![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrgeq0i | Structured version Visualization version GIF version |
Description: Property of a left-regular element. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
Ref | Expression |
---|---|
rrgval.e | β’ πΈ = (RLRegβπ ) |
rrgval.b | β’ π΅ = (Baseβπ ) |
rrgval.t | β’ Β· = (.rβπ ) |
rrgval.z | β’ 0 = (0gβπ ) |
Ref | Expression |
---|---|
rrgeq0i | β’ ((π β πΈ β§ π β π΅) β ((π Β· π) = 0 β π = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrgval.e | . . . 4 β’ πΈ = (RLRegβπ ) | |
2 | rrgval.b | . . . 4 β’ π΅ = (Baseβπ ) | |
3 | rrgval.t | . . . 4 β’ Β· = (.rβπ ) | |
4 | rrgval.z | . . . 4 β’ 0 = (0gβπ ) | |
5 | 1, 2, 3, 4 | isrrg 20904 | . . 3 β’ (π β πΈ β (π β π΅ β§ βπ¦ β π΅ ((π Β· π¦) = 0 β π¦ = 0 ))) |
6 | 5 | simprbi 498 | . 2 β’ (π β πΈ β βπ¦ β π΅ ((π Β· π¦) = 0 β π¦ = 0 )) |
7 | oveq2 7417 | . . . . 5 β’ (π¦ = π β (π Β· π¦) = (π Β· π)) | |
8 | 7 | eqeq1d 2735 | . . . 4 β’ (π¦ = π β ((π Β· π¦) = 0 β (π Β· π) = 0 )) |
9 | eqeq1 2737 | . . . 4 β’ (π¦ = π β (π¦ = 0 β π = 0 )) | |
10 | 8, 9 | imbi12d 345 | . . 3 β’ (π¦ = π β (((π Β· π¦) = 0 β π¦ = 0 ) β ((π Β· π) = 0 β π = 0 ))) |
11 | 10 | rspcv 3609 | . 2 β’ (π β π΅ β (βπ¦ β π΅ ((π Β· π¦) = 0 β π¦ = 0 ) β ((π Β· π) = 0 β π = 0 ))) |
12 | 6, 11 | mpan9 508 | 1 β’ ((π β πΈ β§ π β π΅) β ((π Β· π) = 0 β π = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 βwral 3062 βcfv 6544 (class class class)co 7409 Basecbs 17144 .rcmulr 17198 0gc0g 17385 RLRegcrlreg 20895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-rlreg 20899 |
This theorem is referenced by: rrgeq0 20906 znrrg 21121 deg1mul2 25632 |
Copyright terms: Public domain | W3C validator |