![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isrrg | Structured version Visualization version GIF version |
Description: Membership in the set of left-regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
Ref | Expression |
---|---|
rrgval.e | β’ πΈ = (RLRegβπ ) |
rrgval.b | β’ π΅ = (Baseβπ ) |
rrgval.t | β’ Β· = (.rβπ ) |
rrgval.z | β’ 0 = (0gβπ ) |
Ref | Expression |
---|---|
isrrg | β’ (π β πΈ β (π β π΅ β§ βπ¦ β π΅ ((π Β· π¦) = 0 β π¦ = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7419 | . . . . 5 β’ (π₯ = π β (π₯ Β· π¦) = (π Β· π¦)) | |
2 | 1 | eqeq1d 2733 | . . . 4 β’ (π₯ = π β ((π₯ Β· π¦) = 0 β (π Β· π¦) = 0 )) |
3 | 2 | imbi1d 341 | . . 3 β’ (π₯ = π β (((π₯ Β· π¦) = 0 β π¦ = 0 ) β ((π Β· π¦) = 0 β π¦ = 0 ))) |
4 | 3 | ralbidv 3176 | . 2 β’ (π₯ = π β (βπ¦ β π΅ ((π₯ Β· π¦) = 0 β π¦ = 0 ) β βπ¦ β π΅ ((π Β· π¦) = 0 β π¦ = 0 ))) |
5 | rrgval.e | . . 3 β’ πΈ = (RLRegβπ ) | |
6 | rrgval.b | . . 3 β’ π΅ = (Baseβπ ) | |
7 | rrgval.t | . . 3 β’ Β· = (.rβπ ) | |
8 | rrgval.z | . . 3 β’ 0 = (0gβπ ) | |
9 | 5, 6, 7, 8 | rrgval 21107 | . 2 β’ πΈ = {π₯ β π΅ β£ βπ¦ β π΅ ((π₯ Β· π¦) = 0 β π¦ = 0 )} |
10 | 4, 9 | elrab2 3686 | 1 β’ (π β πΈ β (π β π΅ β§ βπ¦ β π΅ ((π Β· π¦) = 0 β π¦ = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 βwral 3060 βcfv 6543 (class class class)co 7412 Basecbs 17151 .rcmulr 17205 0gc0g 17392 RLRegcrlreg 21099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-rlreg 21103 |
This theorem is referenced by: rrgeq0i 21109 unitrrg 21113 isdomn2 21119 |
Copyright terms: Public domain | W3C validator |