MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrgeq0i Structured version   Visualization version   GIF version

Theorem rrgeq0i 20065
Description: Property of a left-regular element. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
rrgval.e 𝐸 = (RLReg‘𝑅)
rrgval.b 𝐵 = (Base‘𝑅)
rrgval.t · = (.r𝑅)
rrgval.z 0 = (0g𝑅)
Assertion
Ref Expression
rrgeq0i ((𝑋𝐸𝑌𝐵) → ((𝑋 · 𝑌) = 0𝑌 = 0 ))

Proof of Theorem rrgeq0i
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rrgval.e . . . 4 𝐸 = (RLReg‘𝑅)
2 rrgval.b . . . 4 𝐵 = (Base‘𝑅)
3 rrgval.t . . . 4 · = (.r𝑅)
4 rrgval.z . . . 4 0 = (0g𝑅)
51, 2, 3, 4isrrg 20064 . . 3 (𝑋𝐸 ↔ (𝑋𝐵 ∧ ∀𝑦𝐵 ((𝑋 · 𝑦) = 0𝑦 = 0 )))
65simprbi 499 . 2 (𝑋𝐸 → ∀𝑦𝐵 ((𝑋 · 𝑦) = 0𝑦 = 0 ))
7 oveq2 7167 . . . . 5 (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌))
87eqeq1d 2826 . . . 4 (𝑦 = 𝑌 → ((𝑋 · 𝑦) = 0 ↔ (𝑋 · 𝑌) = 0 ))
9 eqeq1 2828 . . . 4 (𝑦 = 𝑌 → (𝑦 = 0𝑌 = 0 ))
108, 9imbi12d 347 . . 3 (𝑦 = 𝑌 → (((𝑋 · 𝑦) = 0𝑦 = 0 ) ↔ ((𝑋 · 𝑌) = 0𝑌 = 0 )))
1110rspcv 3621 . 2 (𝑌𝐵 → (∀𝑦𝐵 ((𝑋 · 𝑦) = 0𝑦 = 0 ) → ((𝑋 · 𝑌) = 0𝑌 = 0 )))
126, 11mpan9 509 1 ((𝑋𝐸𝑌𝐵) → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wral 3141  cfv 6358  (class class class)co 7159  Basecbs 16486  .rcmulr 16569  0gc0g 16716  RLRegcrlreg 20055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-iota 6317  df-fun 6360  df-fv 6366  df-ov 7162  df-rlreg 20059
This theorem is referenced by:  rrgeq0  20066  znrrg  20715  deg1mul2  24711
  Copyright terms: Public domain W3C validator