MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrrg Structured version   Visualization version   GIF version

Theorem isrrg 21108
Description: Membership in the set of left-regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
rrgval.e 𝐸 = (RLRegβ€˜π‘…)
rrgval.b 𝐡 = (Baseβ€˜π‘…)
rrgval.t Β· = (.rβ€˜π‘…)
rrgval.z 0 = (0gβ€˜π‘…)
Assertion
Ref Expression
isrrg (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐡 ∧ βˆ€π‘¦ ∈ 𝐡 ((𝑋 Β· 𝑦) = 0 β†’ 𝑦 = 0 )))
Distinct variable groups:   𝑦,𝐡   𝑦,𝑅   𝑦,𝑋
Allowed substitution hints:   Β· (𝑦)   𝐸(𝑦)   0 (𝑦)

Proof of Theorem isrrg
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 oveq1 7419 . . . . 5 (π‘₯ = 𝑋 β†’ (π‘₯ Β· 𝑦) = (𝑋 Β· 𝑦))
21eqeq1d 2733 . . . 4 (π‘₯ = 𝑋 β†’ ((π‘₯ Β· 𝑦) = 0 ↔ (𝑋 Β· 𝑦) = 0 ))
32imbi1d 341 . . 3 (π‘₯ = 𝑋 β†’ (((π‘₯ Β· 𝑦) = 0 β†’ 𝑦 = 0 ) ↔ ((𝑋 Β· 𝑦) = 0 β†’ 𝑦 = 0 )))
43ralbidv 3176 . 2 (π‘₯ = 𝑋 β†’ (βˆ€π‘¦ ∈ 𝐡 ((π‘₯ Β· 𝑦) = 0 β†’ 𝑦 = 0 ) ↔ βˆ€π‘¦ ∈ 𝐡 ((𝑋 Β· 𝑦) = 0 β†’ 𝑦 = 0 )))
5 rrgval.e . . 3 𝐸 = (RLRegβ€˜π‘…)
6 rrgval.b . . 3 𝐡 = (Baseβ€˜π‘…)
7 rrgval.t . . 3 Β· = (.rβ€˜π‘…)
8 rrgval.z . . 3 0 = (0gβ€˜π‘…)
95, 6, 7, 8rrgval 21107 . 2 𝐸 = {π‘₯ ∈ 𝐡 ∣ βˆ€π‘¦ ∈ 𝐡 ((π‘₯ Β· 𝑦) = 0 β†’ 𝑦 = 0 )}
104, 9elrab2 3686 1 (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐡 ∧ βˆ€π‘¦ ∈ 𝐡 ((𝑋 Β· 𝑦) = 0 β†’ 𝑦 = 0 )))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  β€˜cfv 6543  (class class class)co 7412  Basecbs 17151  .rcmulr 17205  0gc0g 17392  RLRegcrlreg 21099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-rlreg 21103
This theorem is referenced by:  rrgeq0i  21109  unitrrg  21113  isdomn2  21119
  Copyright terms: Public domain W3C validator