MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp1 Structured version   Visualization version   GIF version

Theorem sgrp1 18742
Description: The structure with one element and the only closed internal operation for a singleton is a semigroup. (Contributed by AV, 10-Feb-2020.)
Hypothesis
Ref Expression
sgrp1.m 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
sgrp1 (𝐼𝑉𝑀 ∈ Smgrp)

Proof of Theorem sgrp1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sgrp1.m . . 3 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
21mgm1 18671 . 2 (𝐼𝑉𝑀 ∈ Mgm)
3 df-ov 7434 . . . . . 6 (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩)
4 opex 5469 . . . . . . 7 𝐼, 𝐼⟩ ∈ V
5 fvsng 7200 . . . . . . 7 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
64, 5mpan 690 . . . . . 6 (𝐼𝑉 → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
73, 6eqtrid 2789 . . . . 5 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)
87oveq1d 7446 . . . 4 (𝐼𝑉 → ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
97oveq2d 7447 . . . 4 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼)) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
108, 9eqtr4d 2780 . . 3 (𝐼𝑉 → ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼)))
11 oveq1 7438 . . . . . . . 8 (𝑥 = 𝐼 → (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦))
1211oveq1d 7446 . . . . . . 7 (𝑥 = 𝐼 → ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))
13 oveq1 7438 . . . . . . 7 (𝑥 = 𝐼 → (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)))
1412, 13eqeq12d 2753 . . . . . 6 (𝑥 = 𝐼 → (((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))))
15142ralbidv 3221 . . . . 5 (𝑥 = 𝐼 → (∀𝑦 ∈ {𝐼}∀𝑧 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ∀𝑦 ∈ {𝐼}∀𝑧 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))))
1615ralsng 4675 . . . 4 (𝐼𝑉 → (∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼}∀𝑧 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ∀𝑦 ∈ {𝐼}∀𝑧 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))))
17 oveq2 7439 . . . . . . . 8 (𝑦 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
1817oveq1d 7446 . . . . . . 7 (𝑦 = 𝐼 → ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))
19 oveq1 7438 . . . . . . . 8 (𝑦 = 𝐼 → (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))
2019oveq2d 7447 . . . . . . 7 (𝑦 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)))
2118, 20eqeq12d 2753 . . . . . 6 (𝑦 = 𝐼 → (((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))))
2221ralbidv 3178 . . . . 5 (𝑦 = 𝐼 → (∀𝑧 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ∀𝑧 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))))
2322ralsng 4675 . . . 4 (𝐼𝑉 → (∀𝑦 ∈ {𝐼}∀𝑧 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ∀𝑧 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))))
24 oveq2 7439 . . . . . 6 (𝑧 = 𝐼 → ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
25 oveq2 7439 . . . . . . 7 (𝑧 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
2625oveq2d 7447 . . . . . 6 (𝑧 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼)))
2724, 26eqeq12d 2753 . . . . 5 (𝑧 = 𝐼 → (((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))))
2827ralsng 4675 . . . 4 (𝐼𝑉 → (∀𝑧 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))))
2916, 23, 283bitrd 305 . . 3 (𝐼𝑉 → (∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼}∀𝑧 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))))
3010, 29mpbird 257 . 2 (𝐼𝑉 → ∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼}∀𝑧 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)))
31 snex 5436 . . . 4 {𝐼} ∈ V
321grpbase 17330 . . . 4 ({𝐼} ∈ V → {𝐼} = (Base‘𝑀))
3331, 32ax-mp 5 . . 3 {𝐼} = (Base‘𝑀)
34 snex 5436 . . . 4 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V
351grpplusg 17332 . . . 4 ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
3634, 35ax-mp 5 . . 3 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀)
3733, 36issgrp 18733 . 2 (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼}∀𝑧 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))))
382, 30, 37sylanbrc 583 1 (𝐼𝑉𝑀 ∈ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  {csn 4626  {cpr 4628  cop 4632  cfv 6561  (class class class)co 7431  ndxcnx 17230  Basecbs 17247  +gcplusg 17297  Mgmcmgm 18651  Smgrpcsgrp 18731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mgm 18653  df-sgrp 18732
This theorem is referenced by:  mnd1  18792
  Copyright terms: Public domain W3C validator