| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isrrg | Structured version Visualization version GIF version | ||
| Description: Membership in the set of left-regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| Ref | Expression |
|---|---|
| rrgval.e | ⊢ 𝐸 = (RLReg‘𝑅) |
| rrgval.b | ⊢ 𝐵 = (Base‘𝑅) |
| rrgval.t | ⊢ · = (.r‘𝑅) |
| rrgval.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| isrrg | ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7360 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦)) | |
| 2 | 1 | eqeq1d 2731 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥 · 𝑦) = 0 ↔ (𝑋 · 𝑦) = 0 )) |
| 3 | 2 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝑋 → (((𝑥 · 𝑦) = 0 → 𝑦 = 0 ) ↔ ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ))) |
| 4 | 3 | ralbidv 3152 | . 2 ⊢ (𝑥 = 𝑋 → (∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 ) ↔ ∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ))) |
| 5 | rrgval.e | . . 3 ⊢ 𝐸 = (RLReg‘𝑅) | |
| 6 | rrgval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 7 | rrgval.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 8 | rrgval.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 9 | 5, 6, 7, 8 | rrgval 20600 | . 2 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 )} |
| 10 | 4, 9 | elrab2 3653 | 1 ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 .rcmulr 17180 0gc0g 17361 RLRegcrlreg 20594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-rlreg 20597 |
| This theorem is referenced by: rrgeq0i 20602 unitrrg 20606 isdomn2 20614 isdomn2OLD 20615 rrgsubm 33233 zringidom 33498 |
| Copyright terms: Public domain | W3C validator |