| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rrgeq0i | Structured version Visualization version GIF version | ||
| Description: Property of a left-regular element. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| Ref | Expression |
|---|---|
| rrgval.e | ⊢ 𝐸 = (RLReg‘𝑅) |
| rrgval.b | ⊢ 𝐵 = (Base‘𝑅) |
| rrgval.t | ⊢ · = (.r‘𝑅) |
| rrgval.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| rrgeq0i | ⊢ ((𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrgval.e | . . . 4 ⊢ 𝐸 = (RLReg‘𝑅) | |
| 2 | rrgval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | rrgval.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 4 | rrgval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 5 | 1, 2, 3, 4 | isrrg 20607 | . . 3 ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ))) |
| 6 | 5 | simprbi 496 | . 2 ⊢ (𝑋 ∈ 𝐸 → ∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 )) |
| 7 | oveq2 7395 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌)) | |
| 8 | 7 | eqeq1d 2731 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝑋 · 𝑦) = 0 ↔ (𝑋 · 𝑌) = 0 )) |
| 9 | eqeq1 2733 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑦 = 0 ↔ 𝑌 = 0 )) | |
| 10 | 8, 9 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝑌 → (((𝑋 · 𝑦) = 0 → 𝑦 = 0 ) ↔ ((𝑋 · 𝑌) = 0 → 𝑌 = 0 ))) |
| 11 | 10 | rspcv 3584 | . 2 ⊢ (𝑌 ∈ 𝐵 → (∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ) → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 ))) |
| 12 | 6, 11 | mpan9 506 | 1 ⊢ ((𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 .rcmulr 17221 0gc0g 17402 RLRegcrlreg 20600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-rlreg 20603 |
| This theorem is referenced by: rrgeq0 20609 znrrg 21475 deg1mul2 26019 rlocf1 33224 rrgsubm 33234 fracerl 33256 assalactf1o 33631 |
| Copyright terms: Public domain | W3C validator |