Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  copissgrp Structured version   Visualization version   GIF version

Theorem copissgrp 48012
Description: A structure with a constant group addition operation is a semigroup if the constant is contained in the base set. (Contributed by AV, 16-Feb-2020.)
Hypotheses
Ref Expression
copissgrp.b 𝐵 = (Base‘𝑀)
copissgrp.p (+g𝑀) = (𝑥𝐵, 𝑦𝐵𝐶)
copissgrp.n (𝜑𝐵 ≠ ∅)
copissgrp.c (𝜑𝐶𝐵)
Assertion
Ref Expression
copissgrp (𝜑𝑀 ∈ Smgrp)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑀   𝜑,𝑥,𝑦
Allowed substitution hint:   𝑀(𝑦)

Proof of Theorem copissgrp
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 copissgrp.b . . 3 𝐵 = (Base‘𝑀)
2 copissgrp.p . . 3 (+g𝑀) = (𝑥𝐵, 𝑦𝐵𝐶)
3 copissgrp.n . . 3 (𝜑𝐵 ≠ ∅)
4 copissgrp.c . . . 4 (𝜑𝐶𝐵)
54adantr 480 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶𝐵)
61, 2, 3, 5opmpoismgm 48011 . 2 (𝜑𝑀 ∈ Mgm)
7 eqidd 2736 . . . . . . 7 ((𝐶𝐵 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑥𝐵, 𝑦𝐵𝐶) = (𝑥𝐵, 𝑦𝐵𝐶))
8 eqidd 2736 . . . . . . 7 (((𝐶𝐵 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝐶𝑦 = 𝑐)) → 𝐶 = 𝐶)
9 simpl 482 . . . . . . 7 ((𝐶𝐵 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝐶𝐵)
10 simpr3 1195 . . . . . . 7 ((𝐶𝐵 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑐𝐵)
117, 8, 9, 10, 9ovmpod 7585 . . . . . 6 ((𝐶𝐵 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝐶(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
12 eqidd 2736 . . . . . . 7 (((𝐶𝐵 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑎𝑦 = 𝐶)) → 𝐶 = 𝐶)
13 simpr1 1193 . . . . . . 7 ((𝐶𝐵 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑎𝐵)
147, 12, 13, 9, 9ovmpod 7585 . . . . . 6 ((𝐶𝐵 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝐶) = 𝐶)
1511, 14eqtr4d 2778 . . . . 5 ((𝐶𝐵 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝐶(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝐶))
164, 15sylan 580 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝐶(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝐶))
17 eqidd 2736 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑥𝐵, 𝑦𝐵𝐶) = (𝑥𝐵, 𝑦𝐵𝐶))
18 eqidd 2736 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → 𝐶 = 𝐶)
19 simpr1 1193 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑎𝐵)
20 simpr2 1194 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑏𝐵)
214adantr 480 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝐶𝐵)
2217, 18, 19, 20, 21ovmpod 7585 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) = 𝐶)
2322oveq1d 7446 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = (𝐶(𝑥𝐵, 𝑦𝐵𝐶)𝑐))
24 eqidd 2736 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑏𝑦 = 𝑐)) → 𝐶 = 𝐶)
25 simpr3 1195 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑐𝐵)
2617, 24, 20, 25, 21ovmpod 7585 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
2726oveq2d 7447 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) = (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝐶))
2816, 23, 273eqtr4d 2785 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = (𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))
2928ralrimivvva 3203 . 2 (𝜑 → ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = (𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))
302eqcomi 2744 . . 3 (𝑥𝐵, 𝑦𝐵𝐶) = (+g𝑀)
311, 30issgrp 18746 . 2 (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = (𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐))))
326, 29, 31sylanbrc 583 1 (𝜑𝑀 ∈ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  c0 4339  cfv 6563  (class class class)co 7431  cmpo 7433  Basecbs 17245  +gcplusg 17298  Mgmcmgm 18664  Smgrpcsgrp 18744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-mgm 18666  df-sgrp 18745
This theorem is referenced by:  cznrng  48105
  Copyright terms: Public domain W3C validator