Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isrrg | Structured version Visualization version GIF version |
Description: Membership in the set of left-regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
Ref | Expression |
---|---|
rrgval.e | ⊢ 𝐸 = (RLReg‘𝑅) |
rrgval.b | ⊢ 𝐵 = (Base‘𝑅) |
rrgval.t | ⊢ · = (.r‘𝑅) |
rrgval.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
isrrg | ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7279 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦)) | |
2 | 1 | eqeq1d 2742 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥 · 𝑦) = 0 ↔ (𝑋 · 𝑦) = 0 )) |
3 | 2 | imbi1d 342 | . . 3 ⊢ (𝑥 = 𝑋 → (((𝑥 · 𝑦) = 0 → 𝑦 = 0 ) ↔ ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ))) |
4 | 3 | ralbidv 3123 | . 2 ⊢ (𝑥 = 𝑋 → (∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 ) ↔ ∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ))) |
5 | rrgval.e | . . 3 ⊢ 𝐸 = (RLReg‘𝑅) | |
6 | rrgval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
7 | rrgval.t | . . 3 ⊢ · = (.r‘𝑅) | |
8 | rrgval.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
9 | 5, 6, 7, 8 | rrgval 20569 | . 2 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 )} |
10 | 4, 9 | elrab2 3629 | 1 ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ‘cfv 6432 (class class class)co 7272 Basecbs 16923 .rcmulr 16974 0gc0g 17161 RLRegcrlreg 20561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fv 6440 df-ov 7275 df-rlreg 20565 |
This theorem is referenced by: rrgeq0i 20571 unitrrg 20575 isdomn2 20581 |
Copyright terms: Public domain | W3C validator |