| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rrgeq0i | Structured version Visualization version GIF version | ||
| Description: Property of a left-regular element. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| Ref | Expression |
|---|---|
| rrgval.e | ⊢ 𝐸 = (RLReg‘𝑅) |
| rrgval.b | ⊢ 𝐵 = (Base‘𝑅) |
| rrgval.t | ⊢ · = (.r‘𝑅) |
| rrgval.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| rrgeq0i | ⊢ ((𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrgval.e | . . . 4 ⊢ 𝐸 = (RLReg‘𝑅) | |
| 2 | rrgval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | rrgval.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 4 | rrgval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 5 | 1, 2, 3, 4 | isrrg 20613 | . . 3 ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ))) |
| 6 | 5 | simprbi 496 | . 2 ⊢ (𝑋 ∈ 𝐸 → ∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 )) |
| 7 | oveq2 7354 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌)) | |
| 8 | 7 | eqeq1d 2733 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝑋 · 𝑦) = 0 ↔ (𝑋 · 𝑌) = 0 )) |
| 9 | eqeq1 2735 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑦 = 0 ↔ 𝑌 = 0 )) | |
| 10 | 8, 9 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝑌 → (((𝑋 · 𝑦) = 0 → 𝑦 = 0 ) ↔ ((𝑋 · 𝑌) = 0 → 𝑌 = 0 ))) |
| 11 | 10 | rspcv 3568 | . 2 ⊢ (𝑌 ∈ 𝐵 → (∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ) → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 ))) |
| 12 | 6, 11 | mpan9 506 | 1 ⊢ ((𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 .rcmulr 17162 0gc0g 17343 RLRegcrlreg 20606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-rlreg 20609 |
| This theorem is referenced by: rrgeq0 20615 znrrg 21502 deg1mul2 26046 rlocf1 33240 rrgsubm 33250 fracerl 33272 assalactf1o 33648 |
| Copyright terms: Public domain | W3C validator |