MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrrg Structured version   Visualization version   GIF version

Theorem isrrg 20663
Description: Membership in the set of left-regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
rrgval.e 𝐸 = (RLReg‘𝑅)
rrgval.b 𝐵 = (Base‘𝑅)
rrgval.t · = (.r𝑅)
rrgval.z 0 = (0g𝑅)
Assertion
Ref Expression
isrrg (𝑋𝐸 ↔ (𝑋𝐵 ∧ ∀𝑦𝐵 ((𝑋 · 𝑦) = 0𝑦 = 0 )))
Distinct variable groups:   𝑦,𝐵   𝑦,𝑅   𝑦,𝑋
Allowed substitution hints:   · (𝑦)   𝐸(𝑦)   0 (𝑦)

Proof of Theorem isrrg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7417 . . . . 5 (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦))
21eqeq1d 2738 . . . 4 (𝑥 = 𝑋 → ((𝑥 · 𝑦) = 0 ↔ (𝑋 · 𝑦) = 0 ))
32imbi1d 341 . . 3 (𝑥 = 𝑋 → (((𝑥 · 𝑦) = 0𝑦 = 0 ) ↔ ((𝑋 · 𝑦) = 0𝑦 = 0 )))
43ralbidv 3164 . 2 (𝑥 = 𝑋 → (∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 ) ↔ ∀𝑦𝐵 ((𝑋 · 𝑦) = 0𝑦 = 0 )))
5 rrgval.e . . 3 𝐸 = (RLReg‘𝑅)
6 rrgval.b . . 3 𝐵 = (Base‘𝑅)
7 rrgval.t . . 3 · = (.r𝑅)
8 rrgval.z . . 3 0 = (0g𝑅)
95, 6, 7, 8rrgval 20662 . 2 𝐸 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )}
104, 9elrab2 3679 1 (𝑋𝐸 ↔ (𝑋𝐵 ∧ ∀𝑦𝐵 ((𝑋 · 𝑦) = 0𝑦 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  cfv 6536  (class class class)co 7410  Basecbs 17233  .rcmulr 17277  0gc0g 17458  RLRegcrlreg 20656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-rlreg 20659
This theorem is referenced by:  rrgeq0i  20664  unitrrg  20668  isdomn2  20676  isdomn2OLD  20677  rrgsubm  33283  zringidom  33571
  Copyright terms: Public domain W3C validator