MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrgeq0i Structured version   Visualization version   GIF version

Theorem rrgeq0i 20632
Description: Property of a left-regular element. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
rrgval.e 𝐸 = (RLReg‘𝑅)
rrgval.b 𝐵 = (Base‘𝑅)
rrgval.t · = (.r𝑅)
rrgval.z 0 = (0g𝑅)
Assertion
Ref Expression
rrgeq0i ((𝑋𝐸𝑌𝐵) → ((𝑋 · 𝑌) = 0𝑌 = 0 ))

Proof of Theorem rrgeq0i
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rrgval.e . . . 4 𝐸 = (RLReg‘𝑅)
2 rrgval.b . . . 4 𝐵 = (Base‘𝑅)
3 rrgval.t . . . 4 · = (.r𝑅)
4 rrgval.z . . . 4 0 = (0g𝑅)
51, 2, 3, 4isrrg 20631 . . 3 (𝑋𝐸 ↔ (𝑋𝐵 ∧ ∀𝑦𝐵 ((𝑋 · 𝑦) = 0𝑦 = 0 )))
65simprbi 497 . 2 (𝑋𝐸 → ∀𝑦𝐵 ((𝑋 · 𝑦) = 0𝑦 = 0 ))
7 oveq2 7323 . . . . 5 (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌))
87eqeq1d 2739 . . . 4 (𝑦 = 𝑌 → ((𝑋 · 𝑦) = 0 ↔ (𝑋 · 𝑌) = 0 ))
9 eqeq1 2741 . . . 4 (𝑦 = 𝑌 → (𝑦 = 0𝑌 = 0 ))
108, 9imbi12d 344 . . 3 (𝑦 = 𝑌 → (((𝑋 · 𝑦) = 0𝑦 = 0 ) ↔ ((𝑋 · 𝑌) = 0𝑌 = 0 )))
1110rspcv 3566 . 2 (𝑌𝐵 → (∀𝑦𝐵 ((𝑋 · 𝑦) = 0𝑦 = 0 ) → ((𝑋 · 𝑌) = 0𝑌 = 0 )))
126, 11mpan9 507 1 ((𝑋𝐸𝑌𝐵) → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wral 3062  cfv 6465  (class class class)co 7315  Basecbs 16982  .rcmulr 17033  0gc0g 17220  RLRegcrlreg 20622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-iota 6417  df-fun 6467  df-fv 6473  df-ov 7318  df-rlreg 20626
This theorem is referenced by:  rrgeq0  20633  znrrg  20845  deg1mul2  25351
  Copyright terms: Public domain W3C validator