Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isrrg | Structured version Visualization version GIF version |
Description: Membership in the set of left-regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
Ref | Expression |
---|---|
rrgval.e | ⊢ 𝐸 = (RLReg‘𝑅) |
rrgval.b | ⊢ 𝐵 = (Base‘𝑅) |
rrgval.t | ⊢ · = (.r‘𝑅) |
rrgval.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
isrrg | ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7262 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦)) | |
2 | 1 | eqeq1d 2740 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥 · 𝑦) = 0 ↔ (𝑋 · 𝑦) = 0 )) |
3 | 2 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝑋 → (((𝑥 · 𝑦) = 0 → 𝑦 = 0 ) ↔ ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ))) |
4 | 3 | ralbidv 3120 | . 2 ⊢ (𝑥 = 𝑋 → (∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 ) ↔ ∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ))) |
5 | rrgval.e | . . 3 ⊢ 𝐸 = (RLReg‘𝑅) | |
6 | rrgval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
7 | rrgval.t | . . 3 ⊢ · = (.r‘𝑅) | |
8 | rrgval.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
9 | 5, 6, 7, 8 | rrgval 20471 | . 2 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 )} |
10 | 4, 9 | elrab2 3620 | 1 ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 .rcmulr 16889 0gc0g 17067 RLRegcrlreg 20463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-rlreg 20467 |
This theorem is referenced by: rrgeq0i 20473 unitrrg 20477 isdomn2 20483 |
Copyright terms: Public domain | W3C validator |