MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp1 Structured version   Visualization version   GIF version

Theorem sgrp1 18126
Description: The structure with one element and the only closed internal operation for a singleton is a semigroup. (Contributed by AV, 10-Feb-2020.)
Hypothesis
Ref Expression
sgrp1.m 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
sgrp1 (𝐼𝑉𝑀 ∈ Smgrp)

Proof of Theorem sgrp1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sgrp1.m . . 3 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
21mgm1 18084 . 2 (𝐼𝑉𝑀 ∈ Mgm)
3 df-ov 7194 . . . . . 6 (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩)
4 opex 5333 . . . . . . 7 𝐼, 𝐼⟩ ∈ V
5 fvsng 6973 . . . . . . 7 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
64, 5mpan 690 . . . . . 6 (𝐼𝑉 → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
73, 6syl5eq 2783 . . . . 5 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)
87oveq1d 7206 . . . 4 (𝐼𝑉 → ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
97oveq2d 7207 . . . 4 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼)) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
108, 9eqtr4d 2774 . . 3 (𝐼𝑉 → ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼)))
11 oveq1 7198 . . . . . . . 8 (𝑥 = 𝐼 → (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦))
1211oveq1d 7206 . . . . . . 7 (𝑥 = 𝐼 → ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))
13 oveq1 7198 . . . . . . 7 (𝑥 = 𝐼 → (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)))
1412, 13eqeq12d 2752 . . . . . 6 (𝑥 = 𝐼 → (((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))))
15142ralbidv 3110 . . . . 5 (𝑥 = 𝐼 → (∀𝑦 ∈ {𝐼}∀𝑧 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ∀𝑦 ∈ {𝐼}∀𝑧 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))))
1615ralsng 4575 . . . 4 (𝐼𝑉 → (∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼}∀𝑧 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ∀𝑦 ∈ {𝐼}∀𝑧 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))))
17 oveq2 7199 . . . . . . . 8 (𝑦 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
1817oveq1d 7206 . . . . . . 7 (𝑦 = 𝐼 → ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))
19 oveq1 7198 . . . . . . . 8 (𝑦 = 𝐼 → (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))
2019oveq2d 7207 . . . . . . 7 (𝑦 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)))
2118, 20eqeq12d 2752 . . . . . 6 (𝑦 = 𝐼 → (((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))))
2221ralbidv 3108 . . . . 5 (𝑦 = 𝐼 → (∀𝑧 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ∀𝑧 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))))
2322ralsng 4575 . . . 4 (𝐼𝑉 → (∀𝑦 ∈ {𝐼}∀𝑧 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ∀𝑧 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))))
24 oveq2 7199 . . . . . 6 (𝑧 = 𝐼 → ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
25 oveq2 7199 . . . . . . 7 (𝑧 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
2625oveq2d 7207 . . . . . 6 (𝑧 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼)))
2724, 26eqeq12d 2752 . . . . 5 (𝑧 = 𝐼 → (((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))))
2827ralsng 4575 . . . 4 (𝐼𝑉 → (∀𝑧 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))))
2916, 23, 283bitrd 308 . . 3 (𝐼𝑉 → (∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼}∀𝑧 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))))
3010, 29mpbird 260 . 2 (𝐼𝑉 → ∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼}∀𝑧 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)))
31 snex 5309 . . . 4 {𝐼} ∈ V
321grpbase 16794 . . . 4 ({𝐼} ∈ V → {𝐼} = (Base‘𝑀))
3331, 32ax-mp 5 . . 3 {𝐼} = (Base‘𝑀)
34 snex 5309 . . . 4 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V
351grpplusg 16795 . . . 4 ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
3634, 35ax-mp 5 . . 3 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀)
3733, 36issgrp 18118 . 2 (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼}∀𝑧 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))))
382, 30, 37sylanbrc 586 1 (𝐼𝑉𝑀 ∈ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  wral 3051  Vcvv 3398  {csn 4527  {cpr 4529  cop 4533  cfv 6358  (class class class)co 7191  ndxcnx 16663  Basecbs 16666  +gcplusg 16749  Mgmcmgm 18066  Smgrpcsgrp 18116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-plusg 16762  df-mgm 18068  df-sgrp 18117
This theorem is referenced by:  mnd1  18168
  Copyright terms: Public domain W3C validator