-ov 7358 df-rlreg 20618 |
| This theorem is referenced by: rrgeq0i 20623 unitrrg 20627 isdomn2 20635 isdomn2OLD 20636 rrgsubm 33294 zringidom 33560 |
| Copyright terms: Public domain | W3C validator |