| Step | Hyp | Ref
| Expression |
| 1 | | copissgrp.b |
. . 3
⊢ 𝐵 = (Base‘𝑀) |
| 2 | | copissgrp.p |
. . 3
⊢
(+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| 3 | | copissgrp.n |
. . 3
⊢ (𝜑 → 𝐵 ≠ ∅) |
| 4 | | copissgrp.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| 5 | 4 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐵) |
| 6 | 1, 2, 3, 5 | opmpoismgm 48088 |
. 2
⊢ (𝜑 → 𝑀 ∈ Mgm) |
| 7 | | eqidd 2737 |
. . . . . . 7
⊢ ((𝐶 ∈ 𝐵 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)) |
| 8 | | eqidd 2737 |
. . . . . . 7
⊢ (((𝐶 ∈ 𝐵 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑥 = 𝐶 ∧ 𝑦 = 𝑐)) → 𝐶 = 𝐶) |
| 9 | | simpl 482 |
. . . . . . 7
⊢ ((𝐶 ∈ 𝐵 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝐶 ∈ 𝐵) |
| 10 | | simpr3 1196 |
. . . . . . 7
⊢ ((𝐶 ∈ 𝐵 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝑐 ∈ 𝐵) |
| 11 | 7, 8, 9, 10, 9 | ovmpod 7586 |
. . . . . 6
⊢ ((𝐶 ∈ 𝐵 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝐶(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝐶) |
| 12 | | eqidd 2737 |
. . . . . . 7
⊢ (((𝐶 ∈ 𝐵 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑥 = 𝑎 ∧ 𝑦 = 𝐶)) → 𝐶 = 𝐶) |
| 13 | | simpr1 1194 |
. . . . . . 7
⊢ ((𝐶 ∈ 𝐵 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝑎 ∈ 𝐵) |
| 14 | 7, 12, 13, 9, 9 | ovmpod 7586 |
. . . . . 6
⊢ ((𝐶 ∈ 𝐵 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝐶) = 𝐶) |
| 15 | 11, 14 | eqtr4d 2779 |
. . . . 5
⊢ ((𝐶 ∈ 𝐵 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝐶(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝐶)) |
| 16 | 4, 15 | sylan 580 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝐶(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝐶)) |
| 17 | | eqidd 2737 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)) |
| 18 | | eqidd 2737 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑥 = 𝑎 ∧ 𝑦 = 𝑏)) → 𝐶 = 𝐶) |
| 19 | | simpr1 1194 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝑎 ∈ 𝐵) |
| 20 | | simpr2 1195 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝑏 ∈ 𝐵) |
| 21 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝐶 ∈ 𝐵) |
| 22 | 17, 18, 19, 20, 21 | ovmpod 7586 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏) = 𝐶) |
| 23 | 22 | oveq1d 7447 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏)(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = (𝐶(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)) |
| 24 | | eqidd 2737 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑥 = 𝑏 ∧ 𝑦 = 𝑐)) → 𝐶 = 𝐶) |
| 25 | | simpr3 1196 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝑐 ∈ 𝐵) |
| 26 | 17, 24, 20, 25, 21 | ovmpod 7586 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑏(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝐶) |
| 27 | 26 | oveq2d 7448 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)(𝑏(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)) = (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝐶)) |
| 28 | 16, 23, 27 | 3eqtr4d 2786 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏)(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)(𝑏(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐))) |
| 29 | 28 | ralrimivvva 3204 |
. 2
⊢ (𝜑 → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏)(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)(𝑏(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐))) |
| 30 | 2 | eqcomi 2745 |
. . 3
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (+g‘𝑀) |
| 31 | 1, 30 | issgrp 18734 |
. 2
⊢ (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏)(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)(𝑏(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)))) |
| 32 | 6, 29, 31 | sylanbrc 583 |
1
⊢ (𝜑 → 𝑀 ∈ Smgrp) |